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Myeloid-derived suppressor cell (MDSC) is a heterogeneous population of immature
myeloid cells, has a pivotal role in negatively regulating immune response, promoting
tumor progression, creating pre-metastases niche, and weakening immunotherapy
efficacy. The underlying mechanisms are complex and diverse, including
immunosuppressive functions (such as inhibition of cytotoxic T cells and
recruitment of regulatory T cells) and non-immunological functions (mediating
stemness and promoting angiogenesis). Moreover, MDSC may predict therapeutic
response as a poor prognosis biomarker among multiple tumors. Accumulating
evidence indicates targeting MDSC can reverse immunosuppressive tumor
microenvironment, and improve therapeutic response either single or combination
with immunotherapy. This review summarizes the phenotype and definite
mechanisms of MDSCs in tumor progression, and provide new insights of
targeting strategies regarding to their clinical applications.
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1 INTRODUCTION

Myeloid cells, which are derived from hematopoietic stem cells, have diverse functions such as
protect human body against infection and help tissue repair. Mature myeloid cells, including
macrophages, neutrophils, eosinophils, and basophils, are a key component of the innate
immune system. However, the majority of these pro-inflammatory cells can be re-educated to
become pro-tumor cells when tumorigenesis occurs. Significantly increased immature myeloid
cells have been observed in the bone marrow and peripheral blood of patients with cancer
(Yang et al., 2004). These immature myeloid cells are called myeloid-derived suppressor cells
(MDSCs) because of their capacity to suppress the anti-tumor immune response (Talmadge
and Gabrilovich, 2013).

The existence of enriched MDSCs have been shown to be related with poor prognosis for multiple
types of cancer (Jiang et al., 2015; Tian et al., 2015). Various pro-tumor mechanisms have been reported:
MDSCs suppress the proliferation and cytolysis of T cells (Chen et al., 2017) and promote the recruitment
and expansion of Treg cells (Serafini et al., 2008). MDSCs are also involved in angiogenesis (Lee et al.,
2005) and themaintenance of stemness (Wang et al., 2019a). However, inmost studies the role ofMDSCs
have been studied independently and generate fragmented information. The limitations hinder our
understanding of MDSCs in tumor microenvironment and optimize anti-tumor treatment.
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In this review, we systematically summarize the characteristics
and definite mechanisms of MDSCs in tumor progression and
metastasis, highlight the role of MDSCs in clinical treatment, and
further discuss the potential strategies to provide new insights
regarding their clinical applications.

2 DEFINITION OF MDSCS

MDSCs comprise a heterogeneous population of immature
myeloid cells that are divided into different subsets based on
morphology and surface markers. In mice, MDSCs are mainly
categorized into two groups: granulocytic MDSCs (G-MDSCs; or
polymorphonuclear MDSCs [PMN-MDSCs]) and monocytic
(M) MDSCs (M-MDSCs) (Zhao et al., 2016). Other
subpopulations found in humans are immature MDSCs
(i-MDSCs) (Mandruzzato et al., 2016) and fibrocytic MDSCs
(f-MDSCs) (Zoso et al., 2014). G-MDSCs, which are
characterized as CD11b+Ly6GhiLy6Clo cells, mainly produce
reactive oxygen species (ROS) to suppress T-cell function
(Tacke et al., 2012). The M-MDSCs referred to as
CD11b+Ly6GloLy6Chi cells can inhibit the immune response

by producing nitric oxide (NO), arginase 1 (Arg-1), and IL-10
(Maenhout et al., 2014). The f-MDSC subset, which is
characterized by the expression of CD33+IL4Rα+, attenuates
T-cell proliferation via indoleamine 2-3 dioxygenase (IDO)
secretion and promotes regulatory T (Treg) cell expansion
(Zoso et al., 2014). Nevertheless, the phenotype and function
of i-MDSCs have not been determined (Figure 1).

Although the generation of MDSCs might be explained by the
interrupted development of normal myelopoiesis and abnormal
expansion of immature myeloid cells (Netherby and Abrams,
2017), the underlying mechanisms are unclear. Several cytokines
and growth factors secreted by tumor cells and immune cells have
been shown to promote the accumulation and expansion of
MDSCs by activating the JAK/STAT1 and JAK/STAT3
signaling pathways (Fleming et al., 2018), including
granulocyte-macrophage colony-stimulating factor (GM-CSF),
vascular endothelial growth factor (VEGF), transforming
growth factor-β (TGF-β), interleukin-6 (IL-6), and interleukin-
10 (IL-10). Moreover, these cells can recruit MDSCs into the
tumor microenvironment (TME) by releasing certain
chemokines, such as CXCL5, CXCL8, CXCL12, CCL2, and
CCL5 (Ozga et al., 2021).

