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Abstract

Understanding the regulatory mechanisms that affect obesogenic genes expression in new-

borns is essential for early prevention efforts, but they remain unclear. Our study aimed to

explore whether the maternal p-BMI and GWG were associated with regulatory single-locus

DNA methylation in selected obesogenic genes. For this purpose, DNA methylation was

assayed by Methylation-Sensitive High Resolution Melting (MS-HRM) technique and

Sanger allele-bisulfite sequencing in fifty samples of umbilical vein to evaluate glucosamine-

6-phosphate deaminase 2 (GNPDA2), peroxisome proliferator-activated receptor gamma

coactivator 1 alpha (PGC1α), and leptin receptor (LEPR) genes. Correlations between DNA

methylation levels and indicators of maternal nutritional status were carried out. Western

blotting was used to evaluate protein expression in extracts of the same samples. Results

indicated that GNPDA2 and PGC1α genes have the same level of DNA methylation in all

samples; however, a differential DNA methylation of LEPR gene promoter was found, corre-

lating it with GWG and this correlation is unaffected by maternal age or unhealthy habits.

Furthermore, leptin receptor (Lep-Rb) was upregulated in samples that showed the lowest

levels of DNA methylation. This study highlights the association between poor GWG and

adjustments on obesogenic genes expression in newborn tissues with potential conse-

quences for development of obesity in the future.
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Introduction

Etiology of obesity lies on complex interactions between genetic, epigenetic and environmental

factors [1–5]. Epidemiological and experimental evidence support that children and adult obe-

sity is associated with parental health status and lifestyles that can modulate offspring develop-

mental programming during the periconceptional period, fetal life, and early childhood [6–

10]. Developmental programming of obesity may result from altered genetic expression as a

fetal adaptive response to adverse intrauterine influences such as maternal diet or nutritional

status during pregnancy [8,11–14].

Genome-wide association studies (GWAS) have identified several single nucleotide poly-

morphisms (SNPs) linking genetic traits with an increased risk for obesity development [15–

17]. However, the study of environmental factors’ effects on gene expression to promote an

obesogenic phenotype is still scarce. Epigenetic mechanisms such as DNA methylation have

been proposed as mediators of adverse phenotypes [18–20]. Preliminary evidence suggests

that maternal obesity can have significant effects on neonatal adiposity by altering offspring

epigenome-wide DNA methylation [20]. Although many articles report DNA methylation var-

iability in offspring tissues linked to obesogenic environments in pregnancy [21,22], it is still

uncertain how DNA methylation variability is influenced by interindividual biological varia-

tion [23], ethnic and sex composition, and specific organ performance [24,25].

GWAS studies have identified common genetic variants associated with BMI of children

and adults among European, Chinese, Japanese and Mexican populations [16,26–28], suggest-

ing that there is a genetic risk for obesity [29]. Specific variants of GNPDA2, PGC1α and LEPR
genes have shown a strong association with Mexican population’s BMI, increasing the risk of

obesity [28,30–32], although the control mechanisms of obesogenic genes expression during

early development are still unknown.

Nutritional status of pregnant woman is a major environmental contributor for fetal devel-

opment and many studies have used p-BMI and/or GWG during pregnancy as indicators of

the adequacy of the nutritional status [33,34]. We previously reported the use of these indirect

indicators of maternal health in the assessment of differential methylation in newborns of a

diet-responsive gene [35]. The current study aimed to explore whether maternal p-BMI and

GWG are associated with a single-locus promoter methylation of GNPDA2, PGC1α and LEPR
genes and their consequent protein expression in newborns.

Materials and methods

Subjects

Women recruited in their first trimester of pregnancy and attended for a prenatal care cohort

at Hospital Materno Infantil Inguaran in Mexico City, participated in this secondary study

(between January 2013 to July 2014), signing a letter of informed consent. Pregnant women

who met the following criteria were eligible for the present study: age between 18 and 35 years,

singleton and normal pregnancy clinically diagnosed, and delivering at 37–40 weeks of gesta-

tion. Pregnant women who met more than two vaginal infections, gestational diabetes or dia-

betes mellitus, preeclampsia, and preterm delivery, were excluded.

Data of birth weight (BW) and birth length (BL) were registered, and the umbilical cord

was collected after placenta delivery. Medical and nutritional status, including anthropometric

information (p-BMI and GWG) of patients during pregnancy were searched on the clinical

records, such as the habits of smoking, alcohol, and drug consumption.

