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Genome-wide patterns of genetic divergence reveal mechanisms of adaptation under gene flow. Empirical data show that di-

vergence is mostly concentrated in narrow genomic regions. This pattern may arise because differentiated loci protect nearby

mutations from gene flow, but recent theory suggests this mechanism is insufficient to explain the emergence of concentrated

differentiation during biologically realistic timescales. Critically, earlier theory neglects an inevitable consequence of genetic drift:

stochastic loss of local genomic divergence. Here, we demonstrate that the rate of stochastic loss of weak local differentiation

increases with recombination distance to a strongly diverged locus and, above a critical recombination distance, local loss is faster

than local “gain” of new differentiation. Under high migration and weak selection, this critical recombination distance is much

smaller than the total recombination distance of the genomic region under selection. Consequently, divergence between popula-

tions increases by net gain of new differentiation within the critical recombination distance, resulting in tightly linked clusters of

divergence. The mechanism responsible is the balance between stochastic loss and gain of weak local differentiation, a mechanism

acting universally throughout the genome. Our results will help to explain empirical observations and lead to novel predictions

regarding changes in genomic architectures during adaptive divergence.

KEY WORDS: Concentrated genetic architecture, divergence hitchhiking, divergent selection, genomic hitchhiking, islands of

divergence, stochastic loss.

In spite of substantial gene flow, populations under differential

selection in a heterogeneous environment may diverge as partial

barriers to gene exchange establish along the genome at loci in-

volved in local adaptation (Barton and Bengtsson 1986). If the

combined effects of these barriers are strong enough, gene flow

may eventually cease and result in ecological speciation (Nosil

2012; Flaxman et al. 2013). Local adaptation of populations is

observed everywhere in nature (Savolainen et al. 2013), but the

genetic mechanisms involved at various stages of differentiation

remain poorly understood. In particular, it is not known what

mechanisms allow populations under differential selection and

gene flow to diverge and, potentially, evolve into distinct species

(Seehausen et al. 2014). This may depend, in part, on the genomic

architecture of adaptive divergence (Smadja and Butlin 2011).

Genome scans reveal that different species have very different

numbers of loci that cause traits to diverge, ranging from one or a

few loci of large effect to hundreds of loci each with presumably

smaller effect (Seehausen et al. 2014; Marques et al. 2016). A

very intriguing empirical observation is that loci exhibiting diver-

gence may not be uniformly distributed across the genome (Via

2009; Feder et al. 2012, 2013; Seehausen et al. 2014). Instead

“islands of divergence” or “clustered genetic architectures” are
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commonly observed (Feder et al. 2012, 2013; Jones et al. 2012;

Marques et al. 2016), while there are few examples of divergent

ecotypes in which observed genetic differentiation appears homo-

geneous (reviewed by Feder et al. 2013, but see Soria-Carrasco

et al. 2014). Unveiling the mechanisms involved in establishing

a nonuniform distribution of divergent loci is a key step toward

understanding both local adaptation and speciation under gene

flow.

Gene flow due to migration between populations subject

to divergent selection opposes differentiation. However, if diver-

gence is established at one or a few loci, the effective migration

rate in the genomic regions surrounding these loci is reduced due

to linkage (Bengtsson 1985; Barton and Bengtsson 1986). For an

illustration of this effect in infinitely large populations see, for ex-

ample, Figure 3B in Barton and Bengtsson (1986) and Figure 1 in

Feder and Nosil (2010; note that Feder and Nosil 2010 simulated

populations without drift, varying population size only to infer

effects of gene flow on levels of differentiation). An instructive

interpretation of these results is that the effect of indirect selection

(the source of which is a diverged locus) weakens as the recombi-

nation distance from this locus increases. By contrast to infinitely

large populations, this linkage to a diverged locus has two conse-

quences in populations of finite size where random genetic drift

is necessarily at work. First, the establishment probability of a

new beneficial mutation is higher for the mutation landing closer

to an already diverged locus than further away (hereafter, the es-

tablishment bias). For an illustration of this effect, see Figure 3

in Feder et al. (2012). Second, genetic drift may result in loss of

differentiation if, by chance, the same allele becomes fixed in both

diverging populations. This effect may be opposed by linkage to

another differentiated genomic region under divergent selection.

As a consequence, the rate of stochastic loss of differentiation

may be larger at larger recombination distances from another di-

verged genomic region (see Aeschbacher and Bürger 2014 for an

analysis of this effect in a mainland–island model of divergence).

Both the establishment-bias and the stochastic-loss effect neces-

sarily influence the genetic patterns emerging during divergence-

with-migration. Yet, earlier theoretical studies have focused only

on understanding the importance of the establishment-bias effect

(Yeaman and Whitlock 2011; Feder et al. 2012, 2013; Yeaman

2013). Disregarding stochastic loss has, for example, led Feder

et al. (2012) to conclude that clustering of differentiated loci may

occur only during early stages of divergence-with-migration be-

cause this is when the establishment bias is strong. These authors

further conclude that, as divergence is ongoing, the establishment

of new mutations becomes facilitated over the whole genome,

and the establishment bias inevitably weakens (see Figs. 5D–F

and 6 in Feder et al. 2012). Consequently, these authors predict

that clusters of differentiated loci disappear during late stages of

divergence and, instead, genome-wide, uniformly distributed dif-

ferentiation appears (Feder et al. 2012). This effect is referred to as

genome hitchhiking by Feder et al. (2012). However, this genome-

hitchhiking prediction is difficult to reconcile with earlier results

of multilocus simulations of divergence-with-migration (Yeaman

and Whitlock 2011), showing that divergence patterns increas-

ingly concentrate during the late stages of divergence. Further-

more, in a later study Yeaman (2013) finds that the establishment

bias is not important when many loci underlie a selected trait, and

this is true even during the early stages of divergence (for which

Feder et al. 2012 found that the establishment bias is strongest).

