
March 2017 | Volume 11 | Article 181

Technology RepoRT
published: 16 March 2017

doi: 10.3389/fninf.2017.00018

Frontiers in Neuroinformatics | www.frontiersin.org

Edited by: 
Daniel Marcus,  

Washington University in St. Louis, 
USA

Reviewed by: 
B. Nolan Nichols,  

SRI International, USA  
David J. Just,  

Mayo Clinic, USA

*Correspondence:
Antoine Grigis 

antoine.grigis@cea.fr

Received: 14 November 2016
Accepted: 22 February 2017

Published: 16 March 2017

Citation: 
Grigis A, Goyard D, Cherbonnier R, 

Gareau T, Papadopoulos Orfanos D, 
Chauvat N, Di Mascio A, 

Schumann G, Spooren W, Murphy D 
and Frouin V (2017) Neuroimaging, 

Genetics, and Clinical Data Sharing in 
Python Using the CubicWeb 

Framework. 
Front. Neuroinform. 11:18. 

doi: 10.3389/fninf.2017.00018

neuroimaging, genetics, and clinical 
Data Sharing in python Using the 
cubicWeb Framework
Antoine Grigis1*, David Goyard1, Robin Cherbonnier1, Thomas Gareau1, 
Dimitri Papadopoulos Orfanos1, Nicolas Chauvat2, Adrien Di Mascio2,  
Gunter Schumann3, Will Spooren4, Declan Murphy5 and Vincent Frouin1

1 UNATI, Neurospin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France, 2 Logilab, Paris, France, 3 Medical Research 
Council, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, 
King’s College London, London, UK, 4 F. Hoffmann-La Roche Pharmaceuticals, Basel, Switzerland, 5 King’s College London, 
London, UK

In neurosciences or psychiatry, the emergence of large multi-center population imaging 
studies raises numerous technological challenges. From distributed data collection, across 
different institutions and countries, to final data publication service, one must handle the 
massive, heterogeneous, and complex data from genetics, imaging, demographics, or 
clinical scores. These data must be both efficiently obtained and downloadable. We 
present a Python solution, based on the CubicWeb open-source semantic framework, 
aimed at building population imaging study repositories. In addition, we focus on the 
tools developed around this framework to overcome the challenges associated with data 
sharing and collaborative requirements. We describe a set of three highly adaptive web 
services that transform the CubicWeb framework into a (1) multi-center upload platform, 
(2) collaborative quality assessment platform, and (3) publication platform endowed with 
massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, 
are currently supported by the described framework. We also present a Python package 
that enables end users to remotely query neuroimaging, genetics, and clinical data from 
scripts.
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1. InTRoDUcTIon

Health research strategies using neuroimaging have shifted in recent years: the focus has moved 
from patient care only, to a combination of patient care and prevention. In the case of neuro-
degenerative and psychiatric diseases, this drives the creation of increasingly numerous massive 
imaging studies also known as Population Imaging (PI) surveys (Hurko et al., 2012; Poldrack and 
Gorgolewski, 2014). It should be noticed that PI studies no longer consist of image data only. The 
recent wide availability of high-throughput genomics has augmented the subject data with genetics, 
epigenetics, and functional genomics. Likewise, the standardization of personality, demographics, 
and deficit tests in psychiatry facilitates the acquisition of clinical/behavioral records to enrich the 
subject data in large population studies. Moreover, PI studies now classically encompass more than 
one single imaging session per subject and cover multiple-time point heterogeneous experiments. 
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Ultimately, these studies with complex imaging and extended 
data (PIx) require multi-center acquisitions to build a large 
target population.

A regular PIx infrastructure has to cover the following three 
main topics: (1) data collection, (2) quality control (QC) with data 
processing, and (3) data indexing and publication with controlled 
data sharing mechanisms. Furthermore, PIx infrastructures must 
evolve during the life cycle of a population imaging project, and 
they must also be resilient to extreme evolutions of the data 
content and management. In the projects we manage, we experi-
ence several extreme evolutions. The first kind of evolution may 
affect the published dataset such as adding a new modality for 
all subjects, a new time point or a new subcohort. Second, the 
amount of data requested evolves dramatically as the project 
consortium gets enlarged (Gorgolewski et  al., 2015). Finally, 
internal ontologies have to evolve constantly in order to match 
the ongoing initiatives on interoperability (Scheufele et al., 2014; 
Gorgolewski et al., 2016).

