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Development and validation of a 
prognostic model for predicting 
30-day mortality risk in medical 
patients in emergency department 
(ED)
Duc T. Ha1,2,3, Tam Q. Dang1, Ngoc V. Tran4, Thao N. T. Pham5,6, Nguyen D. Nguyen7 & 
Tuan V. Nguyen7,8,9,10

The primary aim of this prospective study is to develop and validate a new prognostic model for 
predicting the risk of mortality in Emergency Department (ED) patients. The study involved 1765 
patients in the development cohort and 1728 in the validation cohort. The main outcome was mortality 
up to 30 days after admission. Potential risk factors included clinical characteristics, vital signs, and 
routine haematological and biochemistry tests. The Bayesian Model Averaging method within the 
Cox’s regression model was used to identify independent risk factors for mortality. In the development 
cohort, the incidence of 30-day mortality was 9.8%, and the following factors were associated with a 
greater risk of mortality: male gender, increased respiratory rate and serum urea, decreased peripheral 
oxygen saturation and serum albumin, lower Glasgow Coma Score, and admission to intensive care 
unit. The area under the receiver operating characteristic curve for the model with the listed factors 
was 0.871 (95% CI, 0.844–0.898) in the development cohort and 0.783 (95% CI, 0.743–0.823) in the 
validation cohort. Calibration analysis found a close agreement between predicted and observed 
mortality risk. We conclude that the risk of mortality among ED patients could be accurately predicted 
by using common clinical signs and biochemical tests.

Medical patients admitted to Emergency Department (ED) are highly heterogeneous in terms of disease spectrum 
and severity. Mortality is the most important outcome of ED care, and the rate of mortality can be used as a means 
for better prioritization of care and resource allocation. The rate of mortality among ED patients is high1. In ED, the 
death of a patient is commonly preceded by a cumulative deterioration of vital signs and clinical abnormalities2,3.  
Therefore, several prognostic models, including the Rapid Emergency Medicine Score4, Rapid Acute Physiology 
Score5 and Worthing Physiological Scoring system6, have been developed to make use of the clinical signs and 
abnormalities for predicting the risk of death in ED patients.

In a previous study7, we demonstrated that the above algorithms had good prognostic performance in the 
prediction of 30-day mortality in a tertiary hospital in Vietnam. However, the degree of discrimination, as meas-
ured by the area under the receiver operating characteristic curve (AUC), was between 0.70 and 0.807, suggesting 
that there is room for further improvement of the existing prognostic models. In developing countries, EDs are 
normally overcrowded, and staff constantly struggle with an overwhelming number of patients from unplanned 
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admissions. Moreover, the condition of care and disease severity among patients in developing countries are 
different from those in industrialized countries, and the difference calls for new prognostic models that can be 
applicable to ED patients in developing countries.

The present study sought to develop and validate a clinical predictive model for predicting 30-day mortality 
risk in ED patients by using routinely collected clinical, physiological and vital signs. We demonstrated that there 
exists a series of models that have comparable predictive accuracy, and that these models can be used to identify 
high-risk patients in ED. The models reported here can empower medical care providers to individualise ED care 
and optimise ED utilisation.

Results
The study was carried out in two cohorts: development and validation. The two cohorts were recruited from two 
independent hospitals. The development cohort was used to derive predictive models, and the validation cohort 
was used for testing the predictive models.

Between 13 March 2013 and 1 June 2013, we had enrolled 2175 medical patients in ED for development 
cohort. However, after excluding patients who did not meet the inclusion criteria and patients who withdrew 
from the study, 1765 patients remained for the model development. During the follow-up period, the 30-day inci-
dence of mortality in the development cohort was 9.8% (n =  173). Baseline characteristics of patients in the devel-
opment cohort stratified by mortality status are shown in Table 1. The average age of participants was 65.8 years 
(range: 16–105 years). There was no statistically significant difference in age between survivors and deceased.