FIGURE 1 | Development of MDSCs. MDSCs are derived from hematopoietic stem cells (HSC) in bone marrow, and differentiate into myeloid cells step by step. In
the pathological conditions, a series of cytokines (GM-CSF, VEGF, IL-1β, IL-6, and IL-10) promote MDSC generation. Then suppressive MDSCs are recruited into TME
by tumor-derived chemokines, such as CXCL5, CXCL8, CXCL12, CCL2, and CCL5. Further, the favorable TME accelerates the activation, survival and expansion of
MDSCs. CMP, common myeloid progenitor; GMP, granulocyte and macrophage progenitor.
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3 CONTRIBUTION OF MDSCS TO TUMOR
PROGRESSION
3.1 Immunosuppressive Functions of
MDSCs on Tumor Progression
MDSCs are potent suppressors of T-cell activation and
function through various mechanisms, including the
expression of ligands of negative immune checkpoint
regulators, secretion of immunosuppressive cytokines,
disruption of amino acid metabolism. Moreover, MDSCs
also play a critical role in establishment and maintenance
of immunosuppressive microenvironment by interacting
with other immune cells, including nature killer cells (NK
cells), dendritic cells (DCs), macrophages, and Treg cells
(Figure 2).

3.1.1 Suppression of T Cells by Expression of Ligands
of Negative Immune Checkpoint Regulators
MDSCs are the main suppressive cells in the anti-tumor immune
response; their main role is regulating the quantity and functions
of T cells. Tumor-infiltrating MDSCs express high levels of Fas
ligand (Fas-L) to induce apoptosis of CD8+ T cells by binding to
the Fas receptor (Rashid et al., 2021). A previous study found that
PMN-MDSCs rather than M-MDSCs could specially induce
CD8+ T cells apoptosis through Fas-FasL axis and result in
local immune suppression (Zhu J et al., 2017). And activated
CD8+ T cells might also lead to MDSC apoptosis via the Fas-FasL
axis (Sinha et al., 2011). Therefore, inducing apoptosis between
MDSCs and T cells might result in reciprocal actions.
Additionally, MDSCs in TME highly express several ligands of
negative immune checkpoint regulators, programmed cell death

FIGURE 2 | The roles of MDSCs in TME. MDSCs are potent suppressors of antitumor immunity. MDSCs decrease TCR expression and impair cytotoxic T cell
function via producing Arg-1, NO, ROS, IL-10, and TGF-β. Moreover, MDSCs promote Tregs recruitment by secreting certain chemokines (CCL3, CCL4, and CCL5),
and increase Tregs function via producing IL-10 and TGF-β. Additionally, MDSCs increase PD-L1 expression of tumor cells to mediate immune evasion. MDSCs also
play non-immunological functions. MDSCs mediate EMT and stemness of tumor cells by producing VEGF, PEG2, IL-6, IL-10, and TGF-β. And MDSCs could
induce angiogenesis via secreting VEGFA, FGF2, Bv8, TGF-β, IL-1β, and MMP9 to promote tumor metastasis. Strategies targeting MDSCs for cancer treatment are
summarized around the main figure.
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protein ligand 1 (PD-L1) (Lu et al., 2016) and Galectin-9
(Dardalhon et al., 2010), which bind to programmed cell
death protein 1 (PD-1) or T-cell immunoglobulin and mucin
domain-containing protein 3 (TIM3) to induce effector T-cell
anergy.

3.1.2 Suppression of T Cells by Secretion of
Immunosuppressive Cytokines
In response to complex tumor microenvironment, MDSCs
develop formidable plasticity, including cytokines, chemokines,
and growth factors which are responsible for the suppressive
capacity (Lechner et al., 2010). These products are potential
therapeutic targets for inhibition of MDSC.

IL-10
Increased level of IL-10 has been reported in many cancers. In
2011, Hart et al have identified MDSCs as the predominant
producers of IL-10 in a mouse model of ovarian cancer (Hart
et al., 2011). They also found that IL-10 produced by MDSCs
increased lymphocyte activation gene 3 (LAG-3) expression and
decreased interferon (IFN)-γ secretion by T cells (Hart et al.,
2011). MDSCs can activate the immunosuppressive capacity
through IL-10 in pathological conditions and contribute to
disease progression (Yaseen et al., 2020). The conclusion was
further supported by a previous finding that IL-10 level was
significantly reduced by MDSCs depletion in ovarian cancer-
bearing mice (Hart et al., 2009). It has been revealed that IL-10
level was positively correlated with MDSCs expansion and tumor
progression in patients with anaplastic thyroid cancer, ovarian
cancer, gastric cancer and no-small cell lung cancer (Suzuki et al.,
2013; Li et al., 2015; Pogoda et al., 2016; Wu et al., 2017). Further
studies reported that increased production of IL-10 by MDSCs
could inhibit the production of IL-2, IL-12 and IFN-γ by CD4+ or
CD8+ T cells, which lead to their impaired proliferation and anti-
tumor immunity (Vuk-Pavlovic et al., 2010; Li et al., 2015).
Interestingly, IL-10/IL-10 receptor signaling is also critical for
phenotypic and functional maintenance of MDSCs (Bah et al.,
2018). It has been reported that blocking IL-10/IL-10R could
decrease the infiltration of MDSCs in ascites of ovarian cancer-
bearing mice (Lamichhane et al., 2017). Moreover, IL-10 has been
shown to strength the immunosuppressive functions of MDSCs
by upregulating the expression of ARG-1 and programmed cell
death protein 1 (PD-1) (Xiu et al., 2015; Lamichhane et al., 2017).
These results indicated that there was positive feedback between
MDSCs and IL-10. In addition, IL-10 is also involved in the
differentiation and expansion of Treg cells (Heo et al., 2010).
Researchers found that IL-10 treatment could induce Foxp3
expression of CD4+ T cell population and increase the number
of Treg cells. Further studies found that histone deacetylase 11
(HDAC11) and alarmin high mobility group box 1 (HMGB1) are
key negative regulators of IL-10 transcription inMDSCs (Villagra
et al., 2009; Parker et al., 2014), indicating a promising
therapeutic strategy for enhancing anti-tumor immunity.

