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Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are two common
multisystem autoimmune diseases that share, among others, many clinical manifestations
and serological features. The role of long non-coding RNAs (lncRNAs) has been of
particular interest in the pathogenesis of autoimmune diseases. Here, we aimed to
summarize the roles of lncRNAs as emerging novel biomarkers and therapeutic targets
in SLE and RA. We conducted a narrative review summarizing original articles on lncRNAs
associated with SLE and RA, published until November 1, 2021. Based on the studies on
lncRNA expression profiles in samples (including PBMCs, serum, and exosomes), it was
noted that most of the current research is focused on investigating the regulatory
mechanisms of these lncRNAs in SLE and/or RA. Several lncRNAs have been
hypothesized to play key roles in these diseases. In SLE, lncRNAs such as GAS5,
NEAT1, TUG1, linc0949, and linc0597 are dysregulated and may serve as emerging novel
biomarkers and therapeutic targets. In RA, many validated lncRNAs, such as HOTAIR,
GAS5, and HIX003209, have been identified as promising novel biomarkers for both
diagnosis and treatment. The shared lncRNAs, for example, GAS5, may participate in SLE
pathogenesis through the mitogen-activated protein kinase pathway and trigger the AMP-
activated protein kinase pathway in RA. Here, we summarize the data on key lncRNAs
that may drive the pathogenesis of SLE and RA and could potentially serve as emerging
novel biomarkers and therapeutic targets in the coming future.
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1 INTRODUCTION

Systemic lupus erythematosus (SLE) and rheumatoid arthritis
(RA) are two common multisystem autoimmune diseases that
share many clinical manifestations, serological profiles,
immunological characteristics, and transcriptomes, for
example shared type I interferon (IFN)-stimulated genes of
peripheral blood mononuclear cell (PBMC) transcriptomes (1).
Furthermore, the co-occurrence of SLE and RA within the
same person or within members of a nuclear family indicates
that they shared common etiological factors (2–4). In addition
to the traditional treatment options with hormones and
immunosuppressants (5, 6), a large variety of biological drugs
is now available for the treatment of SLE and RA (7–9), however,
the clinical response and functional remission rate of these drugs
are still not satisfactory. Therefore, treatment strategies for SLE
and RA need further improvement by adopting different
approaches (9, 10).

In the human genome, 98% of the products are non-coding
RNAs (11), and those with a size length greater than 200
nucleotides (NT) are defined as long non-coding RNAs
(lncRNAs) (12). LncRNAs have poor protein-coding potential
(13–15), except for certain micropeptides or polypeptides that
can perform specific biological functions (16). It is well known
that the regulation of gene expression via lncRNAs occurs
mainly through variable interactions with DNA, RNA, and
proteins (17, 18), and are thus involved in a variety of
important regulatory processes, such as the silencing of the X-
chromosome, chromatin modifications, transcriptional
activation interference, and post-transcriptional modifications
(19). The role of lncRNAs is of particular interest in the
pathogenesis of autoimmune diseases (20, 21). They could
participate in inflammatory pathways in autoimmune diseases
and promote the release of inflammatory factors such as TNF-a,
IL-6 (22), IL-8, IL-1b (23), IFN-I (24) to aggravate or alleviate
diseases. In addition, lncRNAs are widely found in many bodily
fluids and are highly stable in the plasma, potentially serving as
biomarkers for multiple diseases (25).
Abbreviations: AKT/mTOR, protein kinase B and mammalian target of
rapamycin; AMPK, AMP-activated protein kinase; ceRNA, competitive
endogenous RNA; DSCR9, down syndrome critical region; FcgR, receptor of
immunoglobulin G; FLS, fibroblast-like synoviocytes; FOXD2-AS1, FOXD2
adjacent opposite strand RNA 1; FRAT1, the frequently rearranged in advanced
T cell lymphomas-1; GAS5, growth arrest-specific 5; G-MDSCs, myeloid-derived
granulocyte suppressor cells; hnRNP K, heterogeneous nuclear ribonucleoprotein
K; hnRNP Q, heterogeneous nuclear ribonucleoprotein Q; IFN-I, type I interferon;
ITSN1-2, intersectin1‐2; IkBa, inhibitory kBa; LTB4, leukotriene B4; lncRNA,
long non-coding RNA; MALAT-1, metastasis associated lung adenocarcinoma
transcript 1; MAPK, mitogen-activated protein kinase; MEG3; maternally
expressed gene 3; NEAT1, nuclear-enriched abundant transcript 1; NF-kB,
nuclear factor kappa B; NOD2/RIP2, the nucleotide-binding oligomerization
domain 2; PBMC, peripheral blood mononuclear cell; PTEN, phosphatase and
tensin homolog deleted on chromosome 10; RA, rheumatoid arthritis; RASF,
rheumatoid arthritis synovial fibroblasts; ROCK2, Rho associated coiled-coil
containing protein kinase 2; SIRT1, silent mating type information regulation 2
homolog 1; SLE, systemic lupus erythematosus; SDC1, Syndecan 1; Tfh cells,
T follicular helper cells; YPEL4, Yippee-like-4; YY1, Ying Yang 1.
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Here, we aimed to summarize the roles of lncRNAs as
emerging novel biomarkers and therapeutic targets in SLE and
RA. We conducted a narrative review and summarized original
articles on lncRNAs associated with SLE and RA patients,
published until November 1, 2021.
2 LncRNAs AND SLE