Several existing open-source frameworks support one or 
several of the described topics sometimes only for one specific 
data type. We propose in the following a brief overview of exist-
ing systems. Some of these systems have also been reviewed 
by Nichols and Pohl (2015). IDA (Horn and Toga, 2009) is a 
neuroimaging data repository and management system that 
supports data collection (topic (1)) and data sharing (topic 
(3)). With this system, the published datasets can be searched 
using automatically extracted metadata. The XNAT framework 
(Marcus et al., 2013) is widely used for neuroimaging data and 
supports all the PIx infrastructure topics, focusing on tools 
to pipeline, and to audit the processing of image data (topic 
(2)). The LORIS (Das et  al., 2012) and NiDB (Book et  al., 
2013) frameworks represent a significant effort to account for 
multimodal data involved in PIx studies. These frameworks, 
although addressing all the required topics, mainly support 
neuroimaging data. Openclinica (2015) and REDCap (Harris 
et  al., 2009) facilitate the collection of electronic data such 
as eCRF or questionnaires and are recognized in projects of 
various sizes that support data collection (topic (1)). Likewise, 
laboratory information management systems were developed 
for the collection of genomic measurements such as SIMBioMS 
(Krestyaninova et  al., 2009). Finally, the COINS framework 
brings essential tools for multimodal data support and, more 
interestingly, emphasizes the importance of providing sharing 
tools (topics (1) and (3)) (Scott et al., 2011).

The two European studies we manage require a tailored PIx 
infrastructure. Existing frameworks neither completely handle 
the diversity of our PIx requirements and project life cycle nor 
provide efficient tools to collect, check quality, and publish evolv-
ing data. Additional developments were required for building such 
complete infrastructure. We based these developments on a more 
general framework than the dedicated applications described 
above. In collaboration with Logilab company (Logilab SA, 
Paris, France), we developed three highly adaptive web services, 
based on the CubicWeb (CW) pure-Python framework, aimed 
at creating a (1) multi-center upload platform, (2) collaborative 
quality assessment platform, and (3) publication platform with 
massive-download features (Logilab, 2000). These developments 

were originally instituted for IMAGEN and EU-AIMS projects 
in order to host their data about mental health in adolescents 
(Schumann et al., 2010) and autism (Murphy and Spooren, 2012), 
respectively. The corresponding studies require key features such 
as upload/browse published data from the web, dynamic selec-
tion and filtering of displayed data, support for flexible download 
operations, high-level request language, multilevel access rights, 
remote data access, remote user access rights management, col-
laborative QC, and interoperability.

2. MATeRIAlS AnD MeThoDS

The three services described in the introduction were handled in 
distinct developments. Section 2.1 presents the CW framework 
capabilities, Sections 2.2 and 2.4 introduce the upload and pub-
lication web services through which the tailored requirements 
of PIx studies are satisfied. Furthermore, section 2.3 describes 
a collaborative rating web service that helps users to assess the 
data quality, and section 2.5 describes a Python API that remotely 
queries these web services.

2.1. cubicWeb overview
All the implemented services are based on the CW framework 
(Logilab, 2000). We choose a high level pure-Python framework 
that bridges web technologies and database engines. This choice 
was also based on the expertise and experience of people from 
our laboratory and a tight collaboration with Logilab (Michel 
et al., 2013; Papadopoulos Orfanos et al., 2015). CW distribution 
is organized in a core part and a set of basic Python modules, 
referred to as cubes, which can be used to efficiently generate 
web applications. The core of the CW framework, developed 
under the LGPL license, is constructed from well-established 
technologies (SQL, Python, web technologies such as HTML5 
and Javascript). The main characteristics of the CW framework 
are given as follows:

 1. CW defines its data model with Python classes and automati-
cally generates the underlying database structure.

 2. The queries are expressed with the RQL language which is 
similar to W3C’s SPARQL (W3C, 2013). All the persistent 
data are retrieved and modified using this language.