All procedures and data protection were approved by the Internal Review Board from the

Mexico City Ministry of Health (Register 101-001-008-12).
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Sample size

The sample size was estimated using the BMI means and SD of two hundred and seven His-

panic reproductive-age women; the BMI values were approximately normally distributed [36].

The confidence level selected was 95% with an estimated proportion of 0.79 and a relative stan-

dard error of 6.5, calculating a result of 49 samples (https://www.abs.gov.au/websitedbs/

D3310114.nsf/home/Sample+Size+Calculator).

DNA isolation from umbilical cord vein

Total DNA from 50 mg of umbilical vein was extracted as follows: enzymatic tissue digestion

was carried out with 500 μl/sample of solution [50 mM Tris-HCl, 100 mM EDTA, 100 mM

NaCl, 1% SDS pH 8.0 and, 0.5 mg/ml of proteinase K (Invitrogen)] and it was incubated at

50˚C overnight. The following day, the digested sample was centrifugated at 2,400 x g during 5

min to rescue the pellet in a new DNasa/RNasa-free microfuge tube and homogenized in

500 μl of TRIzol reagent (Invitrogen), and incubated at room temperature for 5 min. Ten μl of

chloroform was added, mixed, incubated at room temperature for 3 min and, centrifuged at

11,200 x rpm for 15 min at 4˚C. DNA precipitation was followed by addition of 100% ethanol

and centrifugation at 4,700 x g for 5 min at 4˚C. DNA pellet was rinsed three times, adding

500 μl of sodium citrate 0.1M/10% ethanol, incubated at room temperature 30 min and, centri-

fuged at 2,000 x g for 5 min at 4˚C. Last rinsing was made with 400 μl of 75% ethanol, incu-

bated 15 min and centrifuged. DNA was dissolved in 25 μl of TE buffer and incubated at 45˚C

for 1 h. DNA quality was assessed by measuring the absorbance at 260/280 nm (1.7–2.0) and

was quantified with a Thermo Scientific Nanodrop 2000c Spectrophotometer (Thermo Scien-

tific). DNA integrity was verified by 1% agarose gel electrophoresis.

Primer designs and MS-HRM assay

Promoter sequences of PGC1α, GNPDA2, and LEPR genes were obtained from the UCSC

Genome Browser database (version of Feb 2009 GRCh37/hg19 assembly). The selection of

study sequences for each gene was based on chromosomes’ CpG island regions located near

the transcriptional start site (TSS) and containing DNA binding site from conserved transcrip-

tional factors (TF). The primers were designed according to the MS-HRM technique condi-

tions [37] (Table 1).

Bisulfite conversion of umbilical vein DNA samples and methylation standard controls

(500 ng/sample) were performed using the EZ DNA Methylation-Gold Kit (Zymo Research),

according to the manufacturer´s protocol. Bisulfite-treated methylated and unmethylated

standard controls (5ng/μL) were mixed at 50%, 10%, and 1% proportions to create a range of

allele dilutions that were used to develop a methylation standard curve as a template for inter-

polation of values from bisulfite-treated DNA samples.

MS-HRM assays were first optimized to adjust the primers’ annealing temperature using

the bisulfite-treated standard curve dilutions (S1 File). Then, conditions for the site-specific

analysis of the PGC1α, GNPDA2, LEPR gene promoters were set as follows: 1) for amplifica-

tion, 10 min at 95˚C followed by 45 cycles of 10 s at 95˚C, 10 s at the primer annealing temper-

ature shown in Table 1, and 15 s at 72˚C, 2) for high-resolution melting analysis, 1 min at

95˚C, 5 s at 72˚C, and continuous increase to 95˚C with 50 acquisitions/C and, 3) a cooling set-

ting of 30 s at 40˚C. All reactions were performed three times in duplicate in white 96-well

plates using a Light Cycler 480 Instrument (Roche).

End products of MS-HRM assays were first analyzed by Gene Scanning software (Roche),

normalizing the fluorescence intensity of raw melt curves and aligning the normalized curves

with a temperature shift. Then, melting peaks obtained by Tm calling option were generated
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from the negative first derivative of normalized curves and those data were exported to Graph-

Pad Prism v6.0 for further analysis after the graphs were plotted. Normalized and tempera-

ture-shifted difference curves were used to obtain the area under the curve (AUC), generating

the 100% methylation standard curve to the horizontal axis for determining the degree of

methylation of each DNA samples [38].