It is well known that genetic and environmental risk factors are
key players involved in the pathogenesis of SLE (26, 27), and the
multi-organ involvement, highly heterogenic clinical characters,
and differences in the degree of severity lead to major challenges
in its diagnosis and treatment (28–30). Recently, increasing
evidence shows that many lncRNAs are dysregulated and may
have a key role in the development of SLE (31). Transcriptome
sequencing results revealed a large number of novel lncRNAs in
PBMC, serum and exosomes of SLE patients and animal models.
Their potential use as biomarkers and their correlation with
clinical features were also studied. Studies focusing on the
expression profiles of novel lncRNAs in PBMCs and serum
from SLE patients and animal models revealed their potential
as biomarkers as well as regulatory mechanisms in SLE.

2.1 The Expression Profiles of LncRNAs in
the PBMCs of SLE
Recently, lncRNAs derived from PBMCs of patients with SLE
have been a research hotspot because of their large presence and
rich variety. Abnormal numbers and functions of PBMCs are
significantly related to SLE pathogenesis (32, 33). A study
showed that 137 lncRNAs-derived from PBMC were identified
as differentially expressed in normal controls (n=15) and SLE
patients (n=15) via microarray technology, with 83 upregulated
and 54 downregulated lncRNAs. Among them, two lncRNAs,
ENST00000604411.1 and ENST00000501122.2, were
significantly upregulated, while another two, lnc-HSFY2-3:3
and lnc-SERPINB9-1:2, were significantly downregulated in
patients with SLE. The study showed that the upregulated
ENST00000604411.1 could lead to X chromosome inactivation
by protecting the active-X from ectopic silencing, and thus
playing a pathogenic role in SLE (34). In addition, the levels of
the two upregulated lncRNAs were positively correlated with the
clinical activity index (SLEDAI score) of SLE patients
(ENST00000604411.1 (r=0.593, P=0.020), ENST00000501122.2
(r=0.539, P=0.038), suggesting that the levels of these two
lncRNAs could be used to evaluate the disease activity in SLE
patients (34). LncRNA TCONS_00483150 in PBMCs was
significantly decreased in patients with SLE compared with
health controls, and its expression was significantly correlated
with anti-Rib-P autoantibody, which may be anovel biomarker
for the diagnosis of SLE (35). It has also been reported that
lncRNAs taurine-upregulated gene 1 (TUG1), linc0949, nuclear-
enriched abundant transcript 1 (NEAT1), and linc0597 were
expressed at lower levels in the PBMCs of SLE patients (31, 36,
37). Among them, TUG1 was further reduced in patients with
lupus nephritis, and its expression was negatively correlated with
December 2021 | Volume 12 | Article 792884
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the SLEDAI score (r=0.904, P< 0.001). NEAT1 is known as an
early lipopolysaccharide (LPS) response lncRNA that can
modulate the innate immune response via the toll-like receptor
(TLR) signaling pathway (38, 39). In addition, the levels of
NEAT1 expression in PBMCs of SLE patients was significantly
increased and was positively correlated with the disease activity.
Furthermore, NEAT1 was found to affect the expression of
inflammatory chemokines and cytokines by activating the late
mitogen-activated protein kinase (MAPK) signaling pathway,
which could regulate the immune response of T and B cells, and
participate in the development of SLE, thus providing a potential
therapeutic target for SLE (37). Another study showed that the
up-regulated NEAT1 was negatively correlated with Th1/Th2
balance, which might affect the occurrence and progression of
SLE (40). Hence, lncRNAs NEAT1, linc0949, and linc0597 are
expected to be promising diagnostic markers for SLE, whereas
TUG1 is expected to be a clinical diagnosis and disease
activity marker.

Additionally, for the expression of lncRNAs in PBMCs,
lnc5150 was lower in patients with SLE (n=76) than in healthy
controls (n=71) (41). The expression of lncRNA AC007278.2
was high in SLE patients and could modulate the expression of
inflammatory chemokines and cytokines. The study showed that
ACC007278.2 could promote B cell maturation by down-
regulating its target gene CCR7 and T follicular helper cells,
participating in SLE. Therefore, AC007278.2 may be used as a
molecular biomarker for the diagnosis and treatment of SLE (42).
Compared to healthy controls, metastasis-associated lung
adenocarcinoma transcript 1 (MALAT-1), which is mainly
expressed in human monocytes, was significantly increased in
SLE patients, and could modulate the silent mating type
information regulation 2 homolog 1 (SIRT1) pathway directly
(43). Another study reported that MALAT1 also could
participate in type I interferon-mediated SLE by up-regulating
OAS2, OAS3 and OAS-like (OASL) in CD4+ T cells (24).