This is because during the early stages of divergence, only a few

loci manage to differentiate, and the probability that a mutation

lands near any one of these few initially diverged loci is much

smaller than the probability that it lands anywhere else in the

genome. Based on this result, and disregarding stochastic loss,

Yeaman (2013) concludes that clusters of differentiated loci can-

not emerge in natural populations during biologically realistic

timescales unless other mechanisms are invoked that suppress

recombination, such as genomic rearrangements.

In summary, earlier studies are partly contradictory. Indeed,

Yeaman and Whitlock (2011) demonstrate late formation of clus-

ters of divergence while Feder et al.’s (2012) theoretical arguments

predict the opposite. Moreover, and in contrast to both Yeaman

and Whitlock (2011) and Feder et al. (2012), Yeaman’s (2013)

theoretical analysis excludes any possibility for the emergence of

clusters of differentiation during divergence-with-migration, un-

less specific recombination-suppressor mechanisms are at work

(factors that neither Yeaman and Whitlock 2011 nor Feder et al.

2012 included in their models). Critically, the existing theory

relies on the assumption that any established local genomic diver-

gence persists indefinitely, or increases due to the accumulation

of new beneficial mutations. But this may not be the case in

populations of finite size where genetic drift causes stochastic

fluctuations of allele frequencies potentially leading to fixation

of one (and the same) allele in diverging populations. Such a fix-

ation event corresponds to loss of already established genomic

divergence. This stochastic loss is of fundamental importance in

all natural populations due to their finite sizes, and yet it is not

known how loss influences patterns of genetic differentiation that

arise during divergence-with-migration. Furthermore, because it

is probably the case that in a majority of natural populations bi-

ological traits are controlled by a large number of loci (see, e.g.,

reviews by Phillips 2008, and by Wagner and Zhang 2011), to

interpret empirical data, it is necessary to understand: What are

the genomic signatures of the process of stochastic loss during

divergence-with-migration when many loci underlie the pheno-

type under selection? Does stochastic loss contribute to the for-

mation of clusters of differentiated loci and, if so, how strongly?

Finally, does the effect of this process change as divergence is

ongoing?
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Figure 1. Multilocus model results. Panels (A) and (C): temporal dynamics of extents of local genomic divergence (truncated to the

range indicated by the color bar) in single stochastic realizations of the model for weak selection (A) and for strong selection (C). The

gray lines show the corresponding total extents of genomic divergence (the values are given on the y-axis on the right). Panels (B) and

(D): correlations of extents of divergence at pairs of loci as a function of their distance (measured in units of the recombination rate,

r) averaged over 90 independent realizations for the parameters in (A) and (C), respectively. Correlations are color coded (see the color

bar). Gray lines show the corresponding total extents of divergence averaged over 90 independent realizations. Other parameter values:

selection parameter σ = 4 (in A and B) or σ = 2.5 (in C and D); population size, N = 1000; mutation rate, μ = 2 × 10−5; root mean square

of mutation-effect sizes, σμ = 0.05; migration rate, m = 0.1; recombination rate between a pair of adjacent loci, r = 0.0005; number of

adaptive loci, L = 100. Note that the timescales in the upper panels differ from those in the bottom ones. (To interpret the references to

color in this figure caption, the reader is referred to the web version of this article.)

To answer these questions, we analyze a multilocus model of

divergence-with-migration, similar to that used by Yeaman and

Whitlock (2011). By contrast to Yeaman and Whitlock (2011)

and Yeaman (2013), we find that small, tightly linked clusters of

differentiated loci are necessary to initiate successful divergence

under weak selection and high migration. Notably, these clusters

form without invoking any specific mechanisms that reduce re-

combination. Furthermore, we show that clusters grow rapidly

during the early stage of divergence, but shrink in size during

the late stage. Under strong selection, by contrast, we find that

clusters are not essential for divergence and that they instead form

in the late stage of the process. Recall that increasing concentra-

tion in the late stage of the process has been reported by Yeaman

and Whitlock (2011), but the formation and dynamics of clusters

preceding this stage that we find under weak selection and strong

migration has, to our knowledge, not been reported or explained

elsewhere. To explain these results, we analyze a two-locus model.

We show that the balance between “stochastic loss” and “gain”

of local genomic divergence in finite populations is a universal

mechanism that governs the formation and temporal dynamics

of clusters of differentiated loci. We stress that this is a univer-

sal mechanism because it is at work in all natural populations

and unlike, for example, chromosomal rearrangements, it is not

restricted to parts of the genome where specific recombination

suppressors are active.

Materials and Methods
MULTILOCUS MODEL

We simulate a multilocus model of divergence between two

diploid populations. The model is similar to that used in Yea-

man and Whitlock (2011; see also Supporting Information S1).

EVOLUTION JULY 2016 1 6 1 1
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The two populations are assumed to occupy a pair of demes that

are exposed to different environmental conditions, so that the

phenotype is subject to opposing selection pressures in the two

demes. We assume that in each deme (denoted by k = 1, 2) there

is an optimal value θ(k) for the phenotype. For simplicity, the two

optima are assumed to be constant during time and symmetric

around zero, so that θ(1) = −θ(2).

We assume that the phenotype of an individual is determined

by its diploid genotype at L loci arranged on a single chromosome

(but we also analyze the model with loci spread across two chro-

mosomes, see Supporting Information). In the model each allele

is attributed an allele-effect size by which it contributes additively

to the phenotype of an individual. In other words, the phenotype

zi of individual i equals the sum of allele-effect sizes at the L

loci. We assume that the fitness w
(k)
i of individual i in population

k (k = 1, 2) depends on the phenotype zi of this individual as:

w
(k)
i = e

−

(
zi − θ(k)

)2

2 σ2 . (1)

Here σ is a parameter that determines the width of the distribu-

tion of the surviving phenotypes (Sadedin et al. 2009). When σ is

large, selection is weak and vice versa. The selection parameter σ

is assumed to be constant during time and equal in the two pop-

ulations. The fitness of an individual determines the contribution

of this individual to the pool of offspring through soft fecundity

selection. The soft-selection assumption assures that the number

of juveniles N surviving to maturity in a given deme is constant

over time, and we assume that it is equal in the two populations.