Bivariate analysis (Table 2) showed that the following risk factors were associated with an increased risk of 
mortality: male gender, advancing age, increased pulse, increased body temperature, lower systolic blood pressure 
and diastolic blood pressure, increased respiratory rate, reduced peripheral oxygen saturation, increased duration 
of illness, and lower Glasgow Coma Score (GCS). Moreover, cardiopulmonary resuscitation, mechanical venti-
lation, and admission to intensive care unit (ICU) were each associated with increased risk of mortality. Among 
comorbidities, cancer, chronic renal failure, cirrhosis, chronic respiratory failure, heart failure, and diabetes mel-
litus were also associated with a greater risk of mortality in ED patients.

Model development. The Bayesian Model Average (BMA) algorithm identified 3 most parsimonious mod-
els for predicting the risk of 30-day mortality. The three models included the following factors: gender, respiratory 
rate, peripheral oxygen saturation, duration of illness, GCS, ICU admission, serum urea, glycaemia, serum albu-
min, alanine aminotransferase (ALT), and high-sensitivity C-reactive protein (hsCRP).

Model I included 10 factors and had a posterior probability of 5.5%; model II included 8 factors with 4% 
posterior probability; and model III included 11 factors with 3.8% posterior probability. Several risk factors were 
present in different models. The common factors in all three models were: gender, respiratory rate, peripheral 
oxygen saturation, duration of illness, GCS, ICU admission, serum urea, and serum albumin. The hazard ratio 
(HR) and 95% CI associated with each factor and each model are shown in Table 3. Among the risk factors, ICU 
admission was associated with the greatest risk or mortality, with the average HR ranging from 5.6 (Model I) to 
6.6 (Model II).

The AUC for the three models (Fig. 1) were comparable. Model I yielded the AUC value of 0.873 (95% CI, 
0.848–0.90), not significantly different from that of Model II (AUC =  0.871; 95% CI, 0.844–0.898) or Model III 
(AUC =  0.873; 95% CI, 0.845–0.90). From these results, it appeared that Model II was the most optimal model, 
because it has the least number of risk factors but yielded good discriminatory power.

Model validation. Between 19 October 2013 and 31 March 2014, 2060 patients had been recruited for the 
validation cohort. After excluding patients who did not meet the inclusion/exclusion criteria, 1728 patients were 
available for analysis (Fig. 2). The incidence of 30-day mortality was 7.8% (n =  135), and this incidence rate was 
slightly lower than that in the development cohort (P = 0.04, Fisher’s exact test). When the models derived from 
the development cohort were applied to predict the risk of mortality in the validation cohort, we found that there 
was a good agreement between observed and predicted risk of death. The maximum calibration error in predict-
ing probability of mortality was about 4% for Model I and Model III, and 3.4% for Model II. In general, the AUC 
values obtained from the validation cohort was slightly lower than those obtained from the development cohort, 
but all AUC values were close to 0.8, a level deemed to be good discrimination. For example, the AUC for Model 
I, II and III was 0.788, 0.783, and 0.790, respectively (Fig. 1). Based on parameter estimates of Model II, a nomo-
gram was built for individualising the risk of 30-day mortality (Fig. 3).

Discussion
Emergency Departments worldwide are typically overcrowded and understaffed, and these problems have 
recently become a topic of discussion in emergency medicine. In developing countries, the problem is even more 
severe as EDs are often under-resourced. Under these circumstances, a risk stratification-based prioritization of 
care is a sensible approach. However, predicting the risk of mortality in EDs is a challenging task, because patients 
are not only highly heterogeneous but also medically complicated. In this study, by using a Bayesian approach to 
combine common clinical and biochemistry tests, we have developed and validated a series of predictive models 
for individualising the risk of 30-day mortality in ED patients. These models have proven good discrimination 
and calibration in external validation.

It is commonly thought that clinician’s assessment or clinical intuition can accurately predict the risk of 
mortality in EDs. However, when dealing with multiple risk factors, clinician’s assessment can be problematic, 
because they are unable to weigh information in a rational and objective manner. The lack of objectivity can 
result in inconsistent risk assessment between clinicians8. In some cases, considerable discrepancies between 
clinical intuition and actual mortality9,10. Therefore, in the presence of multiple risk factors, some of which may 
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be potentially important, statistical thinking offers clinicians some useful guidance for dealing with uncertainty 
of risk assessment.