 3. CW implements a mechanism that exposes information in 
several ways, referred to as views. This mechanism imple-
ments the classical model-view-controller software architec-
ture pattern. Defined in Python, the views are applied to query 
results, and can produce HTML pages and/or trigger external 
processes. The separation of queries and views offers major 
advantages: first, the same data selection may have several web 
representations, and second, retrieved data can be exported in 
several other formats without modifying the underlying data 
storage.

 4. All the views and triggers are recorded in a registry and are 
automatically selected depending on the current context, 
which is inferred from the type of data returned by the RQL.

 5. Thanks to the semantic nature of CW, all developments inherit 
the possibility to follow existing or emerging ontologies, 
thereby facilitating sharing, access, and processing.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
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FIgURe 1 | Architecture of a cubicWeb data sharing service (DSS) integrated in an Apache platform with lDAp. The business logic cubes provide a 
schema that can be instantiated in the database management system (DBMS: red puzzle piece). The system cubes ensure low-level system interactions (green 
puzzle piece), and the application cube proposes a web user interface (blue puzzle piece). End users access the database content through a web browser, a Python 
API scripting the DSS or an FTP solution, where virtual folders (acting as filters on the central repository) are proposed for download.
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 6. CW has a security system that grants fine-grained access to 
the data. This system is similar to the row-level security and 
policies available in the most recent versions of PostgreSQL, 
and links access rights to entities/relations in the schema. 
Each entity type has a set of attributes and relations, and 
permissions that define who can add, read, update, or delete 
such an entity and associated relations.

 7. CW may run either as a standalone application or behind an 
Apache front server. We refer to both settings as a data sharing 
service (DSS) (cf. Figure 1).

 8. CW can be configured to run with various database engines. 
For the best performance, PostgreSQL is recommended.

Starting from the basic CW distributions, our suite of services 
is composed of an assembly of Python modules, also referred to as 
cubes. The Python language is widely used in scientific communi-
ties and facilitates interfacing with major or emerging process-
ing tools such as Nipype (Gorgolewski et al., 2011), Biopython 
(Chapman and Chang, 2000), Nilearn (Abraham et  al., 2014), 
and Morphologist (Fischer et al., 2012). Application cubes, built 
over system cubes, and business logic cubes can be distinguished. 
The system cubes ensure interactions with the operating system 

and middlewares. For example, they connect to LDAP for user 
credentials and information or invoke FUSE (2002) as a module 
to construct virtual file systems in a user repository for down-
loading. The business logic cubes essentially provide the database 
schema and the application cubes define the access rights and the 
web interface.

Among the available Python-based frameworks, we chose 
CW. A major advantage of CW is the RQL language which 
brings end users a query interface adapted for PIx data shar-
ing. It simplifies and improves the user experience in searching 
for custom datasets. RQL also avoids the use of a complicated 
object relational mapper (ORM), is focused on browsing rela-
tions, and allows requesting several DSS at once. The semantic 
nature of this request language requires the user to know only 
about the used data model defined as a graph (nothing about 
the underlying low-level relational model). This data model 
simplification and the expressiveness of RQL help users writing 
custom requests, while most of existing DSS do not expose a 
query language but offer a limited predefined number of opera-
tions that can be carefully designed to be efficient (e.g., RESTful 
APIs). Criticisms against systems exposing a query request 
language to the end users emphasize a risk of denial of service. 

http://www.frontiersin.org/Neuroinformatics/
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To avoid this issue (i.e., overloading the server with arbitrary 
complex requests), CW allows limitation of usable resources 
(RAM per request, CPU per request, number of requests per 
user, CPU time per request). We believe that users should be able 
to select and download only what they specifically need using a 
query request language. This avoids filtering the data locally and 
saves the bandwidth.

2.2. Structured Data Upload Service
In PIx studies, massive and complex data are gathered from 
multiple data acquisition centers or devices (topic (1)). Each 
collected dataset must be mapped with definitions that follow 
consensus representation rules. Those definitions are grouped 
in data dictionaries that ideally follow standards (Rockhold 
and Bishop, 2012), but they are mainly manufacturer and/or 
site specific. Thus, an efficient and versatile tool is required for 
mapping the different data dictionaries during the collection 
process.