LncRNA growth arrest-specific 5 (GAS5) regulates growth
arrest, apoptosis, cell cycle, and replication in T cell lines and
non-transformed lymphocytes (44). GAS5 was reported to be
related with an increased risk of development of SLE in a murine
model (45). Also, GAS5 has been found to be involved in disease
progression in SLE patients (46) and may be involved in the
development of SLE via the MAPK signaling pathway (25).
These results indicate that PBMC-derived lncRNAs may play a
vital role in the pathogenesis of SLE, but the specific mechanisms
remain unclear.

Recently, the genetic significance of lncRNAs in many
autoimmune diseases has been investigated, and most of the
susceptibility loci for SLE were found to be located in noncoding
regions of the genome (47, 48). A novel SLE susceptibility locus
in a lncRNA gene (SLEAR) was identified at the single-
nucleotide polymorphism rs13259960, which can result in
decreased SLEAR production in PBMCs from patients with
SLE. Moreover, it could interact with RNA binding proteins
and thus affect the downstream target genes. In addition, the
level of SLEAR expression was correlated with the percentage of
PBMC death in patients with SLE (47). The rs145204276 ID/DD
Frontiers in Immunology | www.frontiersin.org 3
genotypes in the promoter region of the LncRNA-GAS5 gene
may have a protective effect against SLE by up-regulating
LncRNA-GAS5 expression and its targets miR-21 and
phosphatase and tensin homolog deleted on chromosome 10
(PTEN) (48). Two functional promoter variants in linc00513,
significantly overexpressed in SLE, were reported to be possible
candidates in promoting genetic susceptibility to SLE (49). Till
now, these studies are very few, and several still need large-scale
data verification to provide novel insights into the genetics
of SLE.

Abnormal proliferation and activation of B cells can produce
large quantities of autoantibodies, which are deposited in the
kidney and other tissues, further inducing inflammation and
tissue damage. This is considered the core of the pathogenesis of
SLE (50, 51). Among all SLE treatments targeting B cells,
belimumab is the only biological agent approved by the FDA
(52). Recently, Dimitrioset et al. reported that CD19-targeted
chimeric antigen receptor (CAR) T-cell therapy was successful in
refractory SLE, and the rapid disappearance of dsDNA
autoantibodies during CD19 CAR-T cell therapy suggested
CD19-targeted plasmablasts as the major source of these
antibodies (53).

The activation of type I interferon (IFN-I) in B cells is also
closely related to the pathogenesis of SLE (54, 55). Recently,
based on this theory, SLE treatment has mainly focused on
blocking IFN-1 or its receptor (56), or targeting improved B cell
survival to reduce the level of immunoglobulin G (IgG)
autoantibodies (57–59). It has been reported that myeloid-
derived granulocyte suppressor cells (G-MDSCs) promote B
cell IFN-1 signal activation in lupus MRL/LPR mice (60). TLRs
or interferon-a (IFN-a) can induce the expression of B cell
activating factor (BAFF) (61, 62). LncRNA NEAT1 was highly
expressed in G-MDSCs of lupus MRL/LPR mice, and G-
MDSCs enhanced TLRs or IFN-a to produce BAFF (60).
Furthermore, BAFF enhanced the activation of B cell IFN-1
signaling by inhibiting the expression of cytokine signal
transduction inhibitor 3, which is involved in the occurrence
and development of SLE. NEAT1 deficiency alleviated the
symptoms of lupus and inhibited the activation of IFN-1
signaling in B cells of pristane-induced lupus mice, indicating
that lncRNA NEAT1 plays a key role in the activation of B cell
IFN-1 signaling pathway (60). LincRNA00892 also has been
reported possibly activated CD4+ T and B cells by targeting
heterogeneous nuclear ribonucleoprotein K (hnRNP K) and
subsequently up-regulating the expression of CD40L, thereby
playing a pathogenic role in SLE (63). These data suggest that
lncRNA is involved in modulating B cell activation and the
production of autoantibodies, thus providing a new theory and
intervention strategy for SLE.

Accumulating evidences have demonstrated that T cells are
central in the pathogenesis of SLE (64, 65). LncRNAs
uc001ykl.1 and ENST00000448942 in T cells from SLE
patients (n=24) were downregulated compared to normal
controls (n=21), and their expression was correlated with the
erythrocyte sedimentation rate (ESR) (66). LncRNA GAS5 has
been reported to possibly upregulate the adenovirus E4
December 2021 | Volume 12 | Article 792884
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promoter-binding protein (E4BP4) by inhibiting miR-92a-3p,
attenuating the self-reactivity of CD4+ T cells in SLE, playing a
protective role in SLE (67). Therefore, targeting lncRNAs
expressed in T cells and their signaling pathways may be a
potential therapy for SLE.