One of the most important aspects of statistical model building is to find relevant risk factors that have good 
predictive values. Typically, researchers develop a hypothesis about the relationship between risk factors and 
outcome, and then apply an algorithm, mostly stepwise regression, to identify a set of possible relevant risk fac-
tors. However, this classical approach suffers from two shortcomings that the stepwise method tends to identify 
redundant variables11, and that it produces only one “final” model. In reality, there are more than one competing 
model that can explain the relationship. A better approach is Bayesian Model Averaging which was introduced 
to scientific research about 20 years ago12, but has not been widely used in medical research. The Bayesian Model 
Averaging method has been shown to have superior and more robust performance than the stepwise method in 
the identification of relevant risk factors11,13. In this study, by using the Bayesian Model Averaging approach we 
have identify three sets of risk factors that can help clinicians estimate the risk of mortality in EDs patients.

Some risk factors for mortality identified in the present study have also been identified in previous studies6,14–17.  
It is well known that in ED men have a greater risk of mortality than women18, and this was also observed in our 

Characteristics

Development cohort Validation cohort

Survivors Deceased Survivors Deceased

Number of patients 1592 173 1593 135

Number of man (%) 716 (45.0) 98 (56.6)* 704 (44.2) 65 (48.1)

Age (years) 68 [55, 80] 71 [59, 81] 64 [51, 77] 74 [60, 83]**

Pulse (per min) 90 [79, 103] 100 [83, 115]** 87 [78, 101] 100 [85, 112]**

Body temperature (oC) 37.1 [37.0, 37.7] 37.3 [37.0, 38.1]* 37.0 [37.0, 37.5] 37.0 [37.0, 37.5]

Systolic blood pressure (mmHg) 139 [120, 159] 131 [110, 158]* 135 [120, 150] 130 [104, 150]**

Diastolic blood pressure (mmHg) 80 [70, 90] 78 [63, 90] 80 [70, 90] 75 [61, 88]*

Respiratory rate (breaths/min) 22 [20, 26] 26 [22, 30]** 22 [20, 24] 24 [20, 26]**

Peripheral oxygen saturation (%) 97 [94, 99] 94 [87, 97]** 99 [97, 99] 96 [90, 99]**

Duration of illness (days) 1 [0, 3] 1 [0, 2] 0 [0, 2] 0 [0, 2]

Glasgow Coma Score 15 [15, 15] 15 [10, 15]** 15 [15, 15] 15 [15, 15]**

Cardiopulmonary resuscitation 1 (0.1) 3 (1.7)* 0 (0.0) 2 (1.5)*

Mechanical ventilation (n; %) 14 (0.9) 25 (14.5)** 5 (0.3) 8 (5.9)**

Admitted intensive care unit (n; %) 32 (2.0) 63 (36.4)** 40 (2.5) 31 (23.0)**

Functional status

Independent (n; %) 1373 (86.2) 138 (79.8)* 1346 (84.5) 97 (71.9)**

Partially dependent (n; %) 164 (10.3) 21 (12.1) 184 (11.6) 23 (17.0)

Completely dependent (n; %) 55 (3.5) 14 (8.1) 63 (4.0) 15 (11.1)

Length of stay (days) 7 [4, 10] 3 [1, 8]** 5 [3, 7] 5 [2, 10]

Immunocompromised by agent (n; %) 28 (1.8) 4 (2.3) 5 (0.3) 1 (0.7)

Lymphoma (n; %) 2 (0.1) 1 (0.6) 0 (0.0) 0 (0.0)

Leukemia or myeloma (n; %) 8 (0.5) 3 (1.7) 0 (0.0) 1 (0.7)

Cancer (n; %) 18 (1.1) 5 (2.9) 9 (0.6) 3 (2.2)

Chronic renal failure (n; %) 67 (4.2) 10 (5.8) 56 (3.5) 11 (8.1)*

Chronic respiratory failure (n; %) 88 (5.5) 19 (11.0)* 135 (8.5) 19 (14.1)*

Cirrhosis with ascites (n; %) 44 (2.8) 10 (5.8)* 38 (2.4) 7 (5.2)

Heart failure (n; %) 87 (5.5) 24 (13.9)** 272 (17.1) 35 (25.9)*

Diabetes mellitus (n; %) 539 (33.9) 75 (43.4)* 206 (12.9) 16 (11.9)