Leveraging those ideas, we implemented a flexible upload 
mechanism, a system cube named rql_upload1 and provided a 
web frontend by integrating this cube with the application cube 
named PIWS2 (Population Imaging Web Service, cf. Figure 1). 
Based on a CW feature that allows database completion through 
online HTML forms, these two cubes were developed to collect, 
in a DSS, both raw data and metadata. CW also enables the 
customization of triggers that determine the integrity of the 
uploaded data: synchronous and asynchronous validation filters 
can be specified and applied to each upload dataset. The upload 
proceeds as follows (cf. Figure 2):

 1. Synchronous validations are applied to each form field (e.g., to 
check the extension of a file or the structure of an Excel table). 
If the validation filtering fails, then the web form is refreshed 
and an adapted feedback is displayed.

 2. After synchronous validation, all the uploaded raw data/
metadata are stored in generic entities and a “Quarantine” 
status is set. To avoid cluttering of the database and to ease 
file manipulation, files are stored in the central repository 
but remain accessible through the database. File hashes are 
automatically computed and indexed in order to assess data 
integrity.

 3. To update the upload status from “Quarantine” to 
“Rejected”/“Validated,” automatic asynchronous validations 
can be configured in the service as looping tasks. Those valida-
tion filters are project and/or data and/or upload specific and 
generate adapted feedbacks for users and data managers.

Moreover, any entity or relation may be endowed with access 
permission rules (Logilab, 2000). Based on the CW security 
mechanisms, a customized security model was implemented for 
our upload DSS (it can be extended later). Only specific groups 
have the authorization to upload, and users can only access the 
uploads, which they are interested in. The customization of these 

1 http://neurospin.github.io/rql_upload.
2 http://neurospin.github.io/piws.

core features allowed the creation of an upload web service that 
is completely described in a single JSON file. This file links the 
web form fields with customized or CW-internal controllers that 
manage the type of data to be collected.

2.3. collaborative Quality control Service
Owing to the large amount of data gathered/analyzed in PIx stud-
ies, we must consider more sophisticated operating procedures 
than simple quality controls (QCs), where datasets are usually 
only rated once by a handful of individuals. This issue can be 
addressed by implementing a web-based collaborative quality 
control process that will also remove the bias introduced by 
isolated raters (topic (2)). Moreover, for the studies we manage, 
we also added controlled vocabulary description to the ratings.

We achieve these goals by implementing a flexible collabora-
tive rating mechanism, i.e., an application cube named zeijemol.3 
As in section 2.2, a collaborative quality control DSS is entirely 
described in a single JSON file. This file consists, on the one 
hand, of the list of elements that will be rated (e.g., a Nifti image, 
a FreeSurfer segmentation, or a motion curve in a diffusion 
sequence of an individual) and, on the other hand, related quality 
indicators (e.g., binary good/bad, controlled vocabulary, scaled 
rating). Each element is displayed by one of the embedded view-
ers such as triplanar view or mesh rendering (cf. Figure 3). The 
QC results are stored directly in the database.

The emergence of such DSS will allow machine learning tech-
niques to learn new classifiers to automatized the quality control 
task. The QC scores may also be directly used as prior knowledge 
during the analysis stage.

2.4. publication Service
In PIx studies, data collection and QC are followed by data 
anonymization, ordering, and analysis. Ultimately, data are made 
available to the acquisition partners or the scientific community 
(topic (3)). While browsing the database content through the web 
interface, users expect to be able to download the displayed files 
as well as the data description and rich links between the data, 
also referred to as metadata. An intuitive and reliable sharing 
mechanism is therefore crucial as large amounts of heterogene-
ous evolving data must be provided. Furthermore, for the studies 
we manage, access rights are split along time points, scan types, 
questionnaires, or questions to match the consortia multilevel 
access permissions.

