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The effects of genes on physiological and biochemical processes are interrelated and
interdependent; it is common for genes to express pleiotropic control of complex traits.
However, the study of gene expression and participating pathways in vivo at the whole-
genome level is challenging. Here, we develop a coupled regulatory interaction differential
equation to assess overall and independent genetic effects on trait growth. Based on
evolutionary game theory and developmental modularity theory, we constructed
multilayer, omnigenic networks of bidirectional, weighted, and positive or negative
epistatic interactions using a forest poplar tree mapping population, which were
organized into metagalactic, intergalactic, and local interstellar networks that describe
layers of structure between modules, submodules, and individual single nucleotide
polymorphisms, respectively. These multilayer interactomes enable the exploration of
complex interactions between genes, and the analysis of not only differential expression of
quantitative trait loci but also previously uncharacterized determinant SNPs, which are
negatively regulated by other SNPs, based on the deconstruction of genetic effects to their
component parts. Our research framework provides a tool to comprehend the pleiotropic
control of complex traits and explores the inherent directional connections between genes
in the structure of omnigenic networks.
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INTRODUCTION

The study of gene pleiotropy has become a focus of genetic research in recent years. Pleiotropy
describes the phenomenon that single genes can have multiple biological effects, so that an individual
exhibits multiple traits (Solovieff et al., 2013). Pleiotropy is an important factor in
genotype–phenotype transmission (Dudley et al., 2005; Gregory et al., 2012; Geiler-Samerotte
et al., 2020), which can help us to understand how the underlying biochemical pathways
determine the behavior of the cells in which they are present (Roth et al., 2021). With the
development of genome-wide association statistical models, the regulatory roles of genes and
their interactive effects have received sustained attention in research on pleiotropy (Sivakumaran
et al., 2011; Visscher and Yang, 2016; Watanabe et al., 2019); these existing genetic studies mainly
focus on the action of identified key genes, which account for only a small amount of phenotypic
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variation. The current understanding of the networks of genes
that actually drive the development of complex traits, and how
genes throughout the genome interact remains inadequate.

In the early 20th century, reductionism had a positive impact
on the development of biological understanding (Osler, 1969).
Conventional reductionism is the theory that complex systems
and phenomena can be understood and described by breaking
them down to their fundamental parts. According to the complex
network mathematical model, the salient information can be
extracted from a network constructed using reductionist
principles. However, unlike physico-chemical networks, in
biological networks, organisms have an organic character that
emerges not through the sum of all components, but the
interconnection between them (Regenmortel, 2004; Roukos
2011; Mazzocchi 2012). An “omnigenic” model was therefore
proposed to take into account the activity of genes in cells, which
form a broad network in which each gene exerts an influence on
the occurrence of disease or development of traits, including
those without any obvious connection to traits or diseases in
interconnected gene networks (Boyle et al., 2017; Wray et al.,
2018; Liu et al., 2019).

Omnigenic network modeling has become a powerful and
fundamental tool for analyzing interactomes and quantifying
relationships among genes; many statistical networking
methods have been established (Carter et al., 2004). However,
most related gene regulatory networks have their own underlying
mathematical rationale and assumptions, thus results lack
robustness (Marbach et al., 2012). In addition, an omnigenic
network involving large amounts of genomic data is high-
dimensional, which brings inevitable challenges in computing.
Clustering techniques are required to sort complicated, high-
dimensional genes into communities or modules through
modularity theory (Wang and Huang, 2014; Huynh-Thu and
Sanguinetti, 2019). Based on the dynamic nature of gene
behaviors, functional clustering has made it possible to
identify the similarity of temporal genetic effects from large
numbers of loci, thus resolving biological and computational
complexity (Kim et al., 2008; Li et al., 2010; Wang et al., 2012).

In this article, we propose a new model to explore the
multilayer interactome network mediating the pleiotropic
control of complex traits (in this case tree height and
diameter) by integrating system mapping (Wu et al., 2011; Bo
et al., 2014; Sun and Wu, 2015), functional clustering, and
differential genetic regulatory systems (Jong, 2002; Jong et al.,
2003). Given that the metabolism of an organism is a network of
interacting processes (Michael, 2019), we established a coupled
regulatory interaction (CRI) differential equation model to
describe interactions between complex traits growth (Wu
et al., 2011; Jérôme et al., 2013). This differential equation can
be embedded into the system mapping model to discern specific
quantitative trait loci (QTLs) that control the traits, according to
differences between genotypes in the equation parameters.
Further, we reveal gene interactions, and describe how genes
are implicated in the control of intracellular and intercellular
processes through multilayer gene network modeling (Someren
et al., 2002; Margolin and Califano, 2010; Yukilevich et al., 2010;
Costanzo et al., 2019; Wu and Jiang, 2021); this incorporates

modularity theory to resolve ultrahigh-dimensional
computational complexity. From this, networks of separate
modules can be constructed, and modules can be divided into
submodules and sub-submodules; genome-wide epistasis can
thus be interpreted from an evolutionary game theory
perspective (Smith and Price, 1973) postulating that
interactions between genes can lead to genetic effect payoff.
Our multilayer interactome network provides a powerful
computational tool in the mechanistic analysis of large,
genome-wide expression datasets and revolutionizes our
understanding of the pleiotropic control of complex traits.