TGF-β
Increased TGF-β production in MDSCs has been identified in
various tumor types. Chikamatsu et al reported that CD14+ HLA-

DR− MDSCs produced high level of TGF-β to inhibit T cell
proliferation and IFN-γ production in squamous cell carcinoma
of the head and neck. And blocking TGF-β with antibody could
partially the immunosuppressive functions of MDSCs
(Chikamatsu et al., 2012; Novitskiy et al., 2012). Moreover, in
a mouse model with specific deletion of Tgfbr2 in myeloid cells,
the suppressive function of CD11b+Gr1+ MDSCs was found to
decreased significantly (Novitskiy et al., 2012). The TGF-β family
of proteins is a potent immune regulator that can inhibit
proliferation, differentiation, activation, and cytotoxicity of
effector T cells. It has been reported that TGF-β blocked naïve
T cells differentiated into Th1 cells, which is the most important
subset to mediate anti-tumor response (Sad andMosmann 1994).
Further studies revealed that the impaired differentiation might
due to the silence of the expression of two Th1 master
transcription factors, TBET and STAT4 (Gorelik et al., 2002;
Lin et al., 2005). Chen and colleagues found that TGF-β inhibited
T cell activation by dampening the initial Ca2+ influx triggered
T Cell Receptor (TCR) stimulation (Chen et al., 2003). In addition
to inhibiting differentiation and activation, TGF-β blocks T cell
proliferation and effector functions. TGF-β could decrease IL-2
expression of T cells to inhibit proliferation by Smad3 signaling
(McKarns et al., 2004). Thomas and Massague revealed that the
TGF-β/Smad pathway could directly bind to their promoter
regions to downregulate the expression of granzyme B and
IFN-γ (Thomas and Massague, 2005), which are responsible
for cytotoxic T-lymphocyte-mediated tumor cytotoxicity.
Moreover, depletion of Tgfbr2 promoted the expression of
receptor KLRG1 and production of granzyme-B and IFN-γ
(Zhang and Bevan, 2012). Furthermore, TGF-β has a
significant role in the generation and expansion of Treg cells
with powerful immunosuppressive potential (Wan and Flavell
2008). Further evidence demonstrated that TGF-β could induce
CD25 and Foxp3 expression to convert native CD4+ T cells to
Treg cells (Fu et al., 2004).

Chemokines
In addition to releasing immunosuppressive cytokines, MDSCs
can produce high levels of CCL3, CCL4, and CCL5, which attract
Treg cells into the TME via preferential expression of CCR5 on
the Treg cell surface (Schlecker et al., 2012).

3.1.3 Suppression of T Cells by Disruption of Amino
Acid Metabolism
As previously mentioned, MDSCs produce Arg-1, inducible nitric
oxide synthase (iNOS), and ROS to impair T-cell-mediated
immune responses. The underlying mechanisms have been
determined by the exhaustion of certain amino acids and the
generation of free radicals.

Arg1
Arg-1 hyperproduction of MDSCs in human cancer was first
reported by Zea et al., in 2005 (Zea et al., 2005); they found that
increased Arg activity was limited to a specific subset of
CD11b+CD14−CD15+ cells in the peripheral blood of patients
with metastatic renal cell carcinoma instead of macrophages or
dendritic cells described in mouse models. Arg-1 utilizes
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L-arginine to produce urea, causing L-arginine deficiency in the
TME. L-arginine deficiency leads to cell cycle arrest during the
G0-G1 phase of T cells by upregulating cyclin D3 and cyclin-
dependent kinase 4 (cdk4), resulting in decreased
phosphorylation of Rb protein and low expression and
binding of E2F1 (Rodriguez et al., 2007; Rodriguez et al.,
2009). The absence of L-arginine also appears to downregulate
T-cell receptor (TCR) expression by decreasing CD3ζ chain
biosynthesis to induce T-cell dysfunction (Rodriguez et al., 2002).