Therefore, we implemented a system cube named rql_down-
load4 and provided a web frontend by integrating this cube with 
PIWS5 whenever it was used in a publication service (cf. Figure 1). 
The rql_download cube converts the result of any RQL query into 
files on a virtual file system that, in turn, can be accessed through 
a secured file transfer protocol (sFTP) (cf. Figure 1). Section 2.4.1 
introduces the business logic cubes used to describe the neuro-
imaging genetics data and metadata and the relationship between 

3 http://neurospin.github.io/zeijemol.
4 http://neurospin.github.io/rql_download.
5 http://neurospin.github.io/piws.
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FIgURe 2 | Illustration of the upload process. The (A) syntax of a form description JSON file, (B) corresponding web form as presented to users (here an error 
message returned by synchronous validation is displayed in the top red box), (c) “Quarantine” status, and (D) “Validated” status (obtained after asynchronous 
validation) as displayed to users: note that no feedback is shown here.
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these data. Section 2.4.2 shows how users can save the content of 
their current search from the DSS web interface. Section 2.4.3 
describes two approaches of rql_download, based on two basic 
softwares (FUSE or Twisted), that give users access to their saved 
searches. This section also discusses the pros and cons of both. 
Section 2.4.4 presents a suitable strategy for setting user rights 
from the CW security system. Finally, section 2.4.5 presents a 
descriptive data insertion mechanism, as a set of Python scripts.

2.4.1. A Dedicated Structure for Imaging Genomics 
Questionnaire Data
The database schema was developed for handling multi-time 
point/multimodal datasets in the brainomics business logic cube.6 
This schema supports general information such as subject data 
and associated metadata (age, handedness, sex, …), acquisi-
tion center definitions, multimodal imaging datasets, clinical/
behavioral records, processed data, and some genomic concepts 

6 https://github.com/neurospin/brainomics2.

(including chromosomes, genes, SNPs, or genomic platforms). 
An excerpt of the produced schema is shown in Figure 4.

2.4.2. Efficient Data Selection and Download Tool: 
The Data Shopping Cart Mechanism
When an RQL query result set is returned by the DSS, the most 
adapted view is automatically selected, and facets are attached 
to each webpage, thereby providing filtering rules. Facets allow 
interactive and graphical search refinements in accordance with 
selected attributes (e.g., sex or handedness filter for a subject 
result set). The developed shopping cart mechanism serves to 
save the user searches that consist of data, possibly large files, and 
metadata. This mechanism and the facet filtering are smoothly 
integrated: activating a filter option from the web interface auto-
matically updates the search query result set, and thus, the list of 
files that will be dropped for download (cf. Figure 5). The data 
added to one cart has an expiration date that can be configured 
in the service. Convenient access rights are set: users can only 
access their own searches. For the sake of the EU-AIMS project 

http://www.frontiersin.org/Neuroinformatics/
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FIgURe 3 | The collaborative quality control web service of a FreeSurfer segmentation element of one subject. (A) the quality indicators (in this case, a 
controlled vocabulary with an accept/prescribe manual edit/reject decision and an optional check-box justification), (B) a triplanar view of the white and pial surfaces 
overlayed on the anatomical image, and (c) the white and pial meshes with statistical indicators.
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FIgURe 4 | A snippet of the schema used in a publication DSS. We see from the green boxes that all entities are related to an “Assessment” entity through an 
“in_assessment” relation. This behavior is inherited from the access rights described in section 2.4.4.
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hosted in our laboratory, a video explaining the data shopping 
cart mechanism is available.7

2.4.3. The Transfer of the Shopping Cart Content: 
Data Download
When saved, the cart content is made available as virtual files and 
folders. A major advantage of the developed solution is that data 
compression or duplication is avoided, that in turn requires no 
extra load for the publication DSS. Data download operations are 
delegated to sFTP servers to ensure secure transfers. The sFTP is 
standard and supported by numerous client softwares on most 
systems.

Two approaches are implemented in the rql_download cube 
that can be selected by configuration settings:

7 ftp://ftp.cea.fr/pub/unati/euaims/download_euaims_data.mp4.

 1. FUSE virtual folders: For each search, the system builds a list 
of files to be downloaded, and subsequently creates a virtual 
FUSE directory acting as a filter on the central repository. The 
user can only see subsets of files/directories corresponding to 
his queries built in accordance with his access rights. Finally, 
the system delegates the data transfers to the sFTP server. The 
major advantage of this approach is the use of the standard 
sFTP port. However, additional system level configurations 
are required during the installation of the DSS in order to set 
the user home directories and system accounts.