Generations are assumed to be discrete and nonoverlapping. The

lifecycle of individuals is modelled as follows. Virgin adults mi-

grate to the opposite deme at a per generation per individual rate

m. Migration is followed by random mating locally within each

population, recombination, and selection. Recombination is as-

sumed to occur at a rate r between adjacent loci, per gamete, per

generation. Finally, mutations accumulate at a rate μ per allele,

individual, generation. Each mutation is given a mutation-effect

size by which it additively contributes to the effect size of the

allele it lands on. Mutation-effect sizes are drawn randomly from

a Gaussian distribution with a standard deviation σμ, and a mean

zero. To check whether the results are robust against the model

for mutation-effect sizes, we also perform simulations in which

mutation-effect sizes are drawn from an exponential distribution

mirrored around zero, so that the mean mutation-effect size is

zero. In these simulations the parameter of the exponential distri-

bution is set to
√

2/σμ so that the variance of mutation-effect sizes

is equal to σ2
μ. Finally, we note that the analysis in Martin and

Lenormand (2006) of empirical data on fitness effects of muta-

tions in different environments (data taken from various species)

suggests that predictions of a model with a Gaussian fitness func-

Table 1. Parameters of the model, and the values used in our

computer simulations.

Symbol Explanation Values
N Population size per patch 1000∗, 200
L Number of adaptive loci 100∗, 2000
m Migration rate 0.1∗

θ(k) Optimal phenotype in
population k = 1, 2

θ(1) = 2∗, θ(2) = −2∗

σ Selection parameter 4∗, 3.5, 2.5∗

r Recombination rate 0.0005∗, 0.001
μ Mutation rate 2 × 10−5∗, 10−4

σμ Root mean square of
mutation-effect sizes

0.05∗, 0.05/
√

20

The symbol “∗” indicates the parameter values used for the results shown in

the main text. Results for other parameter values are shown in Supporting

Information.

tion and Gaussian distributed mutation-effect sizes are in good

agreement with a majority of the empirical data tested.

PARAMETER CHOICES

At the start of a simulation, all individuals at all loci are assumed to

have alleles of effect size zero. We set arbitrarily θ(1) = −θ(2) = 2

(Table 1). In the majority of simulations, the number of loci L

is set to L = 100, but we also test the model with L = 2000

(Supporting Information). The parameter σ is chosen to account

for weaker (σ = 4) or stronger selection (σ = 2.5). For further

details on selection parameters, see Supporting Information S1.

To assess how the patterns are influenced by the local population

size N , we contrast results obtained with N = 1000 and 200. The

migration rate m is set to a high value (m = 0.1) that allows us

to capture the signatures of migration under the chosen values

of other model parameters. The recombination rate r between a

pair of adjacent loci is set to r = 0.0005 or 0.001 so that the

first and the last locus in the genomic region simulated (with

L = 100 loci) are at a recombination distance of about 0.05 or 0.1,

respectively (but the distance is larger for L = 2000). Note that

r = 0.0005 corresponds to about 5 × 104 base pairs assuming that

recombination rate between two nearby base pairs is 10−8. The

mutation rate μ per generation, allele, locus, individual is chosen

so that mutations that influence an individual’s phenotype occur

infrequently (μ = 2 × 10−5). Finally, the variance of mutation-

effect sizes σ2
μ is set to a small value (σμ = 0.05) so that the square

root of the total variance over all adaptive loci (
√

Lσμ) is smaller

than the distance between the optimal trait values θ(1) − θ(2). For

the parameters set here and assuming that the whole genome

region simulated acts as a single locus (total recombination rate is

equal to zero), this means that it requires, on average, about four

adaptive steps for the populations to reach their optimal traits

(taking into account diploidy). Otherwise, if the distance between
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Figure 2. Rate of gain and rate of loss in the two-locus gain–loss model with one weakly diverged locus (Dw = 0.2) and a more strongly

diverged one (Ds = 0.4). Shown are the rates as a function of distance between the loci (measured in units of recombination rate,

r). Panels (A) and (B): rate of gain at the weakly diverged locus (circles) and at the more strongly diverged locus (squares) for weak

selection (A), and for strong selection (B). Dashed lines indicate the mutation rate μ (this rate corresponds to the rate at which a neutral

mutation lands and fixates at a neutral locus in a diploid population of size N). Panels (C) and (D): corresponding rates of loss for the

parameters in (A) and (B), respectively. Circles and squares overlap in (D). Other parameter values: selection parameter σ = 4 in (A) and (C)

or σ = 2.5 in (B) and (D); population size in each deme, N = 1000; migration rate, m = 0.1; mutation-effect size, ε = 0.05; recombination

rate, r = 0.0005; mutation rate, μ = 2 × 10−5. Number of simulations used are as follows: 2 × 106 in (A), 5 × 105 in (B), 103 in (C), and 200

in (D).

the optima is equal to or lower than
√

Lσμ, perfect adaptation in

both populations can, by chance, be attained in a single adaptive

step, which we consider to be an unlikely scenario in natural

populations.