iNOS and ROS
Similarly, L-arginine is also a substrate for iNOS to produce NO
(Lee et al., 2003). In addition to depleting L-arginine, NO can
suppress T cells by inhibiting JAK3/STAT5 activation (Bingisser
et al., 1998), decreasingMHC class II molecule expression (Harari
and Liao 2004), and inducing T-cell apoptosis (Vig et al., 2004).
Additionally, NO can cooperate with ROS to form the reactive
nitrogen species (RNS) peroxynitrite (Gabrilovich et al., 2012),
which nitrates tyrosine residue in proteins involved in T-cell
function. Lu et al. reported that lymphocyte-specific protein
tyrosine kinase (LCK) was nitrated at Tyr394 by MDSCs as an
initiating tyrosine kinase in the TCR signaling cascade (Feng
et al., 2018). LCK nitration reduced IL-2 production to inhibit the
proliferation and activation of T cells. Moreover, RNS nitrates the
tyrosine of TCR to modify its conformational flexibility and affect
its interaction with MHC class I molecules, thus causing the
decreased response of CD8+ T cells to antigen-specific
stimulation (Nagaraj et al., 2007). Additionally, RNS induces
the nitration of CCL2 chemokines to inhibit antigen-specific
cytotoxic T-cell trafficking into the tumor (Molon et al., 2011).
Upregulated ROS have been identified in the MDSCs of many
tumors (Ohl and Tenbrock 2018). Other studies have found that
MDSCs with decreased ROS production failed to inhibit IFN-γ
secretion and proliferation of antigen-specific CD8+ T cells
(Corzo et al., 2009). In addition to direct toxicity, ROS might
be involved in TCR CD3ζ expression (Otsuji et al., 1996), which
limits the activation and expression of IFN-γ in T cells.

IDO1
The abnormal metabolisms of tryptophan and cystine induced by
MDSCs also mediate T-cell suppression. MDSCs highly express
indoleamine 2,3-dioxygenase 1 (IDO1), which is an enzyme that
hydrolyzes tryptophan along the kynurenine pathway (Yu et al.,
2013). A shortage of tryptophan causes T-cell proliferation arrest
during the G1 phase of the cell cycle by stimulating general
control nonderepressible 2 (GCN2) activation (Munn et al.,
2005). Furthermore, GCN2 activation could reduce the
expression of the TCR CD3ζ chain to inhibit antigen
presentation (Fallarino et al., 2006). Metz et al. reported that
the IDO-mediated catabolism of tryptophan also inhibited the
mammalian target of rapamycin (mTOR) and protein kinase C
(PKC), along with autophagy of effector T cells (Metz et al., 2012).
Furthermore, IDO1 promotes the expansion of Treg cells and
enhances their immunosuppressive functions to mediate immune
tolerance (Curti et al., 2007). A recent study found that IDO1
knockout in myeloid cells increased ROS levels to aggravate graft-
versus-host disease (Ju et al., 2021); however, whether IDO1

could suppress ROS production in tumors remains unclear.
MDSCs also limit T-cell activation by consuming cystine in
the TME (Srivastava et al., 2010).

Cystine depriving
It is well-known that cysteine is an essential amino acid for T-cell
activation. Because of the lack of cystathionase and an intact Xc−

transporter, T cells cannot import cystine or convert intracellular
methionine to cysteine(Ishii et al., 2004). Antigen presentation
cells (APCs), including dendritic cells and macrophages, can
import extracellular cystine and export cysteine to the TME,
which is utilized by T cells. However, MDSCs import cystine but
do not export cysteine because they do not express alanine-
serine-cysteine transporters. Therefore, MDSCs competitively
import cystine with APCs and reduce the level of cysteine in
the TME to impair the uptake of T cells.

3.1.4 Crosstalk Between MDSCs and Other Immune
Cells
There are many other mechanisms that mediate T-cell
suppression by MDSCs. Zheng et al. reported that the
V-domain Ig suppressor of T-cell activation (VISTA) is highly
expressed on MDSCs in the peripheral blood of patients with
acute myeloid leukemia (Wang et al., 2018). VISTA knockdown
in MDSCs impairs MDSC-mediated inhibition of CD8 T-cell
activity. Recently, it was found that MDSCs could release a large
number of exosomes to induce exhaustion and apoptosis of CD8+

T cells by increasing ROS production (Rashid et al., 2021).

NK cells
NK cells play important roles in anti-tumor immune response
though directly killing tumor cells and indirectly activating Th1
immunity. Li et al reported that coculture with MDSCs induced
anergy of NK cells, including decreased cytotoxicity, reduced
production of IFN-γ, and downregulated expression of NKG2D
(Li et al., 2009). They also found that the anergy of NK cells
induced by MDSCs was dependent on membrane-bound TGF-
β1, implying in a cell-cell contact manner. Additionally, another
study showed that MDSCs could downregulate expression of
CD247 on the surface of NK cells to inhibit their development
and cytotoxicity (Vaknin et al., 2008).

DCs
As one of professional antigen-presenting cells (APCs), DCs are
vital in adaptive immunity to suppress tumor progression.
Emerging evidences have shown that MDSCs-DCs crosstalk
contributed to DCs dysfunction. In tumor-bearing mouse
model, the number of mature DCs decreased proportionately
to the increasing number of MDSCs, which might be due to their
competitively differentiation from common progenitor cells
(Sinha et al., 2007). In addition, MDSCs might inhibit DCs
maturation to induce immune tolerance and evasion. It has
been reported that MDSCs-producing VEGF and IL-10 could
downregulate expression of major histocompatibility complex
(MHC) II and co-stimulators on DCs by activating STAT3
signaling (Heim et al., 2014). In another study, researchers
found that MDSCs could suppress the process of antigen
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capture and the migration of immature DC to secondary
lymphoid organs, which were essential for DCs maturation
(Greifenberg et al., 2009). Moreover, MDSCs have been
reported to alter cytokine production of DCs, including
decreased secretion of IL-12 and increased secretion of IL-23
(Hu et al., 2011). These alterations might transform DCs from
anti-tumor cells into pro-tumor cells by driving the proliferation
and inflammatory function of Th17 cells (Langrish et al., 2005).