 2. Twisted server: This approach is characterized by a Python 
process that creates a Twisted8 event-driven networking server, 
retrieves all the searches in the database, and exposes the files 
via sFTP through the created server. Again, this process acts as 

8 https://twistedmatrix.com/trac/.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
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FIgURe 5 | Illustration of the download process via the proposed shopping cart mechanism. (A) the facet filter bar when all the scans (“Scan” entities) are 
requested (as highlighted in bold, the user has selected only the “FU2” time point and the diffusion MRI “DTI” scans), (B) the view corresponding to the filtered 
dataset, (c) add this new search to the cart (by activating these filtering options, the save RQL path search will be automatically updated), (D) a new search has 
been created, and (e) the download of the search and associated files as presented in FileZilla.
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a filter on the central repository where a user only sees a subset 
of files/directories. In this case, the authentication and file 
transfers are directly operated by CW. The major advantage of 
this strategy is that no system level configuration is required. 
However, listening on a non-default sFTP port, which could 
lead to firewall issues, is sometimes required.

2.4.4. Access Rights Mechanism
In the CW security model, any entity or relation may be 
endowed with permission rules. To fulfill consortia’s criteria, 

we propose an operational setup of the CW security model 
for our publication DSS. We built our security model around 
“pivotal entities” rather than specifying rights on all entities. 
Pivotal entities are those on which access rights are defined, 
and they are related to all entities that must be covered by the 
security model through a specific relation (the “in_assessment” 
relation in Figure 4). Each time an entity covered by the secu-
rity model is requested, the system automatically requests its 
related pivotal entity and propagates the corresponding access 
rights.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


FIgURe 6 | Summary views of the database status. Global information, for example the (A) gender or (B) handedness distributions, (c) acquisition status, and 
(D) age distribution, or longitudinal information, such as (e) the answers of subject 2 to specific questions across the study time points.
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2.4.5. The Unified Insertion Procedure
A unified insertion module is provided as a set of Python scripts 
to insert neuroimaging, genomic, and clinical data such as scans, 
genomic measures, questionnaires, and processing steps. These 
scripts were helpful in efficiently managing the large amount of 
evolving data in our projects. The indexed data are uniformly 
organized according to the schema structure and thus take advan-
tage of all the aforementioned developments (e.g., shopping cart 
mechanism cf. section 2.4.2, security model cf. section 2.4.4, and 
common renderings cf. Figure 6). Generating such a DSS with 
these scripts can be performed without specific CW knowledge. 
Indeed, only a rich description of the data to be published is 
required as a set of Python dictionary objects.

2.5. A Transverse python Module to 
Remotely connect a cubicWeb DSS
With the aforementioned capabilities of the DSS, a user manu-
ally selects and downloads data through graphical interfaces in 
order to analyze them locally (cf. sections 2.4.2 and 2.4.3). In the 
case of an evolving DSS, the downloaded data must be regularly 
updated, and this manual process becomes time consuming and 
error prone when large and heterogeneous data are considered. 
Moreover, the metadata, such as quality scores, used to specify 
the dataset to download are also likely to change. Therefore, to 
achieve the analysis of up-to-date data stored in a DSS, direct 
programmatic interaction with the DSS is recommended. In the 
neuroimaging and neuroscience communities, data are typically 
analyzed by using Python scripts. Classically, the systems provide 
RESTful web services such as XNAT, with a Python API (Schwartz 
et  al., 2012). Inheriting from the RQL request language, our 
publication DSS (cf. section 2.4) offers a rich interface to access 
the data.

We provide a regular Python module, named cwbrowser,9 that 
implements a Python API to connect and send RQL to a remote 
DSS based on the CW framework. This module is completely 
independent of CW (no CW installation required) and similar 
to the CW distribution cwclientlib cube. A publication DSS, 
as described in section 2.4, can be requested by the cwbrowser 
module that embeds the previously described data selection 
and shopping cart capabilities. It automatically fills and saves a 
shopping cart from a custom RQL request, downloads the asso-
ciated virtual directories onto the local file system, and returns 
the complete requested dataset. The returned dataset contains 
metadata stored in the DSS such as subject sex or quality scores, 
and the path to the downloaded directories. These resources are 
organized following the DSS layout of files and folders. The users 
will get the same local tree which will help in writing sharable 
analysis scripts.