MATERIALS AND METHODS

Plant Materials
We used published data from trees as mapping population for our
study (Xu et al., 2016). It comprises a full-sib family derived from
hybridization between the female clone I-69 of Populus deltoides
and the male clone I-45 of Populus × euramericana, which were
introduced from the United States in the 1970s (Wu et al., 1992).
This hybridization generated 450 hybrid trees, planted with
ramets in a uniform land at Zhangji Forest Farm, Xuzhou,
Jiangsu, China. The two parents, I-69 and I-45, and
64 randomly-selected hybrids were used for stem growth
analysis, in which annual data comprising stem height and
stem diameter during the first 24 years of growth from 1987 to
2010 were measured. The trees were genotyped at single
nucleotide polymorphism (SNP) sites using the Applied
Biosystems QuantStudio 12K Flex Real-Time Polymerase
Chain Reaction (PCR) System for genome-wide mapping.
156 362 SNPs were characterized through stringent quality-
control filters segregating with different patterns, of which
94 591 SNPs belong to testcross markers and 61 771 SNPs
belong to intercross markers, respectively. The testcross
markers are those at which one parent is heterozygous
whereas anotherr is homozygous. The intercross markers are
derived from two heterozygous parents.

CRI Differential Equations of Complex Traits
The pattern of interactions between tree height and diameter is
fundamental for the development and application of many
growth and yield models. It is the focus of theoretical and
empirical analyses indicating pleiotropic control
(Dharmawardhana et al., 2010; Jiang et al., 2016). The growth
relationship between diameter and height can be described by
many traditional models, such as nonlinear functions and
generalized height-diameter functions (Temesgen and Gadow,
2004; Ahmadi and Alavi, 2016; Roya and Tooba, 2020), and
mixed-effect models (Sharma and Parton, 2007; Crecente-Campo
et al., 2010; Bronisz and Mehttalo, 2020; Liao et al., 2020), which
evaluate the overall change and trends among traits by
establishing the relation of function. However, the internal
coordination of tree height and diameter can be understood in
more depth by investigating the underlying biological
mechanisms of their control. From the perspective of game
theory, we introduced the Lotka–Volterra differential equation
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(May, 1975) to represent the specific forms of the interaction
between the complex traits of growth in stem diameter and
height. We present a coupled regulatory interaction (CRI)
differential equation to describe the growth relationship
between traits, which separates the growth of these traits into
independent and dependent parts:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dH

dt
� αH(1 − H

KH
)H + αHβH←DHD � Ĥ + IH←D

dD

dt
� αD(1 − D

KD
)D + αDβD←HDH � D̂ + ID←H

(1)

where Ĥ or D̂ is the independent growth of each trait, determined
by its intrinsic properties, and IH←D or ID←H describes the
interactive growth of each trait, depending on how it interacts
with the other, coexisting trait. H and D in this study represent
the growth of stem height and diameter, αH and αD represent the
growth rate, and KH and KD represent the asymptotic values.
βH←D and βD←H are dependent parameters; the size of the
positive or negative dependent parameters βH←D and βD←H
indicate the type of interactive relationship. Specifically, when the
dependent parameter is positive, the growth is promoted by the
coexistence characteristics. Conversely, when the dependent
parameter is negative, the growth is hindered. If the
dependent parameter is zero, the overall growth depends
solely on independent growth, which means that there is no
interaction between the two traits. The interaction of the two
traits can be described by a strategy set, shown in Table 1 and
summarized as follows:

• neutral interaction strategy: no interaction between the two
characteristics;

• cooperative interaction strategy: the growth of one
characteristic is promoted by the other, without
hindering the growth of the latter;

• antagonistic interaction strategy: the overall growth of at
least one characteristic is inhibited by the other.

The parameters in the CRI differential equation describe the
developmental mechanisms behind the formation and expression
of the two traits and their interaction. Using this CRI differential
equation, we can explore the dynamic changes of the growth of
each trait, and quantitatively analyze the nature of the interaction
between traits.

Identification of Interacting QTLs and Trait
Regulation
Systems mapping is a classical approach for mapping complex
traits by comparing the genotypic differences in growth equation
parameters throughout the genome (Wu et al., 2011; Bo et al.,
2014; Sun and Wu, 2015). We designed a mapping population of
n trees. Genome-wide SNPs were genotyped in all trees using
high-throughput methods, and trees were phenotyped for height
and diameter at a series of time points (1,/, T) during

development. The phenotypic values of tree i (i � 1,/, n) for
height and diameter are expressed as:

y1i � (y1i(1),/, y1i(T)) and y2i � (y2i(1),/, y2i(T)).
The joint likelihood for n observations can be expressed as:

L(y1, y2) � ∏ n
i�1 f(y1i, y2i;Θ,ψ) (2)

where f(y1i, y2i;Θ,ψ) is a probability density function of
bivariate normal distribution with mean vector described as:

μ � (μ1(1),/, μ1(T); μ2(1),/, μ2(T))
represented by the parameters:

Θ � (αH,KH, βH←D, αD,KD, βD←H)
and the covariance matrix:

Σ � ( Σ1 Σ12

Σ21 Σ2
)

where the diagonal elements are the variance matrices of each
trait, and the off-diagonal elements are the covariance matrices
between a pair of traits. We used a first-order structured
antedependent (SAD (1)) statistical model controlled by a set
of specific parameters ψ to express the longitudinal covariance
matrix (Zhao et al., 2005a; Zhao et al., 2005b).