Macrophages
Macrophage are also one of the professional APCs to facilitate
Th1 cells-mediated anti-tumor immunity. MDSCs have been
demonstrated to alter the cytokine production, phenotype and
antigen-presenting capacity of macrophages. It has been reported
that IL-10 produced by MDSCs could decrease the secretion of
IL-6, IL-12, and tumor necrosis factor-α (TNF-α) of
macrophages, which remarkably suppress their anti-tumor
activity (Beury et al., 2014). Moreover, Rosenberg et al found
that MDSCs might switch macrophages phenotype from anti-
tumor M1 subtype into pro-tumor M2 subtype, giving rise to so-
called “tumor associated macrophages” (TAMs) (Ostrand-
Rosenberg et al., 2012). Additionally, coculture with MDSCs
could downregulate expression of MHC II molecular to
interfere with antigen-presenting process of macrophages
(Shin et al., 2006), resulting in immune tolerance or immune
evasion.

Treg cells
Treg cells are also potent suppressor of T cells proliferation and
cytotoxicity. As mentioned above, IL-10 and TGF-β could induce
generation and expansion of Treg cells through increasing
expression of CD25 and Foxp3. In addition, a series of
chemokines produced by MDSCs, such as CCL3, CCL4, and
CCL5, could promote recruitment of Treg cells into TME.

3.2 Non-immunological Functions of
MDSCs in Tumor Progression
In general, tumor cells produce certain growth factors and
chemokines to recruit MDSCs into the TME. In addition to
suppressing T-cell-mediated immunity, MDSCs promote tumor
progression and metastasis by mediating stemness of tumor cells,
angiogenesis, and degradation of the extracellular matrix (ECM).

3.2.1 Effects on EMT and Stemness
Numerous studies have indicated that MDSCs mediate the
epithelial-to-mesenchymal transition (EMT) of tumor cells in
many cancers (Zhu H et al., 2017; Pang et al., 2020). EMT is a
critical biological process in the formation of cancer stem cells
(CSCs), which harbor stem cell properties such as self-renewal,
multi-lineage differentiation, and tumorigenicity (Dave et al.,
2012). Many immunosuppressive factors produced by MDSCs,
such as TGF-β (Katsuno et al., 2013), VEGF (Oka et al., 2007), IL-
10 (Yang et al., 2019), and IL-6 (Kim et al., 2013), have been
shown to induce EMT and stemness in various tumor cells. Liu
et al. reported that CXCR2+MDSCs induce EMT in breast cancer
cells by secreting IL-6 (Zhu H et al., 2017). In a melanoma model,

MDSCs promoted EMT via TGF-β, epidermal growth factor, and
hepatocyte growth factor signaling pathways (Schlegel et al.,
2015). In 2013, Zou et al. first reported the interaction
between MDSCs and CSCs (Cui et al., 2013). They found that
MDSCs triggered miRNA101 expression in ovarian cancer cells
to repress the co-repressor gene C-terminal binding protein-2
(CtBP2), which directly targets stem cell core genes, resulting in
increased cancer cell stemness and increased metastatic and
tumorigenic potential. Another study indicated that MDSCs
increased ALDHhigh CSCs in ovarian cancer by producing
PEG2. Moreover, PEG2 produced by MDSCs upregulated PD-
L1 expression in ovarian cancer cells (Komura et al., 2020).
Linehan et al. demonstrated that MDSCs significantly
increased the frequency of ALDH1Bright CSCs in a mouse
model of pancreatic cancer through activation of the STAT3
pathway (Panni et al., 2014). In addition to inducing EMT and
stemness, MDSCs upregulate caspase-1 to directly promote the
proliferation of multiple squamous carcinoma cells in vitro and in
vivo (Zeng et al., 2018).