The model is simulated for a large number of generations

(up to 105) to allow the populations to come close to their local

optima and stabilize. At intervals of 50 generations, we measure

the extents of local and total genomic divergence as follows. The

extent of local genomic divergence Dl at locus l is estimated as

twice the difference between the allele-effect size of the most

frequent alleles at this locus in the two populations. The factor 2

is used because the population is diploid. Our measure of local

genomic divergence divided by 2 corresponds to the measure d

used by Yeaman and Whitlock (2011). We approximate the extent

of total genomic divergence D in a given generation by summing

the extents of local genomic divergence at all loci in this gener-

ation. For our parameters, perfect adaptation in both populations

corresponds to the total genomic divergence equal to the differ-

ence between the local optima θ(1) − θ(2) = 4. As an alternative

to the measure Dl of the extent of local genomic divergence at

locus l, one can use twice the average allele-effect size at this

locus (and the sum over all loci would correspond to the aver-

age total extent of divergence). We note that the two measures

of divergence (one based on the most frequent alleles, and the

other on the average allele-effect sizes in the two populations)

give rise to qualitatively the same patterns of divergence (see be-

low). However, because the measure D is directly comparable to

the measure d used by Yeaman and Whitlock (2011), we present

EVOLUTION JULY 2016 1 6 1 3
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2 × 106 for the rate of gain, 1000 for the rate of loss. Other param-

eter values are the same as in Figure 2.

most of our results in terms of this measure. Divergence patterns

presented similarly to Yeaman and Whitlock (2011, see their

Fig. 3) allow one to inspect visually each individual realization of

the model and to evaluate roughly whether clusters of divergence

are formed and, if yes, what is their typical size. Here, however,

we complement such a visual inspection by measuring correla-

tions of local extents of genomic divergence at pairs of loci as a

function of their recombination distance. This allows us to capture

the extent of similarity of differentiation at pairs of loci at various

recombination distances in a given generation. Note that when a

cluster forms, the extents of divergence at loci within the cluster

are expected to be more correlated than the extents at loci out-

side of the cluster. Therefore, if a cluster is formed, its size (i.e.,

the recombination distance it spans) is expected to be captured

by the recombination distance at which the correlation function

decays to values close to zero. For each parameter set, we run 90

independent simulations (unless otherwise noted) to evaluate the

effect of stochastic fluctuations on the extents of local and total

divergence.

TWO-LOCUS MODEL

To understand the mechanisms at work in the multilocus model

presented above, we analyze a two-locus model. In particular, we

use two versions of a two-locus model. One is an establishment

model (similar to the models used by Feder et al. 2012, and

by Yeaman 2013), and the other is a (novel) gain–loss model.

These two are briefly explained next (but see also Supporting

Information S2 and S3).

As noted in the introduction, earlier theory of divergence-

with-migration focuses on evaluating the importance of the es-

tablishment bias for the evolution of genetic architectures during

divergence-with-migration (Yeaman and Whitlock 2011; Feder

et al. 2012; Yeaman 2013). Recall that the establishment bias here

means that the probability of establishment of a new mutation

is larger for the mutation landing closer to an already diverged

locus than further away. Although the establishment bias can be

significant when very few loci underlie a selected trait (Yeaman

and Whitlock 2011; Feder et al. 2012), this is not true when

many loci underlie the trait (Yeaman 2013). To check whether

this finding of Yeaman (2013) holds true for the parameter values

used in this study (see Section “Parameter Choices”), we employ

the establishment model analyzing whether there is a range of

recombination distances around an already diverged locus such

that a successful establishment of a new mutation is more likely

within this range than outside of it (see below). In this study,

a successful establishment of a mutation means that the mutant

allele is most common (frequency > 50%) in the deme where

it is advantageous (cf. Yeaman and Otto 2011). In the establish-

ment model, one locus is differentiated at the outset, the other is

not (Supporting Information S2). We analyze the establishment

1 6 1 4 EVOLUTION JULY 2016
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probability of new mutations at the undifferentiated locus,

varying its recombination distance from the differentiated one.

Using these results, we compare the probability that a new mu-

tation lands and establishes within a genomic region of a given

size around the diverged locus to that outside of this region (as

suggested earlier by Yeaman 2013). When the mutation rate per

locus is equal for all loci (as we assume here and in accordance

with Yeaman 2013), the ratio between the two probabilities is

independent of the mutation rate, and it is equal to the integral of

the establishment probability over recombination distances within

a region relative to the integral of the establishment probability

over recombination distances outside of this region (but within

the total genomic region considered). If this ratio is greater than

unity, we can immediately deduce that a cluster of divergence is

likely to be formed. Otherwise, a new mutation may establish at

any recombination distance from the differentiated locus. By con-

trast to Yeaman (2013), we argue, however, that in this case we

cannot draw a final conclusion about cluster formation because,

once established, any local genomic divergence is subject to two

competing processes. One process is stochastic loss that occurs

due to random genetic drift in populations of finite size, resulting

in fixation of a single allele at a given locus in both populations.

The other process is the gain of additional local genomic diver-

gence that occurs due to the influx of new mutations followed by

their successful establishment. The ratio of the rates at which local

stochastic loss and gain operate (hereafter referred to as balance)

determines whether divergence established in a genomic region

at a given divergence stage will make a lasting contribution to

overall differentiation. The balance between stochastic loss and

gain at a given locus depends on the distance of this locus from

other diverged loci in the genome, as well as the strength of local

and total genomic divergence. To understand this dependence, we

use the two-locus gain–loss model.

In this model, both loci are assumed to have established di-

vergence. One locus is assumed to be weakly differentiated with

the extent of divergence Dw corresponding to the establishment of

one mutation beneficial in the first population, and one mutation

beneficial in the second one. We set the allele-effect sizes at this

locus to Yw = σμ, and −Yw, so that Dw = 4σμ (for further details

on this choice, see Supporting Information S3). The second locus

is assumed to have stronger divergence Ds (> Dw) with allele-

effect sizes Ys (> Yw), and −Ys (and so Ds = 4Ys). We vary the

value of Ys in the simulations to mimic different stages of diver-

gence (see Supporting Information S4 for details on the initial

conditions in these simulations). Using this model, we estimate

the rate of local gain (product of the rate at which a mutation

lands at a locus and the rate at which this mutation establishes

successfully conditional on it landing at the locus), and the rate of

local loss at the two differentiated loci. When the rate of loss at a

locus is larger than the rate of gain at this locus in a given stage of

divergence, this locus is unlikely to make a sustained contribution

to overall divergence. Otherwise, the opposite is true. In what

follows, we explain our method for estimating the rates of gain

and loss using this model.