2.2 The Expression Profiles of LncRNAs in
the Serum and Plasma of SLE
LncRNAs are stable in serum and plasma and may serve as
novel non-invasive biomarkers for SLE (68). The expression of
linc-DC and GAS5 has been found to be decreased in the
plasma of SLE patients (n=163) compared with health controls
(n=80), while linc0597 is increased (68). Another study
identified 1873 lncRNAs derived from the plasma of SLE
patients through gene ontology analysis, with 221 upregulated
and 1652 downregulated lncRNAs (lg|FC| ≥ 2.0 and P ≤ 0.05),
of which Yippee-like-4 (YPEL4) was related to the receptor
immunoglobulin G (FcgR) pathway (69). The FcgR mediates
the interaction between immune complexes and immune cells
and participates in the activation and regulation of a variety of
immune responses, which play important roles in humoral
immunity and cellular immunity. The combination of FcgR and
the IgG Fc segment could stimulate immune cells to release
inflammatory mediators, activate CD4+ and CD8+ T cells, and
amplify humoral and cellular immunity, thereby promoting the
pathogenesis of SLE (70). However, the molecular mechanism
of action has not yet been identified. In another study,
compared with the normal control group, 1315 significantly
differentially expressed lncRNAs (lg|FC| ≥ 2.0 and P ≤ 0.05)
were found in the plasma of SLE patients (n=24) (68), with
significantly increased levels of linc0597, lnc0640, and lnc5150
and significantly decreased levels of GAS5 and lnc7074.
However, the molecular mechanism of action has not yet
been identified. These lncRNAs may be involved in the
regulation of the MAPK signaling pathway, promoting the
inflammatory response in SLE, and could be used as novel
potential diagnostic biomarkers (68). This panel of five
lncRNAs (linc0597, lnc0640, lnc5150, GAS5, lnc7074) had a
high accuracy for the diagnosis of SLE (AUC=0.966), and could
also be used to distinguish SLE from RA patients (AUC=0.683
and 0.910, respectively) (25). Subsequently, in the external
validation phase, the expression levels of these five lncRNAs
were investigated in thirty RA patients and thirty-one SLE
patients. The results showed that the levels of GAS5 and
linc0597 were significantly lower in SLE patients in the testing
group than in RA patients, while no significant differences were
found in the levels of lnc7074, lnc-DC, lnc0640, and lnc5150
between the two groups, which may be different from other
autoimmune diseases (Sjogren’s syndrome) (25). Finally, the co-
expression analysis found that GAS5, lnc0640 and lnc5150 may
be involved in the pathogenesis of SLE via the MAPK signaling
pathway. The competitive endogenous RNA (ceRNA) network
showed that the forementioned five lncRNAs bind competitively
with miRNAs and regulate the expression of their target genes,
hence their aberrant expression may have a vital role in SLE
pathogenesis. Therefore, it is hypothesized that analyzing the
Frontiers in Immunology | www.frontiersin.org 4
ceRNA network in SLE may help expand the understanding of
transcriptomes (especially non-coding transcriptomes) and
improve the understanding of the pathogenesis, diagnosis, and
treatment of SLE (71, 72).

2.3 The Expression Profiles of LncRNAs in
the Exosomes of SLE
Exosomes are endocytic membrane-derived vesicles, measuring
30–120 nm in length, and participate in the communication
among cells and in the delivery of contents (e.g., proteins, lipids,
nucleic acids) to target cells (73–75). Evidence indicates that
exosomal non-coding RNAs play a vital role in the pathogenesis
of autoimmune diseases, such as SLE and RA (76, 77).

With recent research findings, the role of lncRNAs in SLE has
gradually become clear. The abnormal expression of lncRNAs in
patients with SLE can be used as a potential biomarker to assist in
SLE diagnosis and treatment. However, the specific mechanisms
need to be confirmed. In addition, more evidence is needed to
investigate the other roles of lncRNA in SLE, such as whether it is
related to clinical features, diagnosis, and prognosis, and whether
it can be used to evaluate the clinical treatment effect on SLE.
These findings will provide novel ideas and directions for
lncRNA research.
3 LncRNA AND RA

RA is a typical chronic systemic autoimmune disease dominated
by inflammatory synovitis. Genetics, smoking, air pollution, and
gender are all considered risk factors for RA (78, 79). Its
pathogenesis is complex, and pro-inflammatory factors such as
interleukin (IL)-1, IL-17, IL-22, tumor necrosis factor alpha
(TNF-a), IL-6, and matrix metalloproteinase (MMP) have
been confirmed to be related to the development of RA (80–
84). Recently, emerging studies have found that lncRNAs play a
critical role in the pathogenesis of RA (85–88). In addition, many
lncRNA disorders are related to RA disease activity, indicating
that the role of lncRNA is conducive to the clinical diagnosis of
RA and may serve as a new target for its treatment.