Considering the difference in genotype on the growth of trees,
we constructed the likelihood function:

L1(y1, y2) � ∏ J
j�1 ∏ nj

i�1 fj(y1i, y2i;Θj,ψ) (3)

where J is the number of QTL genotypes and nj is the number of
those trees carrying genotype j, satisfying:

∑ J
j�1 nj � n.

TABLE 1 | A strategy set of stem growth on traits interaction. The regulation
strategy table formed by the different positive and negative combinations of
two interactive regulation parameters.
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fj(y1i, y2i;Θj,ψ) is a probability density function of bivariate
normal distribution with mean vector defined as:

μj � (μj1(1),/, μj1(T); μj2(1),/, μj2(T))
represented by parameters:

Θj � (αHj, KHj, βH←Dj, αDj, KDj, βD←Hj)
and covariance matrix Σ.
We incorporated the simplex (Zhao et al., 2004), expectation

maximization (EM) (Dempster, 1977), and fourth-order
Runge–Kutta algorithms to obtain maximum likelihood
estimates (MLEs) of the parameters in the mean vector and
covariance matrix, respectively. Based on the likelihood of Eqs
2, 3, we can test whether a given SNP is significantly associated
with trait allometry, using the following formula:

H0: Θ ≡ Θj versus H1: Θj ≠Θ, for j � 1,/, J
In which the log likelihood ratio is calculated and compared

with a genome-wide critical threshold. When the null hypothesis
above is rejected, this means that significantly associated QTLs
have been detected. These QTLs can be further tested to
determine whether they affect the independence and
interdependence of traits:

H0: (αHj, KHj, αDj, KDj) � (αH,KH, αD,KD), for j � 1,/, J

H0: (βH←Dj, βD←Hj) � (βH←D, βD←H), for j � 1,/, J

Modules Detection From Bivariate
Functional Clustering
For all p SNPs throughout the genome, we calculated the genetic
standard deviation based on the parameters from maximum
likelihood estimation for both traits, to describe the genetic
effect of SNPs on trait development. We utilized functional
clustering to identify distinct patterns of gene expression
dynamics by dividing p SNPs into L tight-knit modules (Kim
et al., 2008; Li et al., 2010; Wang et al., 2012). In our research,
functional clustering is extended into bivariate functional
clustering including height and diameter. The following
equations denote the vectors of genetic effects of SNP
k (k � 1,/, p) on height and diameter, respectively:

g1k � (g1k(1),/, g1k(T))
g2k � (g2k(1),/, g2k(T))

The likelihood based on a mixture model is formulated as:

L2(g1, g2) � ∏ p
k�1 ∑ L

k�1[ωlfl(g1k, g2k;Φl)] (4)

where ωl is a prior probability representing the proportion of
module l, and satisfying ∑L

l�1 ωl � 1, fl(g1k, g2k;Φl) is a
probability density function of bivariate normal distribution
with Φl as a vector of unknown parameters structuring the
cluster-specific mean vector:

ul � (ul1(1),/, ul1(T); ul2(1),/, ul2(T))

and covariance matrix Σg.
We incorporated nonparametric Legendre orthogonal

polynomials (LOP) mathematical equation and the SAD (1)
statistical model to fit the mean-covariance structures. A
hybrid EM-simplex algorithm was implemented to estimate
the parameters Φl in likelihood of Eq. 4; the posterior
probability that SNP k belonging to a particular module l in
each iteration can be determined as:

Ωl|k � ωlfl(g1k, g2k;Φl)∑L
l’ωl’fl’(g1k, g2k;Φl’)

and the proportion of module l is calculated by:

ωl � ∑p
k�1Ωl|k
p

An optimal number of SNP clusters in terms of their different
genetic effects can be determined using penalized likelihood
criteria, such as AIC and BIC.

Network Construction
Molecular-level genetic regulatory systems can help us to
understand how genes are implicated in trait growth processes
through networks. A universal property of complex networks is
that the change of one component (usually expressed in the form
of a rate equation) in the system is a function of other
components:

dxl

dt
� Gl(x), 1≤ l≤ L

where x � [x1,/, xL]′ is the vector of system components, and
Gl: Rn →R is the function (generally non-linear) that
determines the dynamics model of the entire system (Jong, 2002).