In the limit of rare mutations (2μN � 1) and when the two

loci are at a recombination distance r j = jr ( j = 1, . . . , L), the

rate of local gain λG,w(r j ) at the weakly diverged locus is equal

to the product of the probability that a locally beneficial mutation

lands at this locus (2μN ), and the probability pG,w(r j ) that it

establishes at this locus (conditional on the mutation landing at

the locus):

λG,w(r j ) = 2μN pG,w
(
r j
)
. (2)

Substituting subscripts w in equation (2) by s, we obtain the corre-

sponding expression for the rate of local gain at the more strongly

diverged locus. In the limit of λG,w(r j ) � 1, the time to local gain

at the weakly diverged locus is approximately exponentially dis-

tributed with mean λ−1
G,w(r j ) (and similarly for the more strongly

diverged locus).

We estimate the rates of gain at the two loci using two separate

sets of simulations. In one set, we assume that a mutation of a

fixed mutation-effect size, ε = σμ (as in the establishment model,

see Supporting Information S2), lands at the weakly diverged

locus immediately after the initialization of the system (the initial

condition is explained in detail in Supporting Information S4). In

the other set of simulations, we assume that the mutation lands on

the more strongly diverged locus (all other settings are the same as

in the former set of simulations). Further mutations are thereafter

neglected. We further assume that in the former case the mutation

lands in the first population (where it is beneficial) on an allele

of effect size Yw (and similarly on Ys in the latter case). For these

settings, the mutant allele is advantageous over both alleles at the

locus prior to the mutation, and hence it will promote the local

extent of divergence upon a successful establishment. We use a

similar method to that explained in the establishment model (see

above) to estimate the establishment probabilities pG,w(r j ), and

pG,s(r j ) at the weakly and at the more strongly diverged locus,

respectively. Finally, we use equation (2) to estimate the rates of

gain at the two loci.

In addition to the rates of gain, we estimate the rates of lo-

cal loss at the two loci starting from the same initial condition

as in the simulations described above, but now neglecting muta-

tions. Each simulation is run under drift, selection, migration, and

recombination until one or the other locus experiences loss of di-

vergence or until a predetermined maximum time (Tm) expires. As

explained above, loss of divergence means that a locus becomes

monomorphic due to fixation of one allele in both populations. Us-

ing simulations, we first estimate the probabilities pL,s(r j |Tm) and

pL,w(r j |Tm) that the first loss event occurs at the more strongly
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or at the weakly diverged locus, respectively, conditional on it

occurring before Tm. Here, r j denotes the recombination distance

between the two loci (see above). Second, we estimate the average

time 〈tL(r j |Tm)〉 until the first loss event based on simulations in

which a loss has occurred by the maximum time Tm. Using these

data, we estimate the rates of loss λL,s(r j ) and λL,w(r j ) at the more

strongly and at the weakly diverged locus, respectively, based on

the following considerations. In the limit of λL,s(r j ) � 1, the time

to loss at the more strongly differentiated locus is approximately

exponentially distributed with mean λ−1
L,s(r j ) (and similarly for the

weakly diverged locus). Furthermore, in the limit of λL,s(r j ) � 1,

λL,w(r j ) � 1, the time until the first loss event (either at the

first or at the second locus) is approximately exponentially dis-

tributed with mean (λL,s(r j ) + λL,w(r j ))−1. Therefore, the prob-

ability pL(r j |Tm) = pL,s(r j |Tm) + pL,w(r j |Tm) that the first loss

event occurs either at the more strongly or at the weakly diverged

locus by the time Tm is given by:

pL
(
r j |Tm

) = 1 − e−(λL,s(r j )+λL,w(r j ))Tm . (3)

Finally, we find that the average time 〈tL(r j |Tm)〉 to the first

loss event, conditional on the loss occurring by the time Tm, can

be expressed in terms of λL,s(r j ), λL,w(r j ), pL(r j |Tm), and Tm as

follows:

〈tL(r j |Tm)〉 = 1

λL,s
(
r j
)+ λL,w

(
r j
) − Tm

1 − pL
(
r j |Tm

)
pL
(
r j |Tm

) . (4)

Because

pL,s
(
r j |Tm

)
pL,w

(
r j |Tm

) = λL,s
(
r j
)

λL,w
(
r j
) , (5)

we obtain

λL,w
(
r j
) = pL,w(r j |Tm)

pL(r j |Tm)

(
〈tL
(
r j |Tm

)〉 + Tm
1 − pL

(
r j |Tm

)
pL
(
r j |Tm

)
)−1

. (6)

We use equation (6) to estimate the rate of loss λL,w(r j ) given

the probabilities pL,s(r j |Tm) and pL,w(r j |Tm), and the average time

〈tL(r j |Tm)〉 that we obtain using simulations. The rate of local

loss at the more strongly diverged locus is obtained by combining

equations (5) and (6).

Note that 〈tL(r j |Tm)〉 is not defined if no loss occurs by the

maximum time Tm set in the simulations. To avoid such cases, Tm

has to be long enough (Tm � (λL,s(r j ) + λL,w(r j ))−1) to assure

that loss occurs by this time with a high enough probability. Be-

cause we do not know the rates λL,s(r j ) and λL,w(r j ) in advance,

Tm has to be chosen. Here, we set it to a large value Tm = 105,

because this allows us to compare the timescales of local loss and

gain for other parameter values used in this study. Indeed, when

the mutation rate is μ = 2 × 10−5 (as in Fig. 1), this value of Tm

corresponds to twice the average waiting time until a mutation

establishes successfully at a neutral locus in an isolated popula-

tion. Hence Tm is larger than the average time to local gain at

any locus under selection (inverse of the rate of gain, see above).

Importantly, in situations when no loss occurs by this time, we

immediately deduce that the rate of local loss is much smaller than

the sum of rates of gain at the weakly and at the more strongly

diverged locus according to eq. (3).