3.1 The Expression Profiles of LncRNAs in
the PBMCs of RA
Studies have shown that lncRNA HOTAIR derived from both
serum and PBMCs is significant highly expressed in RA and
could be used as a novel biomarker for its diagnosis (89, 90). In
addition, it may also play a vital role in RA pathogenesis. The
expression of HOTAIR in chondrocytes stimulated by LPS was
significantly reduced. Overexpression of HOTAIR reduced the
rate of LPS-induced cell proliferation and inhibited
inflammatory cytokine (IL-17, IL-23) production. The
overexpression of HOTAIR also inhibited the activation of
nuclear factor kappa B (NF-kB) in chondrocytes stimulated by
LPS by blocking p65 nuclear transport, resulting in the reduction
of IL-1b and TNF production (91). This suggests that regulating
the expression of HOTAIR may be a potential treatment strategy
for RA.
December 2021 | Volume 12 | Article 792884
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The lncRNA GAS5 is related to several autoimmune diseases.
The expression of GAS5 in PBMCs and fibroblast-like
synoviocytes (FLS) is lower in the serum of patients with RA
(n=35) than that in normal controls (n=35) (92, 93). Moreover,
GAS5 can be used as a ceRNA to directly target miR-222-3p,
upregulate the expression level of Sirt1, and inhibit the
proliferation and inflammation of RA-FLS. It is also reported
that the overexpression of lncRNA GAS5 in the PBMCs of
patients with RA can activate the AMP-activated protein
kinase (AMPK) pathway, negatively regulate the expression of
IL-6 and IL-17, and alleviate RA disease activity (94). These
findings suggest that GAS5 activation is a potential target for RA
treatment. Compared with healthy controls (n=20), the
expression of lncRNAs MIR22HG and ENST00000619282 is
significantly increased, while the expression of lncRNAs down
syndrome critical region (DSCR9), LINC01189 and
MAPKAPK5-AS1 is significantly decreased in PBMCs from
patients with RA (n=20). According to gene ontology analysis,
these significantly altered lncRNAs are mainly involved in the
regulation of autophagy and apoptosis (95).

Some lncRNAs can act as ceRNAs to regulate miRNA
function and are involved in RA progression (96). Compared
with normal controls (n=40), the expression level of lncRNA
HIX003209 in the PBMCs of patients with RA (n=43) was higher
and positively correlated with the expression levels of TLR2 and
TLR4 in macrophages (97). Further studies have found that
HIX003209 can reversibly promote the proliferation and
activation of macrophages by modulating the inhibitory effect
of the kBa (IkBa)/NF-kB signaling pathway. In contrast,
HIX003209 can act as a ceRNA to participate in TLR4-
mediated inflammatory responses by binding to miR-6089 in
macrophages (98). This suggests that the HIX003209-miR-6089-
TLR4 signaling pathway may be a novel target for the treatment
of RA.

3.2 The Expression Profiles of LncRNAs in
the FLS of RA
The FLS is a key effector cell type responsible for the
inflammation of the synovium and destruction of bone and
cartilage. It can mediate the production of inflammatory
mediators and matrix degrading enzymes and play a critical
role in the occurrence and development of RA (99–101).

In the synovial tissue of patients with RA (n=30), a total of
349 lncRNAs were significantly upregulated, and 806 were
significantly downregulated (lg|FC| ≥ 2.0 and P ≤ 0.05)
compared with those in the normal control group (n=30).
Among these lncRNAs, the levels of lnc-AL928768.3 and lnc-
AC091493.1 expression were positively correlated with the RA-
DAS28 score and the level of CRP, which is considered to be a
novel diagnostic marker and activity index of RA. These
lncRNAs can regulate their target mRNAs [e.g., Syndecan 1
(SDC1), leukotriene B4 (LTB4)], and are thus implicated in the
abnormal immune response of RA and in promoting the
proliferation of FLS via multiple pathways (102). In terms of
promoting RA inflammation, the level of lncRNA Fer-1-like
family member 4 (FER1L4) in FLS and synovial tissues (STs) of
Frontiers in Immunology | www.frontiersin.org 5
patients with RA was low, whereas NLR family CARD domain
containing 5 (NLRC5) was highly expressed (103). NLRC5
promotes RA progression by modulating the NF-kB signaling
pathway (104). In contrast, overexpression of FER1L4 reduced
the expression of NLRC5 and inflammatory factors. This
suggests that FER1L4 may be a potential therapeutic target for
RA (105). LncRNA linc00152 was reported to be up-regulated in
RA-FLS, which could promote TAK1 expression by targeting
miR-103a and thus activate the NF-kB pathway. Also,
transcription factor Ying Yang 1 (YY1) could also directly
promote linc00152 expression, thus forming a linc00152/NF-
kB feedback loop that could promote RA-FLS inflammation
(106). LncRNA FOXD2 adjacent opposite strand RNA 1
(FOXD2-AS1) was found to promote the proliferation
and invasion of RA-FLS by regulating the miR-331-3p/
PIAS3 pathway (107). LncRNA LERFS (lowly expressed in
rheumatoid fibroblast-like synoviocytes) could promote
synovial aggression and joint destruction by interacting with
heterogeneous nuclear ribonucleoprotein Q (hnRNP Q) (108).
LncRNA ZNF667-AS1 was reported to be down-regulated in
RA-FLS, and its overexpression could play a protective role in
RA by sponging miR-523-3p, thus inactivating the JAK/STAT
signaling pathway (109). The down-regulated expression of the
lncRNA X-inactive specific transcript (XIST) was found to
inhibit the proliferation of synovial fibroblasts (SFs) by
promoting the miR-126-3p/NF-kB pathway, thereby playing a
protective role in RA (110). Therefore, targeting these lncRNAs
in the FLS of RA may be used as a new strategy for RA therapy.