Direct sequencing

PCR amplification was carried on before Sanger sequencing with the end products of

MS-HRM assays and the same MS-HRM primers, obtaining after amplification mixed tem-

plates. Sanger sequencing were performed with the BigDye Terminator v1.1 Cycle Sequencing

Kit and using an ABI prism 370 DNA sequencer (Applied Biosystems). Nucleotide sequences

were aligned using Mega 7.0 and manually adjusted in the text editor. Initial identification of

the sequences was made after performing BLAST searches of the NCBI database. The electro-

pherogram quality was visualized with 4Peaks X 1.7.1, and CpG highlighting was simplified

using the BiQ Analyzer software tool.

Protein extraction and western blotting

For 1 day, fifty milligrams of umbilical vein were treated with lysis buffer [50 mM Tris HCl,

1% Nonidet P-40, protease inhibitor cocktail, pH 7.4 (Sigma Aldrich)] at 37˚C. Next day, sam-

ples were homogenized and incubated on ice for 1 h, centrifuged at maximum speed at 4˚C for

10 min, and the supernatant was obtained. Fifty micrograms of protein in Laemmli buffer

(1:1) was loaded in 15% SDS-PAGE gels and transferred to a PVDF (Thermo Scientific Pierce).

The membrane was blocked with 5% non-fat dry milk dissolved in TBST for 30 min at room

temperature. Blots were incubated with rabbit anti-human LEPR [1μg/ml (Abcam, ab104403)]

or rabbit anti-β-actin-HRP [1:5000 (Abcam)] overnight at 4˚C, washed with TBST, and

Table 1. Characteristics of the target gene sequences and primers condition.

Characteristics PGC1α GNPDA2 LEPR
Forward 5’TAGGTTCGTTTTGATTTGGGTAGT3’ 5’ATTCGGATGTAGATAAAGGCGTAG3’ 5’TTCGCGAGTTAGGGGAGGAG3’

Reverse 5’TCTCGCCCTCTCGCTTCC3’ 5’CTCCTCGCGTCTCACCTCAA3’ 5’ACCCGACCTCGCTACTCAAA3’

Primer

annealing

temperature

59˚C 54˚C 54˚C

Chromosome

(# of bases)

Chr4:24,474,340–24,474,473

(134)

Chr4:44,728,592–44,728,691

(100)

Chr1: 65,886,000–65,886,146

(147)

Conserved TF

Binding Site

EGR1-3, AHRARNT2 - -

TF Chip-seq

(ENCODE

March 2012)

ZNF263, RBBP5, RUNX3, POLR2A, MYC,

TCF7L2, RELA, E2F1, SIN3A, PAX5, BACH1,

USF1, MAX.

POLR2A, REST, RBBP5, PHF8, HMGN3, YY1,

KDM5B, MYC, MAX, E2F6, PML, GATA1, CTCF,

TAF1, CBX3, SETDB1, GABPA, HDAC2, GATA2,

TEAD4, RELA, UBTF, SIN3AK20, E2F4, NFYB,

MAZ, CHD2, NR2C2, FOXP2, E2F1, TCF7L2,

CREB1, POU2F2, RCOR1, USF2, USF1, ELF1,

ATF3, IRF1, GATA3, RAD21, TBP, JUN, PAXS,

GTF2B, NRF1, FOS, RUNX3, SPI1

POLR2A, MYBL2, MAZ, TAF1, TBP,

MXI1, MYC, CHD2, HMGN3, EGR1,

TFAP2C, CCNT2, STAT1, TEAD4, SP1,

IRF1, NRF1

Forward and reverse primer sequences for each gene were designed and previously annealing-temperature optimized for MS-HRM assay conditions. The specific locus

of each gene falls in a conserved TF binding-site or in a TF Chip-seq pipeline. Locations in chromosomes were downloaded at the UCSC Genome Browser database

(Feb 2009 GRCh37/hg19 assembly version). TF: transcriptional factors.

https://doi.org/10.1371/journal.pone.0226010.t001
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incubated with secondary goat anti-rabbit- HRP [1:2000 (Abcam)] for 2 h at room tempera-

ture. Image acquisition and densitometry analysis were performed using Image Lab software

version 5.2.1 build 11 (Bio-Rad).