Results
Under weak selection (Fig. 1A, B), we find an initial phase of

roughly homogeneous divergence over the adaptive loci with the

pairwise correlation of divergence being independent of the re-

combination distance between loci (Fig. 1B). In this phase, diver-

gence at any one locus is highly transient and the total extent of

divergence is very low. After a waiting time of about 10,000 gen-

erations (in this particular realization, but see other examples in

Fig. S1), groups of closely linked loci establish divergence. This

initiates rapid formation of a cluster of divergence that extends in

size and immediately promotes the advance of phenotypic adap-

tation. At about half way toward perfect adaptation (D ≈ 2), the

cluster of diverged loci attains a maximum size (Figs. 1A and

S1), with an average of around 15 loci (Fig. 1B). Thereafter, the

cluster shrinks in size, but most of the cluster still remains after

105 generations.

Under strong selection, the initial phase is also characterized

by roughly uniformly distributed divergence (Fig. 1C, D). The

buildup of divergence is, as expected, much faster under strong

selection, and the formation of a cluster is not necessary to initi-

ate population divergence. Even so, when approximately perfect

adaptation is attained under strong selection (D ≥ 4), divergence

starts to concentrate, resulting in formation of a cluster of diver-

gence. Note that, comparing to weak selection, a cluster under

strong selection starts forming in a much later stage of divergence

in terms of the value of D, but sooner in terms of the number of

generations after the start of divergence (2000 rather than 10, 000

generations in the particular realizations shown in Fig. 1A and

C, respectively). Note also that the divergence patterns obtained

using exponentially distributed mutation-effect sizes, with other-

wise the same settings as those in Figure 1, do not qualitatively

differ from the patterns shown in Figure 1 (see Fig. S9). The same

is true if local extents of genomic divergence are measured using

the average allele-effect size instead of the measure used in Figure

1 (see Fig. S10).

To investigate further the differences in divergence patterns

obtained for weak and strong selection (Fig. 1A and C, respec-

tively), we estimate the establishment probabilities of a new muta-

tion as a function of the recombination distance from an already di-

verged locus (Supporting Information Fig. S2). Next, we compare

the probability that a mutation lands and establishes outside of a

genomic region around the diverged locus to the probability that
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it lands and establishes inside of this region (Supporting Informa-

tion Fig. S3). For a small genomic region surrounding the diverged

locus, we find that the probability of landing and establishment

outside of the region is much larger than the corresponding prob-

ability inside of the region. Furthermore, even when the region

accounts for 50% of the whole genomic region simulated (100

loci), the corresponding probability outside is only slightly less

than the probability inside of the region. These findings (consis-

tent with Yeaman 2013) are true both for weak and strong selec-

tion, suggesting that the establishment bias is too weak to cause the

formation of clusters, especially the tightly linked ones observed

under weak selection in our multilocus simulations. Consequently,

we need an additional mechanism to explain the emergence of a

cluster under weak selection.

Our gain–loss model helps to understand the progress of

cluster formation. In this two-locus model, both loci already have

some divergence established, but one has diverged more strongly

(Ds ≥ 0.4) than the other (Dw = 0.2). First, analyzing the rate of

gain at the two loci in an initial stage of the divergence process

(D = 0.6, 15% of the value corresponding to perfect divergence),

we find that the rate is marginally larger at the more strongly

diverged locus (Fig. 2A, B). For both loci, the rate of gain of new

genetic differentiation is higher when the two loci are at a smaller

recombination distance but this distance dependence is weak for

either weak or strong selection (Fig. 2A, B). Recall that the rate

of gain is the product of the mutation rate and the establishment

probability of a new mutation conditional on it landing locally in

the genome. Therefore, the rate of gain depends weakly on the

recombination distance between the loci due to a weak bias in the

establishment probability discussed above.

Second, we analyze the risk of loss of divergence by stochas-

tic processes that may eliminate variation in either of the two

loci. Under weak selection, we show that the rate of loss of di-

vergence at the more diverged locus is small and depends only

weakly on the recombination distance between the two loci (Fig.

2C, squares). However, at the less diverged locus the rate of local

loss increases rapidly with recombination distance from the other

locus (Fig. 2C, circles). Comparing the rate of gain and loss at the

weakly diverged locus, we find a critical recombination distance

from the more strongly diverged locus above which loss is on

average faster than gain. Divergence established at a less diverged

locus above this critical distance is unlikely to make a lasting

contribution to the overall divergence. In fact, in this initial stage

of divergence, the rate of loss is marginally larger than the rate

of gain already at one locus distance from the more differentiated

locus (where distance is scaled by the recombination rate between

a pair of adjacent loci). As a consequence, in most cases a weakly

diverged locus adjacent to a more strongly diverged one fails to

contribute to further divergence. However, occasionally, as a mat-

ter of chance and after a shorter or longer waiting time, divergence

is gained at the weakly diverged locus. By contrast, under strong

selection no loss of divergence occurred during 200 simulations

at either of the two loci, and so in this case the rate of local loss

is much smaller than the rate of local gain for all between-locus

recombination distances that we analyzed (Fig. 2D).

After the initial stage, the divergence rapidly continues to

increase both under weak and strong selection (Fig. 1). This alters

the balance between rates of loss and gain. From the two-locus

model, we find that under weak selection, the critical recombi-

nation distance between the two loci below which there is a net

gain of new divergence, initially increases leading to an overall

increase in divergence and cluster size (compare positions of ar-

rows in Fig. 3A–D). Half way toward perfect local adaptation

(Ds ≈ 2), the critical distance starts to decrease. Consequently,

under weak selection and as Ds increases up to Ds ≈ 2, the clus-

ter grows reaching the size of about 20 loci (two times the max-

imum critical scaled distance of 10 loci in Fig. 3B). This largely

corroborates the finding of the multilocus model, where the max-

imum cluster size attained during divergence is about 15 loci on

average. Thereafter, the two-locus model predicts that the clus-

ter will shrink in size and this is also observed in the multilocus

model (Fig. 1A). Under strong selection, by contrast, there is a

continued net gain of divergence until populations approach per-

fect adaptation (D ≈ 4, Fig. 4A). At this stage, both populations

have at their disposal gene variants that combined together give

rise to locally perfectly adapted individuals. However, stochas-

tic loss of divergence becomes increasingly important for alleles

of small effect that are loosely linked to loci with stronger di-

vergence (Fig. 4B). Adaptation is maintained by gain at closely

linked loci, leading to increasing clustering. The key features of

cluster formation early in divergence and decrease in cluster size

later in divergence are retained for higher recombination rate, in-

termediate selection, lower population size, and larger genomic

region (Supporting Information Figs. S4–S8).