Comparing the expression profile of FLS-derived lncRNAs
from patients with RA and healthy controls, p38 inhibited
cutaneous squamous cell carcinoma associated lincRNA
(lncRNA PICSAR) was found to be highly expressed in the
FLS and synovial fluid of patients with RA. When PICSAR small-
interfering RNA was used to reduce the expression of PICSAR,
the levels of IL-6, IL-8, and MMP-3 were significantly reduced.
Thus, PICSAR may be act as the ceRNA of miR-4701-5p and
then promote the proliferation, invasion, and migration of RA
FLS (111).

In vitro, overexpression of lncRNAmaternally expressed gene
3 (MEG3) reversed both the high expression of miR-141 in LPS-
stimulated chondrocytes and the production of IL-23. In animal
experiments, overexpression of lncRNA MEG3 inhibited the
protein kinase B (PKB; also known as AKT) and mammalian
target of rapamycin (mTOR) (AKT/mTOR) signaling pathway.
This suggests that lncRNAMEG3 can also be used as a ceRNA to
inhibit inflammation by downregulating miR-141 and AKT/
mTOR signaling pathways (112). In addition, in a CFA-
induced rat RA model, MEG3 was low in synovial tissue and
FLS, while the level of NLRC5 was increased, suggesting that
MEG3 may potentially regulate the progression of RA by
targeting NLRC5 (113).

LncRNA-H19 is highly expressed in the FLS of patients with
RA (114). In a collagen-induced arthritis (CIA) mouse model,
the expression of lncRNA-H19 was closely associated with the
proliferation of synovial cells, and knocking down lncRNA-H19
could inhibit the proliferation of MH7A human synovial cells.
December 2021 | Volume 12 | Article 792884
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LncRNA-H19 can act as a ceRNA of miR-124a to inhibit the
expression of CDK-2 and MCP-1 (115, 116). As already known,
miR-124A may participate in the pathogenesis of RA through
several molecular mechanisms. miR-124A can suppress the
proliferation and inflammation of RA-FLS by targeting the
phosphatidylinositol 3-kinase (PI3K)/NF-kB pathway (117).
The methylation of miR-124a helps attenuate IL-1b-mediated
RA-FLS proliferation and the expression of TNF-a (118).
Also, miR-124a was found to inhibit the proliferation and
invasion of RASFs by decreasing the expression of MMP3/13
Frontiers in Immunology | www.frontiersin.org 6
and IL-1 (119). It has also been reported that the expression of
lncRNA-H19 was inhibited by liver X receptor (LXR) agonists,
suggesting that LXR may have an anti-arthritis function (120).
Therefore, targeting the lncRNA-H19 and its downstream
signaling pathway or using LXR agonists may be new strategies
for RA treatment.

In addition, many other lncRNAs have been reported to be
involved in the pathogenesis of RA. Overexpression of lncRNA
zinc finger antisense 1 (ZFAS1) was found to upregulate miR-
27a, and thereby promote the migration and invasion ability of
TABLE 1 | LncRNAs implicated in SLE and RA.