Statistical analysis

Clinical information of the subjects involved in the study is reported as mean ± SD, and

unhealthy habits is reported in percentages. Correlation analysis between BW and BL with p-

BMI and GWG was performed with a simple linear regression. Methylation status was

obtained using the mean of AUC ± SD from all reactions in normalized and temperature-

shifted difference plots. The mean of AUC showing normal Gaussian distribution assessed

using Shapiro–Wilk test were compared between methylation groups through an unpaired t-

test with equal SD and Welch’s correction. The correlation analysis of the p-BMI, GWG, BW,

and BL with the methylation status (AUC data) was completed using a v2 test and a Pearson

correlation with linear regression; correlation between GWG and LEPR’s AUC was tested by a

multiple regression model adjusted by least squares, using maternal age and unhealthy habits

as confounder variables. Protein expression is reported as median with interquartile ranges

(IQRs) and evaluated with a Mann–Whitney test (non-parametric unpaired t-test). Different

values (p< 0.05) were corrected by Tukeys’ multiple comparisons test when it was required.

The statistical and plots software used was GraphPad Prism v6.0 and JMP v11.0.

Results

Characteristics of studied subjects

Fifty pregnant women were recruited for this study and their clinical data were recorded

(Table 2). Briefly, pregnant women showed a natural fertility age with low heights compared

with those of other populations [39], and a marked overweight. Some participants occasionally

smoked, consumed alcohol and/or used illicit drugs without affecting the birth BW and birth

Table 2. Clinical characteristics of fifty pregnant women and their newborns from Mexico City.

Clinical feature Mean ± SD CI 95%

Maternal age (years) 29.48 ± 6.364 27.67–31.29

Pre-pregnancy weight (kg) 69.28 ± 16.31 64.64–73.92

Maternal height (cm) 156.3 ± 6.986 154.4–158.3

Weight at delivery (kg) 76.51 ± 14.64 72.35–80.67

p-BMI (kg/m2) 28.61 ± 6.415 26.78–30.43

Total GWG (kg) 7.036 ± 5.307 5.528–8.544

Gestational week at delivery 38.25 ± 0.8591 38.01–38.50

BW (g) 3140 ± 422.6 3020–3260

BL (cm) 48.95 ± 2.241 48.31–49.59

Unhealthy habits Positive % (N) Negative % (N)

Tobacco smoker (active or passive) 34 (17) 66 (33)

Alcohol intake 14 (7) 86 (43)

Use of illicit drugs 6 (3) 94 (47)

Descriptive results are expressed as the means ± SD, indicating the number of participants (N) and the

corresponding percentage (%). Qualitative data are available by the presence/absence of consumption habits or

complications during pregnancy. p-BMI: pre-pregnancy body mass index; GWG: gestational weight gain; BW: birth

weight; BL: birth length; SD: Standard Deviation; CI: Confidence Interval.

https://doi.org/10.1371/journal.pone.0226010.t002
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BL of newborns. BW was positively correlated with maternal p-BMI (r = 0.367, p = 0.009) but

not with GWG. BL was not correlated with maternal p-BMI, nor for GWG (S1 Fig).

Site-specific gene promoter methylation status and its correlation with

maternal nutritional status

To evaluate methylation status of GNPDA2, PGC1α and LEPR promoters in newborns, fifty

bisulfite-modified DNA samples from umbilical vein were analyzed. We obtained the melting

profiles of a locus-specific assessment of the GNPDA2, PGC1α and LEPR and estimated the

degree of methylation compared with a human control set of defined mixtures of methylated

and unmethylated DNAs. Those profiles were represented by melting peaks and normalized

temperature-shifted curve plots to obtain the AUC. For each sample, GNPDA2 (Fig 1A and

1B) and PGC1α (Fig 1C and 1D) promoters did not show differences between human control

set of 0% and bisulfite-modified DNA samples.

In this study, mean values of the AUC were used as indirect and inverse measure of the

DNA methylation status (For example: AUC’s control set of 0% = 294.5 ± 133; AUC’s control

set of 100% = 10.9 ± 13.3). To determine the methylation status of a specific locus of the LEPR
promoter, we calculated the standard deviations of the difference between mean values of the

AUC of 10%, 1% and 0% control sets under the independent assumption, showing that 52% of

DNA samples corresponded to the control set of 1%, the 37% of DNA samples corresponded

to the control set of 0%, and only the 12% corresponded to the control set of 10% (Fig 2A–2C).

Correlation analysis was realized using maternal nutrition status indicators and a single

locus of LEPR promoter methylation status. LEPR methylation status in umbilical vein was

negatively correlated with GWG (Fig 2D) without being affected by maternal age nor

unhealthy habits (r2 = 0.29, adjusted r2 = 0.14, f-value = -2.98, p = 0.005). The results also indi-

cate that the lowest state of LEPR promoter methylation is correlated with mothers who gained

less weight, and vice versa (this is demonstrated by the highest mean of AUC). No correlations

were found between LEPR methylation and p-BMI, BW or BL (r = 0.23 and p = 0.11, r = 0.13

and p = 0.34, r = 6 x 10−4 and p = 0.99, respectively).