3. ReSUlTS

Our laboratory operates several DSS for the IMAGEN project 
about mental health in adolescents (Schumann et al., 2010) and 
the EU-AIMS project about autism (Murphy and Spooren, 2012). 
Other DSS are currently under development to support new and 
ongoing initiatives. Note that the access to both IMAGEN and 
EU-AIMS datasets is (to date) restricted.

In the IMAGEN project, 2,000 subjects are monitored on 
at least two visits (the third follow-up is underway). T1, T2, 
FLAIR, DWI, B0, task fMRI, resting-state fMRI scans are 
acquired, as well as clinical/behavioral records, genotyping, 
gene expression, and methylation. A publication DSS at https://

9 http://neurospin.github.io/rql_download/cwbrowser.

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://imagen2.cea.fr/database
http://neurospin.github.io/rql_download/cwbrowser
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imagen2.cea.fr/database enables us to share more than 37,000 
scans, 32,000 processing results, and 16 million distinct vari-
ables. In the near future, an upload DSS will allow us to collect 
a new time point.

In the EU-AIMS project, 1,500 subjects (from 6  months to 
30 years old) are monitored on several visits through two distinct 
studies. T1, T2, FLAIR, DWI, B0, task fMRI, resting-state fMRI, 
and spectroscopy scans are acquired, as well as clinical/behavioral 
records, EEG, eye-tracking, gene expression, and methylation. 
An upload DSS at https://eu-aims.cea.fr/database provides the 
means for collecting this data from 10 centers across Europe. In 
addition, a collaborative quality check DSS at https://eu-aims.cea.
fr/qc allows us to assess the uploaded data quality, and a publica-
tion DSS at https://eu-aims.cea.fr/data_repository enables us to 
share more than 13,000 scans, 12,000 processing results, and 15 
million distinct variables.

4. DIScUSSIon AnD conclUSIon

4.1. lightweight Solution for Data Sharing
We developed a novel and lightweight PIx software infrastructure 
exclusively based on the CW framework. We offer a suite of CW 
tools that facilitates the creation of a DSS. The system delivers the 
data to users based on the principle of “what you see is what you 
get”: users define their datasets of interest by browsing the data-
base. Thanks to the RQL and the developed Python API, remote 
query of a DSS is easy and intuitive. In this environment, core 
features such as the schema definition, the web rendering of the 
database content, and the semantic request language are provided 
by a few Python codes at the heart of the CW framework. Our 
DSS can use any database engine, offers an access permission 
mechanism, and can be smoothly integrated with the standard 
Apache environment. Moreover the CW framework relies on a 
large community of developers led by Logilab.

4.2. A pIx Swiss Knife
CW is well suited for all the scenarios one can face in a PIx pro-
ject. For instance, in the projects we manage, we also provided 
a CW based service to allow a collaborative moderation of user 
access to the different DSS. This service enables the consortium 
review boards to assign the relevant access rights to new or 
existing users. It is restricted to a few members and enables the 
user account administration of an upload, collaborative QC, and 
publication DSS.

4.3. Future Directions
Our developments inherit the web semantic capabilities embed-
ded in the CW framework. Thanks to this key feature, numerous 
problems of interoperability can be efficiently tackled using 
emerging ontologies and standards in neuroinformatics, neu-
rosciences, and bioinformatics, such as the NIDM standard for 
data exchange (Keator et al., 2013), the Cognitive Atlas Ontology 
(Poldrack et  al., 2011), and OntoNeuroLOG (Gibaud et  al., 
2011) for data annotation, or the Bio2RDF for the federation 
of large datasets using open-source semantic web technologies 
(Dumontier et  al., 2014). The annotation of our datasets, with 
respect to these ontologies, is ongoing. Ultimately, should all 
DSS follow standard ontologies, RQL would provide new cross-
projects querying possibilities. Although the CW framework is 
already used successfully in several commercial applications, it 
would be interesting to evaluate the CW framework performances 
on our DSS with Logilab dedicated tools.
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