Discussion
Reproductive isolation between populations is most efficient

when many small barriers to gene flow are formed throughout

the genome (Barton 1983; Coyne and Orr 2004). Otherwise, link-

age to barrier loci may be insufficient to prevent gene flow over

a large part of the genome (Barton and Bengtsson 1986). Thus,

the genomic distribution and effect sizes of loci underlying local

adaptation are critical to understanding the origin of reproductive

isolation in models of ecological speciation with gene flow (Nosil

2012; Seehausen et al. 2014).

Models of divergence are attractive in the sense that they sug-

gest different mechanisms by which the barrier effects of single

adaptively divergent loci may be enhanced so that the total barrier

increases and the genomic region affected broadens (Via 2009;
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Figure 4. Same as in Figure 3, but for strong selection (σ = 2.5).

Both panels are for late stages of divergence (Ds = 3.8 in [A], and

Ds = 3.9 in [B]). Number of simulations used for the rate of gain:

5 × 105. Number of simulations used for the rate of loss: 200 in (A)

and 1000 in (B). Other parameter values are the same as in Figure

2.

Feder et al. 2012). However, recent simulation studies suggest

that local barrier effects are enhanced only extremely late in the

process (Yeaman and Whitlock 2011), or that they are unlikely

to be of any biological relevance unless interacting with chromo-

somal inversions and other genomically localized mechanisms

that reduce recombination (Feder et al. 2013; Yeaman 2013). In

contrast to these conclusions, we here show that a specific mech-

anism that suppresses recombination is not necessary for clusters

of differentiation to form. Moreover, we show that under weak

selection and strong migration, the emergence of a concentrated

genetic architecture is indispensable for phenotypic divergence to

evolve. These findings are, to our knowledge, new and contribute

to explaining observed empirical patterns, as discussed below.

The reason we detect clusters of differentiation despite the

fact that the establishment bias (referred to as “divergence hitch-

hiking” by some authors; Feder et al. 2012; Yeaman 2013) is too

weak to support clustering is because a mechanism beyond the

establishment bias is at work. In contrast to the establishment

probability, the rate of loss of differentiation at a weakly diverged

locus depends strongly on the recombination distance to a locus

of stronger effect, and so the balance between loss and gain of

small extents of local differentiation also depends strongly on the

recombination distance. This balance between loss and gain is

the key mechanism underlying the formation of clusters of diver-

gence.

Our results show that when new locally beneficial mutations

are under weak selection and migration between the diverging

populations is frequent, tightly linked clusters of differentiated

loci are a prerequisite for initialization of successful phenotypic

divergence. The initialization occurs after a waiting time that is,

on average, longer for parameter settings giving rise to smaller

clusters, that is, weaker selection, smaller variance of mutation-

effect sizes, smaller population sizes, higher migration rate. How-

ever, when selection for locally beneficial mutations is sufficiently

strong, we find rapid phenotypic divergence that precedes cluster

formation.

Our two-locus analysis of the interplay between loss and

gain of local genomic divergence is highly consistent with the

results of the multilocus modeling. A key idea is that any locus

that has established divergence may either risk a stochastic loss of

divergence (similar to the idea of “transient divergence” Yeaman

2015) or gain from additional beneficial mutations. Consequently,

a diverged locus is, at a given stage, unlikely to make a lasting

contribution to the overall divergence if the rate of local loss is

larger than the rate of local gain. There is a critical recombination

distance from the focal locus above which local loss is faster than

local gain. This distance depends on the selection strength and it

varies over the time frame of the divergence process. Under weak

selection, the critical distance increases early in the divergence

process but, about half-way to perfect adaptation, it starts to de-

crease. The latter effect arises because, after about half-way to

perfect adaptation for the parameter values we tested, a weakly

differentiated locus at a given recombination distance from other

differentiated loci contributes proportionately by a very small

amount to the overall extent of divergence and to the reduction

of gene flow between the populations. This contribution becomes

smaller as the total extent of divergence increases beyond a point

corresponding to about half-way to perfect adaptation. Conse-

quently, as divergence progresses above this point, the rate of

gain of new differentiation at a given weakly differentiated locus

decreases, and the rate of loss increases. Therefore, the ratio be-

tween the rate of local loss and the rate of local gain increases,

resulting in shrinking of a cluster over time. For a similar reason

genetic architectures concentrate in late stages of the divergence

process also under stronger selection (or weaker migration) but

this occurs later in the divergence process. In particular, under

strong selection considered here (see also Yeaman and Whit-

lock 2011), diverging populations attain almost perfect adaptation
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before clustering of the genetic architecture starts. The dynamics

of clusters obtained under our multilocus simulations is, therefore,

consistent with the main predictions of the two-locus gain–loss

model in different stages of divergence. Notably, because our anal-

ysis contrasts the effects of loss and gain locally in the genome,

the consequences of the balance between these two effects for

the size of a cluster (i.e., the recombination distance it spans) in

multilocus models of divergence is independent of the number of

selected loci, provided that this number is large.

We find that the cluster size emerging in our model is well

characterized by the correlation function describing the similar-

ity in extents of divergence in pairs of loci in relation to their

recombination distance. When clusters are formed, the correla-

tion decreases with increasing recombination distance between

the loci, reaching approximately zero at the cluster margin. This

measure is closely related to measures of linkage disequilibrium

(McVean 2002; Eriksson and Mehlig 2004; Schaper et al. 2012)

that are frequently used in empirical studies (Smadja and Butlin

2011; Martin et al. 2013).