Network theory states that the observed value of a variable is
the sum of the components of its own strategy and those derived
from the strategies of its interactive counterparts (Wu and Jiang,
2021). The relational structure of each component can be divided
into independence and dependence, to explore how these SNPs
interconnect and interdepend. Where g1l � (g1l(1),/, g1l(T))
and g2l � (g2l(1),/, g2l(T)) denote the vectors of overall
genetic effects of module l on height and diameter,
respectively, we can derive an ordinary differential equation
(ODE)-based equation system, as follows:

dg·l
dt

� G0
l (g·l;Θl) + ∑L

l′�1,l′≠ l
Gl← l′(gΔl′;Θl← l′), l � 1,/, L (5)

where g·l is the net genetic effect of module l on height or
diameter. This can be deconstructed into two components:
G0
l (g·l;Θl) is a time-varying function that characterizes the

independent genetic effect of module l with the assumption
that it occurs in isolation; and ∑L

l′�1,l′≠ l Gl← l′(g·l′;Θl← l′) is a
time-varying function that characterizes the dependent genetic
effect of module l that arises from the influence of the other
module l′. Θl and Θl← l′ are the sets of parameters that fit the
independent and dependent functions, respectively.
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FIGURE 1 | System mapping for the identification of significant single nucleotide polymorphisms (SNPs) goverining growth in stem height and diameter in an
interspecific, full-sib family of Populus during the first 14 years. (A) Overall growth trajectories for stem height (red lines) and diameter (blue lines) fitted using a CRI
equation, and relationship curves between traits (green lines) in hybrid poplars. The mean curves for the two growth traits are indicated by darker colored lines. (B)
Manhattan plot of p values after FDR correction over 19 chromosomes of the Populus genome by system mapping. Horizontal lines represent the critical threshold
at the 10−25 significance level obtained after Bonferroni correction. The annotations in the significant region are genes with known biological function. (C) Genetic effect
curves of 20 distinct significant SNPs identified from the Manhattan plot of stem height (red) and diameter (blue).
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The established procedure for constructing genetic network
consists of the following three steps: data smoothing, variable
selection, and ODE solving. We used LOP to smooth the
independent and dependent functions; by interpolating
additional values on the curve of best fit of genetic effects over
time, the case that the number of modules may be larger than the
number of time points can be solved. The network sparsity theory
states that there is a limit to the number of links to maintain the
stability of the network structure (Liu et al., 2011; Allesina and
Tang, 2012; Michailidis and Alché-Buc, 2013; Busiello et al.,
2017). It is necessary to filter modules through variable
selection from the regression model:

g·l(t) � al + ∑L
l′�1,l′≠ 1

bl′g·l′(t) + el(t)

where al is the constant, bl′ is the regression coefficient of
variable l′, and el(t) is the residual error. Here, we
incorporated LASSO-based variable selection (Tibshirani,
1996) to choose a set of the most significant dependent
modules for a focal module. Lastly, we used the fourth-order
Runge–Kutta algorithm to solve the simplified ODEs (5), and we
calculated the directional, weighted interactions among modules.

RESULTS

Growth Trajectories and Temporal Patterns
of Genetic Effects Identified Through
System Mapping
In this paper, we used forest poplar annual growth data for
stem height and diameter from 1 to 14 years. The growth
curves of traits over time follow a sigmoid curve. Many
classical growth equations provide quantitative assessment
to capture biological rule, such as Gompertz (Gompertz,
1815), Korf (Lundqvist, 1957) and Richards (Richards,
1959). However, these classical models can only evaluate the
overall change of one trait as a function of the other, but does
not provide insight into the internal mechanisms of how height
growth affects diameter growth or vice versa. Given the
possible interactions between diameter and height, we used
the CRI differential equation to fit the trait growth (R2 > 0.99)
(Figure 1A). Estimated parameters and statistical evaluation
values for the Gompertz, Korf, and Richards classical growth
equations and the CRI differential equation to fit the average
growth curve are shown in Supplementary Table S1. This
permitted a comparison of the accuracy and complexity of each
equation, which showed that the CRI differential equation had
the best fit. The residuals of the growth data were randomly
distributed on the predicted value (Supplementary Figure S1),
indicating that the CRI differential equation was robust. The
growth pattern of stem height and diameter follows an
antagonistic interaction strategy (Supplementary Figure
S2). Growth in stem height is inhibited by growth in stem
diameter, dramatically reducing the overall growth in stem
height; conversely, growth in stem height was found to

promote stem diameter growth, indicating an interactive
effect between the two traits.

We implemented system mapping to quantitatively analyze the
interaction between diameter and height (Figure 1B) based on the
bivariate normal distribution model; the identified significant
quantitative trait loci (QTLs) reveal the physiological
mechanism of competitive or cooperative strategies. A total of
88 intercross SNPs and 17 testcross SNPs were found to
significantly regulate the interaction in growth of two traits.
Over half of these SNPs were within, or adjacent to, candidate
genes involving the functions of plant growth-related pathways.
For example, SNP 30032 on chromosome 3 was found to be in a
region of the calcineurin B-like protein, CBL9 (Pandey et al., 2004),
which regulates phytohormone abscisic acid (ABA) responses.