For more studies, we classified the weight gain of mothers in three ranges (under, on, and

over range), according to the guidelines revised by the Institute of Medicine (IOM) that are

based on p-BMI ranges for women with underweight, normal weight, overweight, and obesity

independently of their age, parity, smoking history, race, and ethnic background [39]. This kind

of classification let us identify the umbilical vein samples from newborns exposed to under

range GWG, obtaining the lowest LEPR methylation status compared to newborns exposed to

on range GWG. No statistical differences were observed in LEPR methylation status between on

range and over range GWGs, probably for the short number of over range mothers (Fig 2E).

In order to evaluate the influence of unhealthy habits during pregnancy on the LEPR meth-

ylation status of umbilical vein samples, we classified the women who smoked, consumed alco-

hol or used illicit drugs during pregnancy by three status of LEPR Methylation (0%, 1% and

10%) and were compared further with the non (smoker/alcohol/drugs) groups.

Our findings showed that the frequencies of different LEPR methylation status between

those groups healthy and unhealthy have not statistical differences between them (χ2 = 5.706,

df = 6, p = 0.46). Nevertheless, most of the women who smoked (38%) and consumed alcohol

(14%) had a methylation status of 1% (Fig 3).

Validation of site-specific LEPR promoter methylation status

Eleven of MS-HRM products (around 20% of total DNA samples) were randomly selected to

validate the results of umbilical vein DNA methylation status by Sanger sequencing.
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Sequenced samples were aligned with LEPR promoter wild-type sequence (WT) and with

hypothetical LEPR methylated sequence (MS), both of them downloaded from NCBI database

(Reference Sequence: NG_015831.2) or MethPrimer program [40], respectively. Human DNA

methylation control sets of 0%, 1% and 10% were also sequenced to use them as methylation

status references of direct sequencing [41] and to facilitate the methylated CpGs alignments of

each sequenced sample (S2 File A), showing that non-methylated CpGs were modified into

TpGs and methylated CpGs were conserved in MS-HRM, such as expected. Sequencing-align-

ments also revealed that other bases underwent transformation due to a prolonged sodium

Fig 1. DNA methylation status in a single locus of GNPDA2 and PGC1α promoters from newborns. (A) and (C) are representative difference plots of normalized

and temperature-shifted gene promoters showing the reference curves of methylation as 0%, 1%, 10%, 50%, and 100% methylated universal standard dilutions. (B) and

(D) are the gene promoter methylation statuses represented by melting peaks plots.

https://doi.org/10.1371/journal.pone.0226010.g001
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bisulfite exposure, showing a low-frequency modification in CpG sites into GpG or ApG, and

some G bases were transformed into A or T base (S2 File B).

Percentages of methylated CpG sites along forward and reverse LEPR promoter sequences were

calculated to determine the allelic methylation status from MS-HRM products. Sequencing findings

exhibited an allelic heterogeneity without similarities between the profiles of DNA methylation in

control sets and MS-HRM products (Fig 4A). Percentages of methylated CpGs in both alleles were

also different from the same MS-HRM product. Due to this, we divided MS-HRM products in

three ranges of methylated CpGs according to the number of methylated CpGs for each allele and

as a whole (Methylated CpGs in forward allele of: 0% samples = 31–46, 1% samples = 54–59, and

10% samples = 62–92; and in reverse allele of: 0% samples = 62–85, 1% samples = 54–85, and 10%

samples = 77–92), finding that more than 72% of MS-HRM products sequenced had similar meth-

ylation status such as DNA samples assayed by MS-HRM technique (Fig 4B).

Lep-Rb Expression in umbilical vein

To evaluate if protein expression of Lep-Rb was affected by LEPR promoter methylation status,

we quantified the protein extracts of umbilical vein from the same eleven newborns that were

Fig 2. GWG impacts on DNA methylation variability in a single locus of the LEPR promoter. (A) Normalized and temperature-shifted difference plot. (B)

Melting peaks plot of LEPR promoter methylation status, comparing it with the reference curve from human control sets as 0%, 1%, 10%, 50%, and 100%

methylated universal standard dilutions. (C) LEPR methylation status expressed by the mean of AUC (DNA samples of 10% = 194.4 ± 40.9; of 1% =

259.3 ± 15.3; of 0% = 308.6 ± 17.8) and its comparison with the control sets (100% = 15.3 ± 5.3; 10% = 160.3 ± 64.3; 1% = 283.3 ± 69.7; 0% = 325.1 ± 59.9).