3.2.2 Effects on Angiogenesis
MDSCs have been proven to facilitate angiogenesis in tumor
progression through many different mechanisms. MDSCs
produce high levels of VEGF (Shojaei et al., 2009), which is
the most important cytokine involved in angiogenesis. VEGF
binds to its receptor (VEGFR) on adjacent epithelial cells to
promote neovascularization by activating the JAK2/STAT3
pathway. Interestingly, MDSCs in TME also express high
levels of VEGFR2 (Min et al., 2017), which may be activated
by VEGF secreted by tumor cells or themselves to produce more
VEGF. Therefore, the VEGF/VEGFR pathway establishes a
positive feedback loop in MDSCs to maintain their angiogenic
activity. Moreover, MDSCs are able to produce an abundance of
proteolytic enzymes, such as matrix metalloproteinases (MMPs)
(Zhang et al., 2020), which are involved in tumor metastasis by
degrading the ECM. MMPs are also key regulators of
angiogenesis. Yang et al. reported that MMP9 was highly
secreted by Gr-1+CD11b+ MDSCs, and that deletion of MMP9
decreased vascular density, vascular maturation, and tumor
growth (Yang et al., 2004). Additionally, other factors
contribute to MDSC-induced angiogenesis, including Bombina
variegata peptide 8 (Bv8), TGF-β, fibroblast growth factor 2, and
IL-1β. Ferrara et al. reported that Gr-1+CD11b+ myeloid cells
upregulated the expression of Bv8 to promote tumor angiogenesis
(Shojaei and Ferrara, 2008). As mentioned, MDSCs can produce
TGF-β. TGF-β induces tumor angiogenesis by activating
fibroblasts to produce ECM adhesion and stimulating tube
formation by endothelial cells (van Meeteren et al., 2011).
Further studies have indicated that TGF-β may mediate
acquired resistance to anti-VEGF therapy (Aguilera et al.,
2014). Yu et al. reported that STAT3-activated MDSCs
upregulated the expression of basic fibroblast growth factor 2
and IL-1β (Kujawski et al., 2008), which are critical for tumor-
derived MDSC–mediated angiogenesis.

Some RNA contents of MDSC-derived exosomes also
contribute to tumor angiogenesis. Zhang et al. showed that
MDSC miR-126a rescues doxorubicin-induced MDSC death in
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a S100A8/A9-dependent manner and promotes tumor
angiogenesis (Deng et al., 2017). In another study, miR-9
contained in MDSC-derived exosomes was found to promote
tumor angiogenesis by reprogramming endothelial cells (Baroni
et al., 2016). However, other exosomes involved in MDSC-
mediated angiogenesis require further study.

3.2.3 Effects on Pre-metastatic Niche Formation
Clinical data have proven that MDSCs positively correlated with
distant metastasis in various tumors, including NSCLC, breast
cancer, melanoma, prostate cancer and so on (Huang et al., 2013;
Yu et al., 2013; Weide et al., 2014; Hossain et al., 2015). Besides
the promotion of EMT and angiogenesis, MDSCs have been
demonstrated to the formation of pre-metastatic niche. Wang
et al. reported that CXCL1 produced by TAMs in tumor
microenvironment could recruit CXCR2+ MDSCs to liver and
establish a pre-metastatic niche that expedited liver metastasis
(Wang et al., 2017). In another mouse model of breast cancer,
CCL2 secreted by tumor cells could recruit MDSCs to the lung
and result in formation of pre-metastatic niche of lung metastases
(Sceneay et al., 2013). These functions might be explained by the
degradation of the extracellular matrix (ECM) to make the local
microenvironment more permissive for the seeding of circulating
tumor cells (Wang et al., 2019b). Moreover, MDSCs-produced
cytokines and chemokines, such as TGF-β, VEGFA, S100A8/A9,
and MMP-9, might play important role in pre-metastatic niche
formation through facilitating angiogenesis and tumor cell
invasion (Shojaei et al., 2009).

4 MDSCS ACT AS A NEGATIVE
BIOMARKER OF IMMUNOTHERAPY

The emergence of immunotherapy has achieved a great
breakthrough in cancer therapy. In particular, T cell-based
immunotherapy such as immune checkpoint blockers (ICBs),
and the infiltration and function of cytotoxic T lymphocytes
(CTLs) directly determines the efficacy of immunotherapy.
Accumulating evidence has shown that MDSCs impair the
patient response and survival, to clarify the role of MDSCs in
immunotherapy has profound significance.

Several clinical studies have identified MDSCs as predictive
biomarkers of poor prognosis for immunotherapy in many
cancers. It has been reported that the responders to
ipilimumab have lower frequency of MDSCs in peripheral
blood than the non-responders in patients with melanoma
(Meyer et al., 2014). The result of IMmotion150 identified that
high myeloid inflammation gene signature expression
(MyeloidHigh) was associated with reduced PFS in
atezolizumab-treated patients with metastatic renal cell
carcinoma (mRCC) (McDermott et al., 2018). Moreover,
MDSCs have been shown to predict the efficacy of anti-PD-1
immunotherapy. Youn et al. demonstrated that the ratio of Treg
cells to Lox-1+ MDSCs was positively correlated with anti-PD-1
efficacy in non-small cell lung cancer (NSCLC) (Kim et al., 2019).
Another study found that the ratio of NK cells to Lox-1+ PMN-
MDSCs was also an ideal biomarker for PD-1 antibody treatment

of NSCLC (Youn et al., 2020). Recently, low frequency of MDSCs
in the peripheral blood has been identified to be associated with
longer progression free survival and overall survival in NSCLC
patients after PD-1 treatment (Koh et al., 2020). Therefore,
MDSCs might be a potential tool for cancer treatment or for
improving the efficacy of immunotherapy.