Detailed information on these SNPs that were significantly
associated with our traits of interest, including segregation types
and physical positions, are given in Supplementary Table S2. A
majority of the SNPs were found to be located on chromosomes 5,
8, 9, 11, and 16. SNPs that are highly linked on the same
chromosome are likely to represent the same QTL, collectively.
We then explored how these QTLs percolate through the entire
regulatory network structure. The temporal pattern of genetic
effects exerted by the QTLs we identified was calculated, as shown
in Supplementary Figure S3; almost all of these SNPs had a
stronger effect on diameter compared with height, except for SNP
152657. The temporal pattern of QTLs effects on trait growth
varied, but most QTLs had similar genetic effect patterns, in
which effects increased initially and then decreased. We analyzed
the dynamic genetic correlations on stem height and diameter
indicating the QTLs with pleiotropy effects (Supplementary
Figure S4). We chose 20 distinct QTLs randomly, as shown in
Figure 1C; the effect pattern of SNP 110480 was to keep
enhancing with growing time, SNP 112164 and SNP 100722
were found to be responsible for both height and diameter growth
with similar intensity, and for SNP 137076, there was a marked
difference in effect values between the two traits.

Network Modules of Genetic Effect
Dynamics Based on Omnigenic Theory
The detection of individual QTLs by system mapping has
provided the first detailed understanding of the genetic basis
of complex traits, but it may provide limited insight into how
common SNPs across the genome, which are below the threshold
for statistical significance, act and interact to regulate growth
traits (Yang et al., 2010). Some common SNPs are not necessarily
significantly associated with traits by themselves, but play an
important role in regulating other loci and are therefore indirectly
involved in trait control. To explore the genetic contribution from
these common SNPs that may have been missed, we carried out a
quantitative analysis of epistatic effects among genome-wide
SNPs in omnigenic networks. Based on our CRI differential
model, we estimated the effect on stem height and diameter of
each SNP through system mapping.

The use of high-dimensional genome-wide SNP datasets are
essential to revealing how all interconnected genes generate or
regulate the expression of complex traits and pleiotropic control.
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The regulatory networks of gene pleiotropy in living organisms
can be usefully compared the vast networks of stars in interstellar
clusters, which in turn form galaxies, and then superclusters of
galaxies. Although it is computationally complex, dimensions can
be reduced by cluster. We incorporated modularity theory
(Newman, 2006; Cantini et al., 2015) into network modeling
in which nodes are densely connected in modules, with sparser
connections between modules. In this paper, using a galactic
analogy, we constructed metagalactic networks, intergalactic
networks, and local interstellar networks to describe the layers
of structure between modules, submodules and individual SNPs,
respectively.

Genome-wide SNPs can be classified into different modules
based on similarities in the pattern of genetic effects. We
implemented bivariate functional clustering to classify the
height and diameter effects of 156,362 SNPs into different

modules. According to the comparison of BIC values for
different cluster numbers, the most parsimonious number of
modules was found to be 160. Each module represents a specific
temporal pattern of genetic effects on the growth of height and
diameter, which differs from those from other modules
(Supplementary Figure S3). In Figure 2A, 13 representative
modules are illustrated, which suggest pronounced discrepancies
exist in the temporal patterns of genetic effects on the growth of
both height and diameter. Some modules, such as M90 and M95,
have greater genetic effects on height growth than diameter for a
period of time, but some modules display an inverse pattern. All
these differences in the time-dependent change of genetic effects
contribute to the pleiotropic effects of the genetic architecture on
growth in stem height and diameter.

We then explored how these 160 distinct modules are
interconnected. We calculated the mean genetic effect curve

FIGURE 2 | Genetic effect clusters and metagalactic network modules for stem height and stem diameter growth in an interspecific full-sib family of Populus. (A)
Genetic effect curves for 17 representative modules of stem height (red) and diameter (blue) chosen from a total of 160 gene modules detected by bivariate functional
clustering; Bayesian Information Criterion analysis showed 160 as the optimal number of modules. (B) Metagalactic genetic networks containing 160 modules
reconstructed using the mean effect values of each module for height and diameter, where red and blue arrowed lines denote inhibition and activation effects,
respectively. The thickness of lines is proportional to the strength of the regulatory interaction. Modules containing quantitative trait loci (QTLs) are highlighted by green
points. The distribution of the number of outgoing links and incoming links across 160 modules for height (red, bottom) and diameter (blue, top) is enumerated between
networks.
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for each module to construct metagalactic genetic interaction
networks amongmodules (Figure 2B), where nodes represent the
collective effect of all SNPs within a module. This showed that
both the height and diameter networks are highly sparse;
directional positive and negative epistasis together dominate in
the pairwise links. In both the height and diameter networks,
positive epistasis constitutes a larger portion of the links: 51.04%

in the height and 57.93% in the diameter growth networks,
suggesting that genes tend to cooperate in the growth of these
traits. Several negative links between modules indicated epistatic
inhibition with a great strength, such as M41→M67 in the height
network and M76→M53 in the diameter network. Outgoing and
incoming links describe the activation or inhibition one module
exerts on another, and the activation or inhibition of another