Haemoglobin (g/dL) 12.3 [10.7, 13.6] 12.0 [9.9, 13.4]* — —

Leukocyte (x 103/μ L) 9.2 [7.2, 12.4] 11.7 [8.5, 16.0]** — —

Platelet (x 103/ μ L) 222 [171, 277] 203 [117, 258]** — —

Serum urea (mmol/L) 5.7 [4.2, 8.2] 7.9 [5.0, 13.7]** 5.1 [3.7, 7.3] 7.2 [4.6, 11.7]**

Glycaemia (mmol/L) 6.2 [5.3, 7.9] 7.4 [5.8, 10.2]** 6.5 [5.5, 8.3] 7.1 [5.9, 9.3]*

Serum creatinine (μ mol/L) 94 [79, 118] 112 [91, 158]** 100 [84, 122] 123 [89, 170]**

Serum albumin (g/L) 38 [34, 42] 34 [29, 40]** 40 [36, 44] 35 [28, 39]**

AST (UI/L) 27 [21, 41] 42 [26, 90]** — —

ALT (UI/L) 21 [14, 35] 26 [17, 47]** 19 [13, 30] 23 [14, 45]*

hsCRP (mg/dL) 0.5 [0.1, 3.0] 1.5 [0.4, 7.9]** 0.6 [0.2, 2.6] 2.6 [0.7, 9.5]**

A1c (%) 5.9 [5.4, 6.7] 6.3 [5.6, 7.2]** — —

Table 1.  Clinical characteristics of 1765 patients in the development cohort and 1728 patients in 
the validation cohort classified by mortality status. *P-value <  0.05. **P-value ≤  0.001. AST, aspartate 
aminotransferase. ALT, alanine aminotransferase. hsCRP, high-sensitivity C-reactive protein. A1c, glycated 
haemoglobin.
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study. In clinical setting, about 45% of patients who died had antecedent abnormal vital signs, including respira-
tory distress, from 8 hours to 48 hours19. Moreover, among patients with normal vital signs at admission, 30% will 
be deteriorated within 24 hours20.

Tachypnea was a predictor of mortality in this study after adjusting for other predictors, and this finding is 
consistent with previous studies4–6,16. Peripheral oxygen saturation, another index for monitoring respiration, 
is also a known risk factor for mortality4,6,16,17. Low oxygen saturation (< 90%) increases the odds of mortality 
within 24 hours by five-fold17, and in our study, decrease in peripheral oxygen saturation had a less pronounced 
effect, with a hazard ratio of 1.17 after adjusting for other covariates in the model.

In the present study, we found that decreased GCS, increased serum urea, increased glycaemia, decreased 
serum albumin, increased ALT, and increased hsCRP were independently associated with increased mortality 
risk. These associations have also been reported by various studies15,21–25. Interestingly, we found that a decision 
of ICU admission was strongly associated with mortality. Indeed, the risk of mortality among patients with this 
indication was increased by 6.6-fold compared with those without the indication. It could be argued that decision 
of ICU admission reflects a “clinical impression” which is known to be a good predictor of mortality status18,26. 
This finding suggests that clinical intuition can be an important factor, in addition to other measured factors, in 
the assessment of mortality in ED patients.

A number of multivariable models for predicting mortality in ED patients have been developed, and in val-
idation cohorts, these models have good discrimination. For instance, the AUC for the Early Warning Score 

Risk factor Unit Hazard ratio (95% CI) P-value

Gender Man 1.56 (1.15–2.10) 0.004

Age (years) + 10 1.06 (0.97–1.16) 0.188

Pulse (per min) + 10 1.17 (1.10–1.24) < 0.001

Body temperature (°C) + 1 1.38 (1.18–1.61) < 0.001

Systolic blood pressure (mmHg) − 5 1.03 (1.0–1.05) 0.043

Diastolic blood pressure (mmHg) − 5 1.03 (0.99–1.08) 0.135

Respiratory rate (breaths/min) + 5 1.44 (1.32–1.57) < 0.001

Peripheral oxygen saturation (%) − 5 1.57 (1.47–1.68) < 0.001

Duration of illness (days) + 5 0.78 (0.60–1.0) 0.053

Glasgow Coma Score − 1 1.35 (1.30–1.40) < 0.001

Cardiopulmonary resuscitation Yes 16.63 (5.3–52.19) < 0.001

Mechanical ventilation Yes 13.22 (8.63–20.26) < 0.001

Admitted intensive care unit Yes 17.90 (13.09–24.49) < 0.001

Functional status

Independent Yes 1.0 (reference)