5 STRATEGIES TARGETING MDSCS FOR
OPTIMIZING CANCER TREATMENT

To date, several clinical trials have been established to specifically
target MDSCs to inhibit proliferation, decrease the expression of
immunosuppressive mediators, block recruitment, and promote
differentiation.

5.1 Blockade of MDSCs’ Recruitment
MDSCs express high levels of certain chemokine receptors, such
as CXCR1, CXCR2, CXCR4, CCR2, and CCR5. Therefore,
MDSCs can be recruited into the TME by corresponding
chemokines from tumor cells and immune cells, including
CXCL5, CXCL8, CXCL12, CCL2, and CCL5. Many preclinical
and clinical trials have attempted to block MDSC recruitment
with antagonists of these chemokine receptors. In 2016, a phase Ib
study investigated the safety and efficacy of PF-04136309 (a
CCR2 antagonist) and FOLFIRINOX for locally advanced and
borderline resectable pancreatic cancer (Nywening et al., 2016).
The results showed that the ORR and DCR for the combined
group were 49 and 97%, respectively, but they were only 0 and
80%, respectively, for the chemotherapy alone group. Although
the authors speculated that the regression of tumors was
attributable to decreased TAMs by CCR2 blockade, the
contribution of reduced MDSCs cannot be ignored. Another
CCR2 antagonist, 747, has been proven to exhibit anti-cancer
properties alone and potentiate the anti-tumor efficacy of
sorafenib in a hepatocellular carcinoma model (Yao et al.,
2017); however, further clinical studies are needed. A phase Ib
study was established by Goldstein et al. to investigate the efficacy
of the CXCR1/2 inhibitor, reparixin, in combination with weekly
paclitaxel for metastatic HER2 negative breast cancer (Schott
et al., 2017). They reported an ORR of 27.8% (5/18 patients).
CXCR4 antagonists and antibodies are designed to treat acute
myeloid leukemia, multiple myeloma (MM), and solid tumors.
Thornton et al. published the results of a phase I trial of
LY2510924, a CXCR4 peptide antagonist, for patients with
solid tumors (Galsky et al., 2014). For the 45 patients in this
trial, the DCR was 20% and the ORR was not observed. Phase II
and phase III trials are required to enroll more patients. Recently,
the efficacy of a CXCR4 antibody, ulocuplumab (BMS-936564),
in combination with lenalidomide or bortezomib plus
dexamethasone for MM was studied. The results showed that
the ORR of combined therapy was 55.2% and the DCR was 72.4%
(Ghobrial et al., 2020).

5.2 Inhibition of MDSCs’ Activation
Inducing immature MDSCs into mature myeloid cells may be a
potential strategy for treating cancer. All-trans retinoic acid
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(ATRA) has been recognized as an ideal inducer of differentiation
and has been widely used for many hematopoietic tumors (Mirza
et al., 2006; Iclozan et al., 2013). Moreover, McCarter et al. found
that ATRA could decrease the frequency and suppressive
functions of MDSCs and increase the frequency of circulating
mature myeloid cells in the peripheral blood of patients with
melanoma (Tobin et al., 2018). However, the efficacy of ATRA
alone or in combination with ipilimumab for melanoma patients
requires further study. Furthermore, 1,25 dihydroxy vitamin D
(1,25(OH)2D), the active form of vitamin D, is involved in cell
differentiation. The use of 1,25(OH)2D has been proven to block
tumor progression and prolong disease-free survival by
increasing CD4+ and CD8+ T-cell infiltration in patients with
head and neck squamous cell carcinoma (Makitie et al., 2020).
Other studies reported that MDSCs in the TME expressed high
levels of vitamin D receptor, and that 1,25(OH)2D treatment
could significantly inhibit their suppressive functions (Fleet et al.,
2020). However, the effects of 1,25(OH)2D on MDSC
differentiation require further study.

5.3 Depletion of MDSCs’ Expansion
The CSF-1/CSF-1R pathway has a key role in MDSC
proliferation, and CSF-1R inhibitor treatment has resulted
in exciting results. Tyner et al. identified GW-2580, a CSF-1R
inhibitor, as a potential anti-tumor agent for acute myeloid
leukemia by decreasing CD33+ MDSC infiltration (Edwards
et al., 2019). Imatinib, a TKI approved for the treatment of
chronic myeloid leukemia and gastrointestinal stromal
tumors, was also found to target GSF1R. Imatinib has been
shown to significantly reduce the frequency of circulating
G-MDSCs in patients with chronic myeloid leukemia
(Giallongo et al., 2018). In 2019, Rugo et al. published the
results of a phase Ib study of the combination of pexidartinib
(another CSF-1R inhibitor) and paclitaxel for patients with
advanced solid tumors (Wesolowski et al., 2019). They found
that of 38 evaluable patients, 1 (3%) had a complete response,
5 (13%) had a partial response, and 13 (34%) had stable
disease. The overall response rate (ORR) and disease control
rate (DCR) were 16 and 55%, respectively. They also found
that combined therapy reduced CD14dim/CD16+ monocyte
levels by 57–100% in peripheral blood; however, the effect on
MDSCs was not studied further.