FIGURE 3 | Intergalactic genetic networks of quantitative trait loci (QTL)-containing submodules and local interstellar networks of individual single nucleotide
polymorphisms (SNPs) for stem height and diameter. (A) Genetic networks among nine submodules of module M153. (B) Genetic networks among 50 SNPs from
submodule 5, SM5/M153. (C) Independent genetic networks among 50 SNPs from submodule 5, SM5/M153. Red and blue arrowed lines represent inhibition and
activation, where the thickness of lines is proportional to the strength of regulation. The submodules containing each QTL are highlighted by green points, and QTLs
are highlighted within the intergalactic networks. The distribution of the number of outgoing and incoming links between SNPs for height (blue, top) and diameter (red,
bottom) are counted between networks.
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module on the module of interest, respectively. We counted the
total number of outgoing and incoming links for each module in
the network, and plotted the distribution (Figure 2B, middle
panel). The numbers of outgoing links differed greatly across
modules, ranging from 0 to 50; only a small subgroup of highly-
interconnected modules predominated in the genetic network,
and most modules were relatively minor nodes. The distribution
of incoming links was much more consistent between modules.
As shown in Figure 2B, we found that the character of the
module is intricate, with outgoing and incoming links that varied
between height and diameter networks: some nodes that were
predominant in the height network, such as M141, were minor
nodes in the diameter network. Conversely, modules such as M92
were predominant in the diameter network but minor in the
height network. Some modules, such as M41, were also
predominant in both networks.

QTL Deconstruction in Multilayer Network
Architecture
Within metagalactic networks, 105 QTLs detected by system
mapping resided in only eight different modules, M7 (3
QTLs), M12 (30 QTLs), M66 (6 QTLs), M70 (1 QTLs), M119
(1 QTLs), M151 (15 QTLs), M153 (45 QTLs) andM157 (4 QTLs),
implying that the interplay between QTLs located in the same
module may govern stem growth. Most QTL-containing modules
played as minor roles, with more incoming than outgoing links
(Figure 2B). We grouped QTL-containing modules into
submodules, then constructed deep intergalactic networks to
describe the connections among them. Module M153, which
contained 186 SNPs, had the highest number of QTLs of all QTL-
containing modules. By comparing BIC values between possible
submodule arrangements, the most parsimonious number of
submodules was found to be nine. In this intergalactic
network organization, SM7/M153 is a minor submodule
inhibited by SM2/M153 and SM4/M153 in the height network;
however, SM7/M153 regulates other submodules in the diameter
network. Although SM4/M153 has a predominant role in the
height network, it is regulated by other submodules in the
diameter network. From this intergalactic network, QTL-
containing submodules exhibited considerable differences in
effect on height and diameter, supporting their pleiotropic
control of these complex growth traits (Figure 3A).

Local interstellar networks, at the individual SNP level,
illustrate specific epistatic distinctions between height and
diameter growth. We demonstrated how QTLs and other
SNPs that were nonsignificant in the system mapping analysis
interact with each other in QTL-containing, local interstellar
networks by taking SM5/M153, which is the largest QTL-
containing submodule involving 24 QTL in a total of 50 SNPs
(Figure 3B), as an example. Based on the independent genetic
effects calculated from the CRI differential model, independent
local interstellar networks were also constructed (Figure 3C). In
all cases, the distribution of outgoing links showed striking
differences in numbers, originating from only a small portion
of predominant SNPs in these networks. However, all SNPs
received incoming links. In general, most QTLs essentially

served as receivers, activated or inhibited by other SNPs. We
also found that individual QTLs perform differently between the
diameter and height networks: for example, in the SM5/M153
height network, QTLs 48806, 48811 and 48892 had the most
outgoing links, tending to activate or inhibit other modules; while
in the diameter network, the most predominant role was held by
SNPs 49614 and 49360, followed by QTLs 48794 and 48806
(Figure 3B). This effect was similar in the independent local
interstellar network. In Figure 3C, QTLs 48833 and 48802 were
predominant nodes in height growth, whereas QTLs 48891,
48922 and 48886 predominated in diameter growth. In
addition, there was a discrepancy in SNP organization between
local interstellar networks and independent local interstellar
network (Figures 3B,C). On one hand, regulatory roles,
especially dominant nodes, change in the network structures.
For example, QTL 48806 predominated in the local interstellar
height network, while in the independent local interstellar height
network, QTL 48833 was predominant. On the other hand,
independent networks contained more frequent interactions
among SNPs, indicating that the network structure of one trait
may be influenced by the growth of the other traits.

We selected four QTLs from SM5/M153 to analyze the
dynamics of inherent genetic effects and those influenced by
other SNPs (Figure 4). QTL 48806 was predominant in both
height and diameter networks, and had dramatic, independent
effects, and was affected by other SNPs, which exerted an overall
negative epistatic effect on this QTL. Thus, the net genetic effects
were inferior to the independent effect. In the corresponding
independent local interstellar network, a similar pattern of
genetic effects was found for diameter, while in the height
network, the expression of QTL 48806 is promoted by SNP
50049, and the net genetic effect is larger than the independent
effect. We also found that QTL 48886 is upregulated by SNP 48892
in the height network and downregulated by SNP 49614 and SNP
48360 in the diameter network, and the same phenomenon was
observed in the independent network. For QTL 86099, the overall
genetic effects were similar to the independent effects for height
growth, whereas the net genetic effect in diameter growth is greater
than expected from its intrinsic capacity. Under independent
growth, the diameter net genetic effect is smaller than the
independent effect in 1–7 years, but gets stronger after the
seventh year.