Partially dependent Yes 1.24 (0.78–1.97) 0.355

Completely dependent Yes 2.38 (1.37–4.12) 0.002

Immunocompromised by agent Yes 1.29 (0.48–3.47) 0.617

Lymphoma Yes 3.55 (0.50–25.36) 0.206

Leukemia or myeloma Yes 2.92 (0.93–9.16) 0.065

Cancer Yes 2.48 (1.02–6.03) 0.046

Chronic renal failure Yes 1.34 (0.71–2.53) 0.371

Chronic respiratory failure Yes 2.01 (1.25–3.24) 0.004

Cirrhosis with ascites Yes 2.02 (1.07–3.83) 0.031

Heart failure Yes 2.55 (1.66–3.92) < 0.001

Diabetes mellitus Yes 1.47 (1.09–1.99) 0.012

Haemoglobin (g/dL) − 1 1.06 (1.0–1.12) 0.049

Leukocyte (x 103/μ L) + 1 1.01 (1.0–1.02) < 0.001

Platelet (x 103/ μ L) − 10 1.03 (1.02–1.05) < 0.001

Serum urea (mmol/L) + 5 1.16 (1.10–1.21) < 0.001

Glycaemia (mmol/L) + 5 1.30 (1.20–1.42) < 0.001

Serum creatinine (μ mol/L) + 20 1.01 (1.01–1.02) 0.003

Serum albumin (g/L) − 5 1.34 (1.22–1.48) < 0.001

AST (UI/L) + 20 1.008 (1.005–1.012) < 0.001

ALT (UI/L) + 20 1.02 (1.02–1.03) < 0.001

hsCRP (mg/dL) + 5 1.37 (1.25–1.49) < 0.001

A1c (%) + 1 1.07 (1.0–1.15) 0.058

Table 2.  Risk factors for 30-day mortality from the development cohort: bivariate analysis. AST, aspartate 
aminotransferase. ALT, alanine aminotransferase. hsCRP, high-sensitivity C-reactive protein. A1c, glycated 
haemoglobin.
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(7 factors), Simple Clinical Score (14 factors), Rapid Emergency Medicine Score (7 factors), and Worthing 
Physiological Scoring system (5 factors) for predicting mortality was 0.7327, 0.82628, 0.7127, and 0.7977, respec-
tively. Among the models, only the Rapid Emergency Medicine Score (REMS) and Worthing Physiological 
System (WPS) were externally validated in developing countries. However, none of the available prognostic mod-
els appears to be suitable for individualised prognosis in ED patients. Our models have comparable AUC to those 
existing models. In previous studies, combining physician’s prediction with an objective model did not substan-
tially improve the discrimination of mortality26; however, in our study, the integration of physician’s decision of 
ICU admission with objective models markedly increased the discrimination.

Our results should be interpreted within context of strengths and potential limitations. The study was designed 
as a prospective investigation with large sample size which allows us to define modest associations between risk 
factors and mortality. We have rigorously validated our models in a totally independent cohort which avoided 
the problem of over-fitting commonly found in previous studies. Moreover, we used sophisticated statistical 
approaches to derive at a series of predictive models, not just a single model that was reported in previous studies. 
In our view, there exists more than one model that can help predict mortality status, and the reliance on a single 
model is an underestimate of the uncertainty in the data. However, since patients’ information were collected at 
one time point, which might not reflect a full spectrum of a patient’s dynamics. The decision of ICU admission is, 
of course, not objective, and could potentially be a bias.

In summary, we have developed and validated new prognostic models to predict the risk of 30-day mortality 
in medical ED patients. The models will allow accurate risk assessment to identify high risk patients, and help 
optimize resources and patient management in ED.

