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Abstract

Serine hydroxymethyltransferase (SHMT), encoded by the glyA gene, is a ubiquitous pyri-

doxal 5’-phosphate (PLP)-dependent enzyme that catalyzes the formation of glycine from

serine. The thereby generated 5,10-methylene tetrahydrofolate (MTHF) is a major source of

cellular one-carbon units and a key intermediate in thymidylate biosynthesis. While in virtu-

ally all eukaryotic and many bacterial systems thymidylate synthase ThyA, SHMT and dihy-

drofolate reductase (DHFR) are part of the thymidylate/folate cycle, the situation is different

in organisms using flavin-dependent thymidylate synthase ThyX. Here the distinct catalytic

reaction directly produces tetrahydrofolate (THF) and consequently in most ThyX-contain-

ing organisms, DHFR is absent. While the resulting influence on the folate metabolism of

ThyX-containing bacteria is not fully understood, the presence of ThyX may provide growth

benefits under conditions where the level of reduced folate derivatives is compromised.

Interestingly, the third key enzyme implicated in generation of MTHF, serine hydroxymethyl-

transferase (SHMT), has a universal phylogenetic distribution, but remains understudied in

ThyX-containg bacteria. To obtain functional insight into these ThyX-dependent thymidy-

late/folate cycles, we characterized the predicted SHMT from the ThyX-containing bacte-

rium Helicobacter pylori. Serine hydroxymethyltransferase activity was confirmed by

functional genetic complementation of a glyA-inactivated E. coli strain. A H. pylori ΔglyA

strain was obtained, but exhibited markedly slowed growth and had lost the virulence factor

CagA. Biochemical and spectroscopic evidence indicated formation of a characteristic

enzyme-PLP-glycine-folate complex and revealed unexpectedly weak binding affinity of

PLP. The three-dimensional structure of the H. pylori SHMT apoprotein was determined at

2.8Å
´

resolution, suggesting a structural basis for the low affinity of the enzyme for its cofac-

tor. Stabilization of the proposed inactive configuration using small molecules has potential

to provide a specific way for inhibiting HpSHMT.
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Introduction

Serine hydroxymethyltransferase (SHMT or GlyA; EC 2.1.2.1) is a ubiquitous pyridoxal 5’-

phosphate (PLP)-dependent enzyme. Its physiologically relevant reaction is the reversible

interconversion of serine and tetrahydrofolate (THF) to glycine and 5,10-methylene tetrahy-

drofolate (MTHF) [1–3]. In addition, SHMT has also been shown to catalyze THF-indepen-

dent aldolytic cleavage, decarboxylation and transamination reactions [4, 5]. As MTHF is a

major source of cellular one-carbon units, SHMT is a pivotal metabolic enzyme for the biosyn-

thesis of purines and thymidylate [6, 7]. Its important role in DNA synthesis, together with the

high level of enzyme activity in rapidly proliferating cells, have focused attention on SHMT as

a potential target for cancer therapy and for the development of antimicrobial agents [1, 8]. It

is becoming increasingly obvious that metabolic adaptation plays a central role in the interac-

tion of bacterial pathogens with their host, supporting the concept of nutritional virulence [9].

Recently, Dahal et al. [10] showed that a glyA deletion mutant of Edwardsiella ictaluri was sig-

nificantly attenuated in virulence. Bogard et al. identified SHMT (named GlyA1 in their study)

as a new MetR-regulated virulence factor, required by V. cholerae to colonize the infant mouse

intestine [11]. In mammals, cytoplasmic and mitochondrial isoforms of SHMT are present

that form homotetramers of four identical subunits [6], whereas microbial systems contain in

general one single homodimeric enzyme [12, 13]. Serine hydroxymethyltransferases, encoded

by the glyA genes, are structurally highly conserved, with the active site located at the interface

between two monomers. In Eukarya and most bacterial species, SHMT is part of the thymidy-

late/folate cycle, together with canonical thymidylate synthase ThyA (EC 2.1.1.45) and dihy-

drofolate reductase DHFR (EC 1.5.1.3) [14]. For several decades, the functional association of

SHMT, ThyA and DHFR was thought to be a universally conserved evolutionary feature (Fig

1A). This view changed with the discovery of a novel family of flavin-dependent thymidylate

synthases, ThyX, essential for de novo dTMP synthesis (EC 2.1.1.148) [15] (Fig 1B). ThyX pro-

teins use distinct reductive and catalytic mechanisms that, differently from ThyA, directly pro-

duce THF and not DHF. How the almost universal absence of DHFR in ThyX-containing

species [16, 17] influences their folate metabolism is not fully understood. However, on the

basis of mathematical modeling of the bacterial folate metabolism, we have proposed that a

very low dihydrofolate reductase activity, provided by moonlighting enzymes, is sufficient to

rescue thymidylate synthesis in the presence of ThyX. Therefore, the presence of flavin-depen-

dent thymidylate synthase X may provide growth benefits under conditions where the level of

Fig 1. Thymidylate synthesis cycles involving thymidylate synthase ThyA (A) or thymidylate synthase ThyX (B).