Nonsignificant Locus Analysis Within
Modules
General analysis focused on the pleiotropic control of complex
traits by significantly associated SNPs, ignoring those
nonsignificant SNPs, which may also have indispensable roles
in regulation and control. It is possible that some SNPs have an
independent effect, but this effect may be diminished by negative
epistatic effects from other SNPs. Here, we randomly chose a
module without any significantly associated QTLs, M85, which
comprised a total of 565 SNPs. According to the BIC values for
clustering, 50 was found to be the most parsimonious number of
clusters for the construction of intergalactic genetic networks
(Figure 5A). In the height network, directional positive and
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negative epistasis were found to be basically consistent in
numbers of links, while the strength of negative regulation was
much greater than for positive regulation, such as in the case of
SM24↔SM26. In the diameter network, the directional positive
epistatic effect was greater than that of negative epistasis. This
indicates submodules tend to compete in their regulation of
height growth, but reinforce each other’s effects in regulating
diameter growth.

SM23/M85 was found to be a minor submodule in both the
height and diameter intergalactic networks, containing 20 SNPs
and inhibited by SM22/M85, SM7/M85, and SM32/M85. We
constructed overall and independent local interstellar networks
for height and diameter (Figures 5B,C). These networks
exhibited considerable differences in organization between
height and diameter, as revealed by the distribution of
outgoing and incoming links in the metagalactic networks. As
with the intergalactic networks for M85, directional negative and
positive links were approximately equal in the overall height
network, and directional positive links outnumbered negative
links in the corresponding diameter network. However, this effect
disappeared in the independent diameter network, indicating the
organizational structure of SNPs differs between independent
and interactive perspectives of trait growth.

Four nonsignificant SNPs, 52542, 125076, 148746, and 148824
(Figure 6), were found to be located within the local interstellar
network of SM23/M85. The overall genetic effect of SNP 52542,
located in chromosome 5, on height growth is negatively
regulated by SNP 4205 in the first 6 years, and is then
upregulated by the same SNP. The net genetic effect on
diameter growth was found to be larger than the independent
effect. When considering independent effects, SNP 4205 is net-
downregulated in height growth, and with net upregulation in
diameter growth in the years 11–14. SNPs 125076, 148746 and
148824 were net-downregulated in height growth, in both the
overall and independent networks, which offset their
considerable independent effects. In contrast, the effects on
diameter of SNPs 125076 and 148824 in the overall networks
were found to be promoted by other SNPs. Similar effects were
also observed for SNP 148824 in the independent diameter
growth network: its independent effects were amplified by
positive epistasis via incoming links. These examples show
that SNPs may exhibit pronounced effects on trait growth if
their negative regulators are silenced. However, in some cases,
although an SNP may exhibit significant effects on diameter
growth, it may also be negatively regulated by other SNPs in
height growth, in which case the actual pleiotropic control of

FIGURE 4 | Resolution of quantitative trait locus (QTL) overall and independent effects on stem height and diameter. (A)Genetic effect curves and (B) independent
genetic effect curves of four QTLs from submodule SM5/M153. The net genetic effect of each QTL (green line) is deconstructed into the independent effects (red line) and
effects that are dependent on other single nucleotide polymorphisms (SNPs; blue lines).
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complex traits by the SNP is likely to be neglected when
traditional analytical approaches are used. The type of
regulated SNP, as well as the positivity or negativity and
strength of regulation, may vary throughout the growth of
different traits, likely acting as an important driver of
pleiotropic control.

DISCUSSION

Research on genetic structures has shown that genes often express
pleiotropic effects over two or more traits; this is key to
understanding pathways of gene action, assessing potential off-
target effects of genetic manipulation with the aim of altering a

specific pathway, and comprehending the effects of new
mutations on evolution, potentially inducing both favorable
and unfavorable effects on fitness (Hill and Zhang, 2012).
Genetic mapping and association studies are highly dependent
on statistical assumptions integrating reductionist thinking to
detect individual, significantly-associated loci (Walling et al.,
1998; Kemper et al., 2015; Vanhatalo et al., 2019). However, at
the quantitative level, all genes may be pleiotropic in view of the
highly interdependent and interactive nature of biological
systems; however, until now the interplay pattern of genes is
still unclear.

In this paper, we present a computational model integrating a
novel growth equation, system mapping, functional clustering,
developmental modularity theory, and evolutionary game theory.