Methods
Setting and patients. The study was conducted at the Can Tho National Hospital, Vietnam (for develop-
ment cohort) and the Can Tho General Hospital, Vietnam (for validation cohort). The Can Tho National Hospital 

Model Unit
Hazard ratio 

(95% CI) P-value

Model I

Gender Man 1.61 (1.18–2.20) 0.003

Respiratory rate (breaths/min) + 5 1.24 (1.12–1.37) < 0.001

Peripheral oxygen saturation (%) − 5 1.17 (1.07–1.27) < 0.001

Duration of illness (days) + 5 0.67 (0.51–0.88) 0.004

Glasgow Coma Score − 1 1.19 (1.13–1.25) < 0.001

Admitted intensive care unit Yes 5.57 (3.73–8.31) < 0.001

Serum urea (mmol/L) + 5 1.12 (1.05–1.20) 0.001

Glycaemia (mmol/L) + 5 1.19 (1.05–1.35) 0.005

Serum albumin (g/L) − 5 1.31 (1.18–1.47) < 0.001

ALT (U/L) + 20 1.02 (1.01–1.03) < 0.002

Model II

Gender Man 1.53 (1.13–2.09) 0.007

Respiratory rate (breaths/min) + 5 1.25 (1.13–1.38) < 0.001

Peripheral oxygen saturation (%) − 5 1.17 (1.08–1.28) < 0.001

Duration of illness (days) + 5 0.67 (0.51–0.87) 0.003

Glasgow Coma Score − 1 1.18 (1.12–1.24) < 0.001

Admitted intensive care unit Yes 6.59 (4.45–9.74) < 0.001

Serum urea (mmol/L) + 5 1.13 (1.06–1.20) < 0.001

Serum albumin (g/L) − 5 1.30 (1.17–1.45) < 0.001

Model III

Gender Man 1.59 (1.17–2.18) 0.003

Respiratory rate (breaths/min) + 5 1.21 (1.09–1.34) < 0.001

Peripheral oxygen saturation (%) − 5 1.17 (1.07–1.27) < 0.001

Duration of illness (days) + 5 0.66 (0.50–0.87) 0.003

Glasgow Coma Score − 1 1.19 (1.13–1.25) < 0.001

Admitted intensive care unit Yes 5.60 (3.77–8.31) < 0.001

Serum urea + 5 1.11 (1.04–1.19) 0.003

Glycaemia + 5 1.18 (1.04–1.33) 0.008

Serum albumin − 5 1.26 (1.12–1.42) < 0.001

ALT + 20 1.02 (1.01–1.03) < 0.001

hsCRP + 5 1.12 (1.01–1.24) 0.029

Table 3.  Association between risk factors and 30-day mortality risk: results of multivariable analyses. ALT, 
alanine aminotransferase. hsCRP, high-sensitivity C-reactive protein.



www.nature.com/scientificreports/

6Scientific RepoRts | 7:46474 | DOI: 10.1038/srep46474

is a tertiary teaching hospital that serves 17 million residents in the Mekong Delta region; its ED on average 
admits 75 non-surgical patients per day. The Can Tho General Hospital has 400 beds, providing care to the resi-
dents of Can Tho City; on average, the ED admits 50 non-surgical patients per day.

We enrolled medical patients (non-trauma and non-surgical) from the two emergency departments between 
13 March 2013 and 31 March 2014. The inclusion criteria were: all patients aged 16 years and older and who 
could give informed consent. Patients were excluded from the study if they had one of the following conditions: 
acute coronary syndrome, burns, cardiac arrest before admitting to the hospital or which occurred in the ED with 
failure of cardiopulmonary resuscitation, snakebite, insect bite or sting, poisoning (drugs, alcohol, intoxication, 
paraquat, insecticides, rodenticides, corrosive substances). We also excluded patients with burns, cardiac arrest 
with failure of cardiopulmonary resuscitation. Women in labor and dead-on-arrival patients were also excluded 
from the study. The study protocol and procedure were approved by the Can Tho National Hospital ethics com-
mittee. All patients gave written informed consent. Patients could withdraw from the study at any time without 
giving reasons. All methods were performed in accordance with the relevant guidelines and regulations.

Study procedure. All patients who met inclusion and exclusion criteria were invited to participate in the 
study. Upon giving the written informed consent, data collection was conducted by a trained research worker 
by using a structured questionnaire. The questionnaire collected data concerning demographic characteristics, 
medical history, physiological data, haematological and biochemistry tests (see Supplementary Table S1). After 30 
days of admission, the research worker would contact patients or relatives or guardians to obtain information on 
survival status. Patients who had stayed in hospital for more than 30 days were considered “censored”.