Apart from the findings discussed above, we also find that

when multiple tightly linked clusters emerge during divergence

(see an example in Fig. S1A), the clusters compete with each other

for gaining new differentiation (or against losing the differentia-

tion they have established). The dynamics of such a competition

can be investigated by a gain–loss model similar to that analyzed

here, but with more than two loci included and focusing on gain

and loss of differentiation at individual clusters, each of which

contains multiple loci.

Some modeling studies have earlier considered the loss of

divergence. Using a single-locus model, Yeaman and Otto (2011)

found that less diverged loci have a smaller persistence time than

more diverged ones. A single-locus analysis is, however, insuf-

ficient to explain clustering, because it is not only the extent of

local divergence that matters, but also the extent of divergence

at other diverged loci and their linkage. In addition, it is not the

persistence time per se that matters but, as shown here, a balance

between loss and gain processes, which operates differently in

different stages of divergence. In a recent study, Aeschbacher and

Bürger (2014) analyzed a two-locus continent-island model of di-

vergence, deriving an approximation for the mean extinction time

of a mutation at some recombination distance from a diverged

locus. Comparing the mean extinction time at a linked locus with

that at an unlinked one, they showed that the mean extinction time

is shorter when linkage is looser. However, this comparison may

not be relevant for the patterns of divergence because, as we show,

the balance between local loss and gain shifts over the timescale

of the process.

Due to our upper limit of 105 generations, we do not cap-

ture the final fate of the clusters. Yeaman and Whitlock (2011)

suggested that a pair of populations undergoing divergence-with-

migration will eventually differ at a single locus, and our results

seem to corroborate this conclusion. We note, however, that other

factors, such as the evolution of habitat choice or assortative mat-

ing, may reinforce isolation (Thibert-Plante and Gavrilets 2013).

These processes are likely to prevent clustering in late stages of

divergence by reducing gene flow between populations and intro-

ducing additional mechanisms at work (Cruickshank and Hahn

2014).

Empirical studies report either little evidence of genomic

clustering (Soria-Carrasco et al. 2014), or strong evidence for

generally small clusters (Jones et al. 2012), or for two orders

of magnitude larger clusters (Ellegren et al. 2012). This large

variation in cluster size may hint that different mechanisms are

involved (Seehausen et al. 2014), including those that reduce

recombination (Yeaman 2013). Theory suggests that inversions

might be more important than other recombination suppressors

because they work specifically in heterozygotes, rather than gen-

erally suppressing recombination (Otto and Lenormand 2002).

However, there is evidence for fine-scale variation in recombina-

tion rates that is also likely to contribute to heterogeneous patterns

(Burri et al. 2015).

In general, the extent of migration between the diverging pop-

ulations is an important factor shaping the genetic architectures

evolving during divergence (Feder et al. 2013, Seehausen et al.

2014). For example, in a recent study by Marques et al. (2016),

it has been shown that genetic differentiation between sympatric

races of three-spine sticklebacks is concentrated in the genome,

occurring over few very short genomic regions on only two chro-

mosomes (see their Fig. 3C). By contrast, many more differen-

tiated genes and chromosomes are detected between essentially

allopatric races of this species, suggesting a roughly uniformly

distributed differentiation (see Fig. 3D in Marques et al. 2016).

These results seem consistent with the predictions of our model

comparing high and small migration rate between the diverging

populations. However, Marques et al. (2016) also suggest that the

diverging populations they analyzed probably had some amount

of standing genetic variation at the time they were introduced to

the sites examined. The role of standing genetic variation, how-

ever, is not examined by our current model, and we find this to be

an important future avenue.

In summary, of the different mechanisms potentially con-

tributing to the formation of local barriers to gene flow, the balance

between the processes of local loss and gain that we proposed here

is, to our knowledge, the only universal mechanism that promotes

concentrated genetic architecture under strong gene flow, without

suppressing recombination. We show that the number of loci in a

cluster is smaller under weaker selection, smaller mutation-effect

sizes, smaller population size, and stronger recombination. All of

these parameters are likely to vary among species, and among

populations within species. Furthermore, our model predicts
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systematic changes in cluster size during divergence. Thus, the

balance between loss and gain of local genomic divergence po-

tentially explains much of the observed variation in genomic ar-

chitectures emerging during divergence-with-migration and leads

to testable predictions about the causes of this variation.
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and Formas (http://www.cemeb.science.gu.se), by a project grant from
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Supporting Information
Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Figure S1. Same as in Figure 1A in the main text, but here patterns from two different realizations are shown.
Figure S2. Results of the two-locus establishment model.
Figure S3. Establishment bias in the two-locus establishment model.
Figure S4. Patterns of divergence under the parameter values similar to those in Figure 1A and B in the main text, but here the recombination distance
between adjacent loci is two times larger (r = 0.001).
Figure S5. Effect of drift.
Figure S6. Same as in Figure 3 in the main text but for the selection parameter σ = 3.5 (corresponding to that used in Fig. S5).
Figure S7. Patterns of divergence under the parameter values similar to those in Figure 1C in the main text, but with 20 times more adaptive loci (L =
2000), and 20 times smaller variance σ2

μ of mutation-effect sizes.
Figure S8. Same as in Figure 3 in the main text, but for the parameters corresponding to those in Figure S7.
Figure S9. Patterns of divergence for the parameter values corresponding to those in Figure 1 in the main text, but here mutation-effect sizes are drawn
from an exponential distribution mirrored around zero (i.e., positive and negative effects are assumed to be equally likely).
Figure S10. A comparison between patterns of divergence in a single stochastic realization of the model, but shown using two different measures for the
extent of divergence at locus l, that is, in (A) we use the measure Dl introduced in the main text (the total extent of divergence is equal to

∑L
l=1 Dl ), and

in (B) we use instead twice the difference between average allele-effect sizes at locus l in the two populations (the average extent of divergence is equal to
the sum of average allele-effect sizes at all L loci simulated).
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