FIGURE 5 |Metagalactic genetic networks of module M85 and intergalactic networks of individual single nucleotide polymorphisms (SNPs) within module SM23/
M85 for stem height and diameter. (A)Genetic networks among 50 submodules within module M85. (B)Genetic networks among 20 SNPs from submodule 23, SM23/
M85. (C) Independent genetic networks among 20 SNPs from submodule 23, SM23/M85. Red and blue arrowed lines stand for inhibition and activation, with the
thickness of lines proportional to the strength of regulation. The distribution of the number of outgoing links and incoming links across SNPs of height (blue, top) and
diameter (red, bottom) is counted between networks.
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We established a CRI differential equation to describe the
interaction of complex traits (stem height and diameter in
forest poplar trees), which can reasonably quantify stem growth
and internal structure. By deconstructing the growth of these two
traits into a self-regulated part and one that is regulated by
interactions between the co-existing traits in the system, our
growth model can quantitatively describe the co-operative and
antagonistic interactions between these traits in order to generate
an in-depth understanding of the whole growth function, and
reveal growth potential. We embedded the CRI differential
equation into a QTL mapping model to identify important
pleiotropic QTLs that play important roles in regulating the
growth structure of the traits. On the other side, CRI
differential equation provides a useful tool to estimate the net
genetic effect of each SNP, which can resolve patterns of change
over time based on the mathematical aspect of traits development.

CRI-based simulation studies show that heritability
(proportion of genetic variance in the simulated phenotypic
variance) and sample size affect mapping precision and power.
The simulations are conducted with sample size as 66 (which is
equal to the real data), 100 and 200, and heritability as 0.05, 0.1,
respectively. For each simulation case, the proportion of
simulation times of meaningful QTL screened out from 1,000
genetic markers of repeated simulation experiments is the
mapping accuracy (Power). As seen in Supplementary Table
S3, the mapping accuracy of QTL detection is above 0.530. The
results show that system mapping can reasonably well estimate

the time-varying trend of traits growth, even under a modest
heritability (H2 � 0.05) and a modest sample size (n � 66). We
also found that the accuracy of effect estimation is sensitive to
increasing heritability and sample size. On the other hand, in the
absence of QTL expression (H2 � 0), the same genetic sample
size of 66, 100, and 200 was simulated with 1,000 genetic marker
genes with false positive rates (FPRs) being generally below 0.055
(Supplementary Table S3). According to the QTL mapping
accuracy and false positive probability at a series of different
thresholds, we expressed ROC curves for different simulated
sample sizes and heritability (Supplementary Figure S5). The
area under the ROC curve (AUC) was calculated to assess the
accuracy of QTL mapping. At the heritability level of 0.1, the
AUC of the simulated quantities of the three sample sizes were all
relatively high (>0.844). The parameter estimation results and
estimated growth curves of different simulation scales are shown
in Supplementary Table S4 and Supplementary Figures S6, S7.
Our CRI-based QTL mapping has reasonably good statistical
properties in interaction detection and FRP controlling.

The most important element of our framework is that the
genetic architecture of complex traits is explored from omnigenic,
genome-wide perspective (Boyle et al., 2017). One view proposed
that the association between genes and traits was represented by a
bipartite network and the presence of a modular structure
detected by methods developed in physics (Barber, 2007). Our
framework model constructed multilayer networks based on
functional clustering to discern distinct network modules, in

FIGURE 6 | Resolution of single nucleotide polymorphism (SNP) overall and independent effects on stem height and diameter. (A) Genetic effect curves and (B)
independent genetic effect curves of four SNPs from submodule SM23/M85. The net genetic effect of each SNP (green line) is deconstructed into the independent
effects (red line) and effects that are dependent on other SNPs (blue lines).
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which genes are linked more strongly to each other than to those
in other modules. The top layer with the lowest resolution, called
the metagalactic network, shows connections between modules;
the next layer, the intergalactic network, has increased resolution,
shows connection between submodules; and the bottom layer is
the local interstellar network, which shows the interaction
networks between SNPs and describes directional epistatic
interactions. We deconstructed the net effect of genetic loci
into independent and dependent effects, describing those in
which the effect on complex traits is exerted directly through
its own capacity, or indirectly through the regulation of other loci,
respectively. The algorithmic aspects of the framework include
curve smoothing, variable selection, matrix structuring, and ODE
solving, each of which can be improved by introducing advanced
theories and modern applied mathematical and statistical
methods for future study.

Our model can be applied in general to reconstruct multilayer
genetic networks, resolving the effects of genetic interactions and
pleiotropy on the development of complex traits. The connection
and regulation of the network may change with time or
environment (Nie et al., 2017). There is potential extension for
allowing a time-varying network instead of static model. In the
context of organismal growth, our established framework can be
used to further research the interaction of other multidimensional
traits. For example, stem growth in trees includes the growth of
some lateral organs and branches, in addition to the height and
diameter of the stem that we included in our study. The
multilayer interactome networks can also be extended from a
two-dimensional to a multidimensional trait model, and an
interactive regulation network of traits under pleiotropic
control could be established, although such expansion will
greatly increase the complexity of the model and the difficulty
of computing. Our multilayer interactome network provides a
robust and reliable modeling framework for assessing gene
pleiotropy on traits and the interactions between the
development of complex traits.
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