Different letters over each box and whiskers show statistical difference data (p< 0.05) obtained by one-way ANOVA post-Tukey’s multiple comparisons test.

(D) Negative correlation between LEPR methylation status and GWG obtained by Pearson’s correlation test. (E) Differential LEPR methylation status in the

newborns that were classified by maternal total weight gain according to recommendations of the IOM. Statistical difference data (�p< 0.01) was obtained by

Kruskal-Wallis test corrected by Dunn’s multiple comparisons test.

https://doi.org/10.1371/journal.pone.0226010.g002

Fig 3. LEPR methylation status variability in umbilical vein of newborns exposed to healthy and unhealthy maternal consumption habits. Pie charts show the

percentage of pregnant women who smoked, consumed alcohol, used drugs, and denied substance use, according to LEPR promoter methylation status.

https://doi.org/10.1371/journal.pone.0226010.g003
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randomly selected to sequence their MS-HRM products. Normalized blots with β-actin

expression showed that Lep-Rb decreased according to increased LEPR methylation status

(Fig 5).

Discussion

In this study, we examined the association of maternal p-BMI and GWG with DNA methyla-

tion of single locus regulatory regions of three obesogenic genes (GNPDA2, PGC1α, and

LEPR) in umbilical vein of newborns. GNPDA2 and PGC1α locus showed no DNA methyla-

tion variability but, a single locus of LEPR promoter showed different status of methylation

between samples. Our main finding was that LEPR methylation status in this newborn tissue

was associated with maternal GWG, showing that a poor weight gain during pregnancy reflects

deficient nutritional status associated with increased methylation status of LEPR in umbilical

vein. Furthermore, low methylation of LEPR promoter was related with high expression of

Lep-Rb. Additional findings included heterogeneity of LEPR methylation status among alleles

and umbilical vein samples.

The present study adds to a growing list of clinical and epigenetic evidence supporting the

role of perinatal environment in modulation of DNA methylation in newborn tissues [42],

suggesting that DNA methylation linked to the pregnant women nutritional status may have

specific target genes that may be linked to the phenotype of risk for obesity later in life. SNPs

of GNPDA2, PGC1α, and LEPR genes contribute to an increased risk of obesity development

in Mexican population [28,30–32], and some evidence strongly suggests that obesity-associ-

ated polymorphisms are linked with proximal gene regulation, such as enhancers and pro-

moter regions that are differential methylated [43]. According to our knowledge, this study is

the first one examining DNA methylation status in a single locus of GNPDA2 promoter, and

the third one that evaluated the PGC1α promoter methylation status in umbilical cord [44,45].

Our results show a differential DNA methylation in a single locus of the LEPR promoter

associated with GWG, supporting the idea that epigenetic variations linked with intrauterine

exposures and DNA methylation among obesogenic genes may have an essential role in the

etiology and phenotype of disease [46,47]. Moreover, we found an allelic asymmetry in umbili-

cal cord vein, such as the allelically-skewed DNA methylation in cis previously reported by

Marzi and cols, who attribute it to a tissue-specific genotypic variation [48]. However, our find-

ing adds to the accumulating reports that attribute the allelic asymmetry to an inter-individual

variation [25,49], as well as the heterogeneity among cells in the own tissue [50] that may are

linked to the nutritional epigenetic programing during fetal development [51].

Maternal malnutrition has previously associated with the variation of DNA methylation in

genes of leptin signaling in the offspring [52]. GWG is an indicator of maternal nutritional sta-

tus and reflects the composed growth of the placenta, uterus, amniotic fluid, maternal blood

volume, mammary gland, maternal adipose tissue, and the fetus [53]. Epidemiological data

indicates that inadequate GWG is associated to several perinatal complications [54], risk of

infant death [55] and later child adiposity [56]. This study provides evidence of a strong corre-

lation between the LEPR promoter methylation status in umbilical vein and GWG, regardless

the maternal age or unhealthy habits. This result may indicate that this gene is a target of the

environmental conditions associated to maternal nutritional status during pregnancy.