LncRNAs Site Expression Signaling References

SLE
GAS5* PBMC/Serum DOWN MAPK signaling pathway (25)
NEAT1* PBMC UP MAPK signaling pathway (37)
TUG1* PBMC DOWN Unknown (36)
ENST00000604411.1 PBMC UP X chromosome inactivation (34)
ENST00000501122.2 PBMC UP Unknown (34)
TCONS_00483150 PBMC DOWN Unknown (35)
lnc5150 PBMC/Serum DOWN MAPK signaling pathway (25)
AC007278.2 PBMC UP Unknown (42)
MALAT-1 PBMC UP SIRT1 signaling pathway (43)
uc001ykl.1 B cell DOWN Unknown (66)
ENST00000448942 B cell DOWN Unknown (66)
YPEL4 Serum UP FcgR pathway (69)
linc0949 PBMC DOWN Unknown (31)
linc0597 PBMC/Serum DOWN Unknown (31)
lnc0640 Serum UP MAPK signaling pathway (68)
lnc7074 Serum DOWN MAPK signaling pathway (68)
linc-DC Serum UP Unknown (68)
RA
HOTAIR Chondrocytes DOWN NF-kB signaling (91)
HOTAIR PBMC/Serum exosomes UP Unknown (89, 90)
GAS5* PBMC/Serum/S-erum exosomes UP AMPK pathway (89)
GAS5* FLS DOWN SIRT1 signaling pathway (94)
MIR22HG PBMC UP Unknown (95)
ENST00000619282 PBMC UP Unknown (95)
DSCR9 PBMC DOWN Unknown (95)
LINC01189 PBMC DOWN Unknown (95)
MAPKAPK5-AS1 PBMC DOWN Unknown (95)
HIX003209 PBMC UP IkBa/NF-kB/HIX003209-miR-6089-TLR4 (98)
lnc-AL928768.3 STs UP Unknown (102)
lnc-AC091493.1 STs UP Unknown (102)
FER1L4 FLS/STs DOWN NF-kB signaling (103, 104)
linc00152 FLS UP NF-kB signaling (106)
FOXD2-AS1 Serum/STs UP miR-331-3p/PIAS3 pathway (107)
LERFS FLS DOWN Unknown (108)
ZNF667-AS1 FLS DOWN JAK/STAT signaling (109)
XIST FLS DOWN miR-126-3p/NF-kB signaling (110)
PICSAR FLS UP Unknown (111)
MEG3 Chondrocytes UP AKT/mTOR (112)
lncRNA-H19 FLS UP PIK3/NF-kB pathway (114, 117)
ZFAS1 FLS UP Unknown (121)
ITSN1-2 FLS DOWN NOD2/RIP2 (122)
RP11-83J16.1 FLS UP Unknown (124)
NEAT1* PBMC exosomes UP Unknown (129)
LUST Serum exosomes UP Unknown (89)
anti-NOS2A Serum exosomes UP Unknown (89)
SNHG4 Serum exosomes UP Unknown (89)
HAR1B Serum exosomes UP Unknown (89)
TUG1* Serum exosomes UP Unknown (89)
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RA-FLS, suggesting a pathogenic role of ZFAS1 in RA (121). Low
expression of lncRNA intersectin1-2 (ITSN1-2) inhibits the
nucleotide-binding oligomerization domain 2 and receptor-
interacting protein 2 (NOD2/RIP2) signaling pathway and
reduces the proliferation and inflammation of RA-FLS (122).
Overexpression of the lncRNA downregulated in liver cancer
stem cells (DILC) can induce FLS apoptosis and downregulate
the expression of IL-6, thereby reducing RA inflammation (123).
Increased expression of lncRNA RP11-83J16.1 in FLSs from RA
patients has been identified, which could regulate the levels of the
frequently rearranged in advanced T cell lymphomas-1 (FRAT1)
and b-catenin expression and thus promote cell proliferation,
migration, invasion, and decreased apoptosis in RA-FLS (124).
Compared with healthy controls (n=40), the expression of
lncRNA PlncRNA-1 was downregulated in the serum and
fibroblasts of active RA patients (persistent symptoms) (n=34),
but not in inactive RA patients (long term of no or few symptoms
after active RA) (n=36). In addition, PlncRNA-1 plays a central
Frontiers in Immunology | www.frontiersin.org 7
role in RA possibly by regulating on TGF-b1 expression (125). In
summary, these lncRNAs may act as therapeutic targets for RA.