Figure 1. Area under the receiver operating characteristic curve (left panel) and calibration plot of three 
parsimonious models (middle and right panels). 
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Outcome measure. The primary outcome of the study was mortality occurred within 30 days of hospital 
admission. Mortality was defined as (1) death in hospital from any cause; (2) family-initiated discharge and death 
either on the way home or within 24 hours after discharge; (3) doctor-initiated discharge and death at home. It 
should be noted that in Vietnamese culture, when a patient was in the end stage of disease, the patient or family 
often requests for discharge from hospital because they prefer to pass away at home.

Risk factors. Risk factors considered in this study included vital signs, peripheral oxygen saturation, duration 
of illness, GCS (see Supplementary Table S2), cardiopulmonary resuscitation, mechanical ventilation, ICU admis-
sion, functional status, comorbidity, haematological and biochemical test (see Supplementary Table S1). Blood 
pressure and pulse rate were measured electronically (OMRON HEALTHCARE Co, Vietnam) and rechecked 
manually where blood pressure was either too low or too high. Peripheral oxygen saturation was measured by an 
electronic device (NONIN Co, USA). Decision of ICU admission was made by a senior attending physician after 
considering laboratory tests and primary diagnosis.

Data management and analysis. Data were entered into a designed database twice. The first data entry 
was made within a day after admission. The second data entry was undertaken at the termination of the study. 
Data from the two entries were used to check for potential inconsistencies, and any inconsistency was adjudicated 
with the original patient record.

Data analysis was performed according to a statistical analysis plan prior to the collection of data. First, we 
used descriptive statistics (i.e., mean, standard deviation, median with interquartile range, proportion) for each 
clinical and laboratory variable with stratification by survival status. Difference between groups in categorical 
variables was tested by the Fisher’s exact test. The normal distribution of continuous variables was tested by 
the Shapiro-Wilk normality test. The association between continuous variables and 30-day mortality was tested 
by the Student’s t test for normally distributed variables or Mann-Whitney test for non-normally distributed 
variables.

Second, we used the Cox’s proportional hazards model29 to assess the association between potential risk fac-
tors and 30-day mortality (i.e. hazard ratio) from the development cohort. Since there were several potential risk 
factors and the number of “potential models” for predicting 30-day mortality can be very large, the Bayesian 
Model Averaging (BMA)30 was used to search for the most parsimonious models from the development cohort. 
This approach has been shown to have superior performance compared to “traditional” approaches such as step-
wise regression11,13. In the BMA approach, the regression analysis was performed for 2M (where M is the number 
of risk factors) competing models. The BMA averaged point estimates for regression coefficient over the all possi-
ble models. BMA produces a posterior probability of each possible model and posterior probability for regression 
coefficient associated with each genetic variant. The posterior probability is a function of a prior probability and 
the likelihood of a model. In this study, given the large number of genetic variant and there is little information 
available for eliciting prior distributions, we used the “uninformative” prior distributions, that a priori, make all 
models and parameters equally likely are appealing. Thus, in BMA, we consider a set of competing models, not 

Figure 2. CONSORT diagram: Description of recruitment of study participants for the development and 
validation cohort. 
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just a single model, to account for the variation in the data. The analysis was done with the R statistical environ-
ment31 and the BMA package32.

The discrimination of the most parsimonious models was estimated by the AUC33 for the development and vali-
dation cohort. The difference between two AUCs was tested by the Delong method34. Agreement between observed 
mortality and predicted mortality was evaluated using the bootstrap technique. In this technique, 1000 sub-samples, 
each with 500 subjects, of the entire sample were repeatedly sampled (with replacement) and analyzed35.  
Based on the parameters selected from the most parsimonious models, a nomogram using the “rms” library35,36 
was constructed for predicting 30-day mortality. In a further validation, the predicted probability of 30-day mor-
tality was compared with the observed probability on the development cohort and validation cohort. All statisti-
cal analyses were performed with the R Statistical Environment version 3.1.0 on Windows platform37.
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