Fig 4. Site-specific LEPR promoter methylation status by Sanger sequencing. (A) Methylation status profiles in WT, MS, human control

sets (0, 1 and 10% of DNA methylation) and bisulfite-modified DNA samples by lollipop diagram representation. Methylated CpGs are

represented in black lollipops, non-methylated CpGs are in white lollipops, and not defined CpGs are marked with X and asterisk. (B)

Percentages of methylation obtained in each allele (forward and reverse sequence) from bisulfite-modified DNA samples and those compared

to MS and control set percentages in both MS-HRM and Sanger methods.

https://doi.org/10.1371/journal.pone.0226010.g004
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Fig 5. Lep-Rb expression in the umbilical vein from different statuses of gene promoter methylation at term pregnancy. The figure

shows a representative Western Blot and the signal quantification of Lep-Rb at three different DNA methylation status (0%, 1%, and 10%).

The bars and error bars show the means ± SD of eleven protein extracts samples; difference between means (p < 0.05) was obtained by one-

way ANOVA post hoc Tukey’s test and this is shown with different letters over the bars.

https://doi.org/10.1371/journal.pone.0226010.g005
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The role of leptin receptors in fetal tissues still remains unclear, but six isoforms resulting

from alternative splicing of the LEPR are known (short isoforms: Lep-Ra, c, d, and f; long iso-

form: Lep-Rb; soluble isoform: Lep-Re) [57,58]. Lep-Rb is expressed in umbilical cord tissue

fully transducing activation signal into cord cells. The short and soluble isoforms are expressed

in fetal membranes and umbilical cord blood, being able to regulate the leptin transport in and

out of amniotic fluid and blood [59,60]. Our results confirmed a differential Lep-Rb expression

in the vein of umbilical cord potentially mediated by the LEPR promoter methylation status,

supporting the notion that a poor maternal weight gain may promote a differential expression

of leptin receptors such as a compensatory mechanism of the fetus [61–64].

Leptin concentration in umbilical cord blood and autocrine placental function through dif-

ferential leptin receptors expression are being linked with fetal growth, body fat at birth, and

childhood growth [65–67]. Indeed in healthy singleton pregnancies, low levels of leptin in

umbilical cord blood, high leptin concentration and low expression of both Lep-Ra and Lep-

Rb isoforms in placenta have been found in small for gestational age newborns [68]. Moreover,

this adipokine is expressed in the fetal side of the placenta greater than in the maternal side,

being associated with a higher level of leptin promoter methylation and with a lower expres-

sion of the leptin receptor in pregnant women with obesity [69]. This last finding does not

contradict our results, conversely, it supports the idea that an excessive or low weight gains

during pregnancy may are intrauterine risk factors that through epigenetic mechanisms regu-

late the leptin system expression, relating them with the long-term programming of energy

homeostasis.

Recent evidence is accumulating about LEPR regulation in the decidua by specific miRNAs

during development and progression of early pregnancy [70]. miRNAs are short molecules of

non-coding RNAs which are considered molecules of the epigenetic mechanism that post-

transcriptional regulate target genes. Dysregulation of specific miRNAs in placenta and mater-

nal serum have been associated with preeclampsia and maternal obesity, and this may have

repercussions on fetal and postnatal growth [71–73]. All this literature makes us think that

LEPR possibly is a target gene epigenetically programmed during pregnancy [74] that may

contribute for the obesogenic phenotype traits, such as differential leptin sensitivity, leading to

food intake dysfunction and unregulated reward system functioning, promoting adipogenesis

in the future life [75].

Finally, we conducted additional analysis to explore the influence of tobacco smoking, alco-

hol consumption and illicit drugs use during pregnancy [76] and the LEPR promoter methyla-

tion status, [77]. However, we found no statistical association, maybe because of the small

number of participants who reported those behaviors.

Our study has some limitations, and the biggest one is the relatively small number of partic-

ipants and the gender lack analysis, which would have added information as a confounding

variable for interpreting differential sexual dimorphism of leptin receptors expression [78].

For future, LEPR-associated polymorphism studies in umbilical vein have to be made, as the

examination of differential DNA methylation in GNPDA2 and PGC1α genes affecting other

regulatory regions of the genes must be accomplished. Finally, DNA samples bisulfite-

sequencing showed higher than 70% of correlation with the MS-HRM results, having to take

the results of allele bisulfite-sequencing for the position of methylation marks cautiously [79].

Conclusions

In summary, our findings suggest that an inadequate maternal weight gain during pregnancy

is associated to LEPR promoter methylation in the newborn, affecting receptor expression.