3.3 The Expression Profiles of LncRNAs in
the Exosomes of RA
Recently, lncRNAs have been found to be enriched in exosomes
(126), which can be released by almost all cells, and are present
in bodily fluids, thus making them attractive targets for biomarker
research (127). LncRNA NEAT1 was reported to be highly
expressed in RA and PBMC-derived exosomes in patients with
RA (n=5), that could contribute to the pathogenesis of RA through
the delivery of lncRNA NEAT1. Furthermore, the study also
highlighted that lncRNA NEAT1 shuttled by PBMC-derived
exosomes plays a critical role in the development of RA by
regulating the miR-23a/MDM2/SIRT6 axis (128). Subsequent
studies have also shown that, compared with the exosomes from
normal controls (n=20), there was a significant increase in the
expression of NEAT1 in the exosomes of patients with RA (n=68).
FIGURE 1 | The potential mechanisms of lncRNAs in SLE and RA. (A) lncRNA NEAT1 is overexpressed in G-MDSCs and induces the promotion of G-MDSCs on
IFN-I signaling activation of B cells, contributing to the pathogenesis of SLE; lnc5150 and GAS5 in serum participate in the regulation of the MAPK signaling pathway,
and promote the inflammatory response of SLE; lncRNA YPEL4 in serum promotes the onset of SLE through FcgR-mediated phagocytosis; lncRNA NEAT1 in
PBMCs affects the expression of inflammatory mediators through activating the MAPK signaling pathway; lncRNA MALAT1 is overexpressed in PBMCs and can
modulate the SIRT1 pathway directly, then promote the inflammatory response of SLE; lncRNA GAS5 in CD4+ T cells can upregulate E4BP4 by inhibiting miR-92a-
3p and attenuating the self-reactivity of CD4+ T cells, playing a protective role in SLE; LincRNA00892 can activate CD4+ T by targeting hnRNP K and subsequently
up-regulating the expression of CD40L, thereby playing a pathogenic role in SLE; lncRNA MALAT1 in CD4+ T cells can participate in type I interferon-mediated SLE
by up-regulating OAS2, OAS3 and OASL. (B) lncRNA NEAT1 shuttled by PBMC-derived exosomes plays critical role in the development of RA by acting as a
ceRNA for miR144-3p to restrict its function, and thus increase the expression of the miR144-3p-targeted gene ROCK2; lncRNA GAS5 in the serum of patients with
RA activates the AMPK pathway; lncRNA MEG3 acts as ceRNA to inhibit inflammation by down-regulating AKT/mTOR signaling pathways; lncRNA HIX003209 in
LPS-treated chondrocytes promotes the proliferation and activation of macrophages by modulating the inhibitory effect of the IkBa/NF-kB signaling pathway; lncRNA
HOTAIR inhibits the activation of NF-kB in chondrocytes and reduce inflammation of RA; lncRNA-H19 acts as the ceRNA of miR-124a to inhibit the proliferation and
invasion of RASF; lncRNA ITSN1-2 inhibits the NOD2/RIP2 signaling pathway and reduces the proliferation and inflammation of RA-FLS; GAS5 in FLS acts as a
ceRNA to directly target miR-222-3p, upregulates the expression of Sirt1 and inhibits the proliferation and inflammation of RA; lncRNA XIST can inhibit the
proliferation of SFs by promotion of of miR-126-3p/NF-kB pathway, thereby playing a protective role in RA; lncRNA ZNF667-AS1 is overpressed in RA-FLS, which
plays a protective role in RA by sponging miR-523-3p and thus inactivation of JAK/STAT signaling pathway; LncRNA LERFS is lowly expressed in RA-FLS and can
promote synovial aggression and joint destruction by interacting with hnRNP Q; lncRNA FOXD2-AS1 can promote the proliferation and invasion of RA-FLS through
regulating the miR-331-3p/PIAS3 pathway; lncRNA linc00152 is up-regulate in RA-FLS, which can promote TAK1 expression by targeting miR-103a and thus
activate the NF-kB pathway; lncRNA AL928768.3 and lnc-AC091493.1 can regulate their target mRNAs (e.g., SDC1, LTB), and thus implicate in the abnormal
immune response of RA or promote the proliferation of FLS via multiple pathways in patients with RA. Also, transcription factor YY1 can promote linc00152
expression directly, and thus forming a linc00152/NF-kB feedback loop, which can promote RA-FLS inflammation.
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Also, NEAT1 might act as a ceRNA for miR144-3p to restrict its
function, and thus increase the expression of the miR144-3p-
targeted gene (Rho associated coiled-coil containing protein
kinase 2, ROCK2) in CD4+ T cells, promoting the progression
of RA (129). Another study showed that the levels of a set of
lncRNAs, HOTAIR, Luca-15 Specific Transcript (LUST), anti-
NOS2A, MEG, TUG1, NEAT1, Small Nucleolar RNA Host Gene
4 (SNHG4), Highly Accelerated Region 1B (HAR1B), and GAS5,
have higher expression levels in seral exosomes of patients with
RA (n=28) than in the seral exosomes of normal controls (n=10)
(89). Hence, these molecules are likely to serve as biomarkers for
RA. However, nowadays, little is known about the exact
downstream signaling pathways of exosomal lncRNAs in
modulating inflammatory response and autoimmunity. Further
studies are warranted to fill this research gap.
4 THE SIMILARITIES AND DIFFERENCES
IN LncRNAs BETWEEN SLE AND RA

Studies showed that some lncRNAs can regulate both SLE and RA,
but the mechanisms involved are different. For example, GAS5
may participate in the pathogenesis of SLE through the MAPK
pathway, but it regulates the progression of RA by activate the
AMPK pathway (25, 94). Overexpressed NEAT1 in the G-MDSCs
from the lupus murine model could lead to BAFF secretion and
thus promote the activation of B cells so as to accelerate the
progression of SLE, while the delivery of NEAT1 by PBMCs-
derived exosomes could promote the development and
progression of RA via the microRNA-23a/MDM2/SIRT6 axis
(60, 128). However, apart from these similarities and differences
in lncRNAs between SLE and RA, their function and molecular
mechanisms are still not well understood. Although both diseases
are closely related to autoimmune inflammation, different organs
are involved in the pathogenesis of SLE and RA; in SLE kidneys,
blood cells, skin, brain, heart, lungs, and joints are mainly affected
(21), while RA commonly affects the joints in the hands, wrists,
knees, etc. (130). Therefore, further studies are needed to reveal the
similarities and differences between lncRNAs in SLE, RA, and also
other autoimmune diseases. The lncRNAs implicated in SLE and
RA are shown in Table 1.
Frontiers in Immunology | www.frontiersin.org 8
5 FUTURE PERSPECTIVES

Recently, the studies focusing on investigating the role of
lncRNAs in autoimmune diseases have significantly increased.
However, the current studies are mainly focused on the possible
role of lncRNAs as biomarkers, by screening their expression
profiles in diagnostic data or by monitoring the activity of
autoimmune diseases. Conversely, information on the role of
their biological function and molecular mechanisms is still
relatively scarce.

In addition to being potential biomarkers in SLE and RA,
lncRNAs were found to participate in the modulation of the
inflammatory and autoimmune responses, which are shown in
Figure 1. However, the upstream regulatory mechanism of the
abnormal expression of these lncRNAs in SLE and RA is still
unclear, and there is a lack of studies addressing such question.
Moreover, the downstream regulatory mechanism of these
lncRNAs in SLE and RA still needs further investigation. These
studies may greatly improve our understanding of the
pathogenesis of human autoimmunity and provide novel
therapies for autoimmune diseases.
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