5.4 Target on MDSCs’ Metabolic Products
As mentioned, Arg-1 and iNOS are critical factors in MDSC-
mediated immune suppression. A phase I study of the
arginase inhibitor INCB001158 (1,158) alone and in
combination with pembrolizumab for patients with solid
tumors revealed that the ORR and DCR for the 1,158
alone group and the combined group were 3 and 28% and
6 and 37%, respectively (Naing et al., 2019). Recently, a phase
I/II study of INCB001158 plus chemotherapy for patients
with advanced biliary tract cancers reported that the ORR was
24% (8/33 patients; 95% confidence interval [CI],
11.1–42.3%), the DCR was 67%, and the median
progression-free survival was 8.5 months (95% CI,
5.7–10.1 months) (Javle et al., 2021). Similarly, a phase I/II

clinical trial performed to study the efficacy of the iNOS
inhibitor NG-monomethyl-L-arginine (L-NMMA) combined
with docetaxel treatment reported that the ORR was 22.2%
for patients with triple-negative breast cancer (Chung et al.,
2019). These results suggest that inhibitors of Arg-1 and
iNOS combined with immunotherapy or chemotherapy
might be better choices for some solid cancers (Table 1).

In fact, reductions in MDSC frequency and function have
been demonstrated during regular anti-tumor therapies,
including chemotherapy, targeted therapy, immunotherapy,
and combined therapy. However, other studies and our
previous studies have shown that radiotherapy could
induce an increase in MDSCs in the TME and spleen (van
Meir et al., 2017; Cheng et al., 2021). Regarding
chemotherapeutic agents, 5-fluorouracil (5-FU),
gemcitabine, and pemetrexed could decrease MDSC
accumulation in various cancers. However, Baniyash et al.
reported that CPT-11 (irinotecan) increased the abundance
and immunosuppressive features of MDSCs in colorectal
cancer by blocking MDSC apoptosis and myeloid cell
differentiation (Kanterman et al., 2014). Anti-angiogenic
drugs, such as bevacizumab and some small molecular
tyrosine kinase inhibitors (TKIs), can also reduce MDSC
accumulation. Kotsakis et al. found that bevacizumab-based
chemotherapy significantly reduced the percentage of MDSCs
compared with non-bevacizumab regimens in the peripheral
blood of patients with NSCLC (Koinis et al., 2016). In a
previous study, nilotinib, dasatinib, and sorafenib, but not
sunitinib, inhibited the differentiation of MDSCs and
promoted their immunosuppressive capacity (Heine et al.,
2016). However, in a model of mRCC, both sunitinib alone
and in combination with PD-1 antibody significantly reduced
a large proportion of G-MDSCs and M-MDSCs (Rayman
et al., 2015). And another study also found that sunitinib
treatment reduces intratumoral MDSC content, especially
significantly shrinkage of G-MDSC in RCC patients
(Guislain et al., 2015). Aerts et al. found that axitinib with
αCTLA-4 increased the number of MDSCs but decreased their
suppressive capacity in a melanoma brain metastasis model
(Du Four et al., 2016). Olaparib, targeting poly (ADP-ribose)
polymerase (PARP), also suppressed MDSC recruitment by
dampening the CXCL12/CXCR4 pathway (Sun et al., 2021).
Although epidermal growth factor receptor TKIs, including
gefitinib and osimertinib, were found to increase the level of
MDSCs in NSCLC (Jia et al., 2019), whether their suppressive
functions are modified requires further study. Additionally,
immune checkpoint inhibitors (anti-PD-1, anti-PD-L1, and
anti-CTLA-4) have been reported to reduce the frequency of
MDSCs and decrease the production of suppressive factors
and chemokines. Grivas et al. found that PD-L1 antibody
(atezolizumab/avelumab) and PD-1 antibody
(pembrolizumab) were correlated with a decreased
percentage of PD-L1+ MDSCs in patients with metastatic
urothelial carcinoma (Tzeng et al., 2018). Kiessling et al.
reported that ipilimumab, a CTLA-4 antibody, reduced the
infiltration of MDSCs and iNOS expression in melanoma
patients (de Coana et al., 2017).
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6 CONCLUSION AND PERSPECTIVES

Emerging evidence has implied the suppressive role of MDSCs in
pathological conditions including tumor progression. Although
we have a better knowledge of the origin and development of
MDSC, the genomic and metabolic differentiation mechanisms
are still unclear. Recent advances in genomic of high-resolution
and metabolic technologies may allow for further study
development and differentiation. In consideration of the pro-
tumor contribution of MDSCs from immunological and non-
immunological view in tumor progression and metastasis just as
we have discussed in this review, to clarify their role in anti-tumor
treatment especially immunotherapy is particularly important. In
clinic, MDSCs are negative prognostic biomarkers for multiple
tumors, and may mediate acquired resistance to immunotherapy.
Althoughmany clinical trials have attempted to target MDSCs for
improving clinical benefit, their efficacy is far from our

expectations. The major obstacle is to understand the complex
mechanisms and target MDSCs selectively. Therefore, more
clinical studies and basic research involving targeting MDSCs
alone or in combination with immunotherapy are needed.
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