Although these disturbances apparently do not have early consequences on newborn size,
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differential LEPR promoter methylation and receptor expression may have repercussions in

the individual future responses to food intake, energy signals, and adipogenesis. Determining

the prenatal and environmental factors that affect genes and protein expression via DNA

methylation are important for the assessment of adverse neonatal outcomes and obesity risk.
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54. Ásbjörnsdóttir B, Rasmussen SS, Kelstrup L, Damm P, Mathiesen ER. Impact of restricted maternal

weight gain on fetal growth and perinatal morbidity in obese women with type 2 diabetes. Diabetes

Care. 2013; 36: 1102–1106. https://doi.org/10.2337/dc12-1232 PMID: 23248191

55. Davis RR, Hofferth SL, Shenassa ED. Gestational weight gain and risk of infant death in the United

States. Am J Public Health. 2014; 104: 90–95. https://doi.org/10.2105/AJPH.2013.301584

p-BMI and GWG impact on obesogenic genes modulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0226010 December 3, 2019 17 / 19

https://doi.org/10.1097/AOG.0b013e3181da9423
https://doi.org/10.1097/AOG.0b013e3181da9423
http://www.ncbi.nlm.nih.gov/pubmed/20410772
https://doi.org/10.1093/nar/gkm013
https://doi.org/10.1093/nar/gkm013
http://www.ncbi.nlm.nih.gov/pubmed/17289753
https://doi.org/10.1186/s13148-017-0434-3
https://doi.org/10.1109/ISIT.2010.5513257
https://doi.org/10.1109/ISIT.2010.5513257
https://doi.org/10.1093/bioinformatics/18.11.1427
http://www.ncbi.nlm.nih.gov/pubmed/12424112
https://doi.org/10.1007/s11033-017-4110-7
https://doi.org/10.1007/s11033-017-4110-7
http://www.ncbi.nlm.nih.gov/pubmed/28676996
https://doi.org/10.1159/000362608
http://www.ncbi.nlm.nih.gov/pubmed/25059801
https://doi.org/10.1186/s13073-014-0122-2
https://doi.org/10.1038/oby.2008.605
http://www.ncbi.nlm.nih.gov/pubmed/19148128
https://doi.org/10.1042/CS20140688
http://www.ncbi.nlm.nih.gov/pubmed/25875376
https://doi.org/10.1371/journal.pone.0157776
https://doi.org/10.1371/journal.pone.0157776
http://www.ncbi.nlm.nih.gov/pubmed/27322064
https://doi.org/10.1111/ijpo.12010
https://doi.org/10.1111/ijpo.12010
http://www.ncbi.nlm.nih.gov/pubmed/25779370
https://doi.org/10.1080/15592294.2015.1127479
https://doi.org/10.1080/15592294.2015.1127479
http://www.ncbi.nlm.nih.gov/pubmed/26786711
https://doi.org/10.1038/srep17328
http://www.ncbi.nlm.nih.gov/pubmed/26612583
https://doi.org/10.3389/fphar.2014.00001
https://doi.org/10.1073/pnas.0806560105
http://www.ncbi.nlm.nih.gov/pubmed/18955703
https://doi.org/10.13110/humanbiology.88.2.0121
https://doi.org/10.13110/humanbiology.88.2.0121
http://www.ncbi.nlm.nih.gov/pubmed/28161997
https://doi.org/10.1016/j.ajog.2017.05.040
http://www.ncbi.nlm.nih.gov/pubmed/28549978
https://doi.org/10.2337/dc12-1232
http://www.ncbi.nlm.nih.gov/pubmed/23248191
https://doi.org/10.2105/AJPH.2013.301584
https://doi.org/10.1371/journal.pone.0226010


56. Hinkle SN, Sharma AJ, Swan DW, Schieve LA, Ramakrishnan U, Stein AD. Excess Gestational Weight

Gain Is Associated with Child Adiposity among Mothers with Normal and Overweight Prepregnancy

Weight Status. J Nutr. 2012; 142: 1851–1858. https://doi.org/10.3945/jn.112.161158 PMID: 22955516

57. Bacart J, Leloire A, Levoye A, Froguel P, Jockers R, Couturier C. Evidence for leptin receptor isoforms

heteromerization at the cell surface. FEBS Lett. 2010; 584: 2213–2217. https://doi.org/10.1016/j.

febslet.2010.03.033 PMID: 20347812

58. Popko K, Kucharska A, Wasik M. Leptin Receptors. 2010; 15: 50–54. https://doi.org/10.1186/2047-

783X-15-S2-50

59. Akerman F, Lei ZM, Rao C V. Human umbilical cord and fetal membranes co-express leptin and its

receptor genes. Gynecol Endocrinol. 2002; 16: 299–306. https://doi.org/10.1080/gye.16.4.299.306

PMID: 12396559
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