Both enzymes, ThyA and ThyX, perform de novo synthesis of deoxythymidine monophosphate (dTMP; thymidylate)

from deoxyuridine monophosphate (dUMP). ThyA proteins use methylenetetrahydrofolate (MTHF) both as carbon

and electron source, resulting in the formation of dihydrofolate (DHF), which is subsequently reduced by

dihydrofolate reductase (DHFR). The ThyX flavoenzymes produce tetrahydrofolate (THF) as reaction product and not

dihydrofolate; consequently DHFR is absent. This key difference in ThyA and ThyX catalysis has important

implications for the bacterial folate metabolism. The third key enzyme implicated in generation of MTHF, serine

hydroxymethyltransferase (SHMT), has a universal phylogenetic distribution.

https://doi.org/10.1371/journal.pone.0208850.g001
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reduced folate derivatives is compromised [18]. In contrast, the third key enzyme implicated

in generation of MTHF, SHMT, has a universal phylogenetic distribution.

Interestingly, biochemical and genetic studies, supported by statistical analyses of microbial

genome compositions, suggested that the catalytic efficiency of ThyX enzymes is relatively low

in comparison to ThyA [19]. Based upon in silico analyses using the KEGG database [20, 21],

in the thyX-containing bacterium H. pylori the only direct way for MTHF synthesis implicates

the thymidylate cycle comprising ThyX and SHMT in the absence of DHFR. Similar phyloge-

netic profiles have been observed in most other ThyX-containing bacteria. The function of

other orthologues, potentially implicated in the synthesis of folate derivatives, has not been

studied in Helicobacter pylori and very few studies have addressed the biochemical properties

or the metabolic implication of SHMT in thyX-containing species. Thus, despite their impor-

tance for pathogenicity, the folate/thymidylate pathways are understudied in bacterial species

relying on thymidylate synthase ThyX. In a study investigating the metabolic importance of

glycine decarboxylase in cyanobacteria, the presence of glyA was found to be essential for cell

viability under standard conditions in the strain Synechocystis sp. PCC 6803 [22]. In Mycobac-
terium tuberculosis that carries both thymidylate synthases, ThyA and ThyX, two recombinant

homodimeric serine hydroxymethyltransferases, named SHM1 and SHM2, with different

thermal stabilities and PLP stoichiometries were described. L-cysteine was found to remove

PLP from both enzymes, leaving the respective inactive apoenzymes [23]. Serine hydroxy-

methyltransferase from Mycobacterium leprae, also carrying both, ThyA and ThyX, was found

to have a low PLP-content and a relatively low catalytic efficiency under the reaction condi-

tions tested [24]. That study also reported that at pH values below 6.0 and above 10.0, PLP was

lost from the protein, resulting in the loss of enzymatic activity. Altogether, these findings

motivated us to characterize SHMT, the only universally conserved enzyme of the thymidylate

metabolic cycle, in the ThyX-containing pathogenic bacterium H. pylori.
In H. pylori strain 26695, the open reading frame (ORF) HP0183 was annotated to code for

a serine hydroxymethyltransferase. In the present study, the activity of the corresponding poly-

peptide was confirmed by functional complementation of E. coli SHMT in vivo, supported by

biochemical studies. A H. pylori glyA deletion strain was viable, but exhibited markedly slowed

growth compared to wild type and had lost the virulence factor CagA. We solved the three-

dimensional structure of the H. pylori SHMT apoprotein at a resolution of 2.8 Å
´

, which

revealed a disordered active site and provided structural insight into the low affinity of the

enzyme for its PLP cofactor. Stabilization of the proposed inactive configuration using small

molecules may provide a specific way for inhibiting HpSHMT.

Materials and methods

Chemicals

Ampicillin, kanamycin, L-allothreonine, alcohol dehydrogenase, pyridoxal 50-phosphate

monohydrate, glycine and serine were purchased from Sigma Aldrich. 5,10-methylenetetrahy-

drofolate was provided by Merck Eprova AG. Reagents for bacterial and cellular growth were

obtained from Gibco, Sigma Aldrich and Oxoïd.

Molecular techniques

Agarose gel and SDS-PAGE electrophoreses were carried out following standard procedures

[25]. All restriction enzymes and GoTaq1 Flexi DNA polymerase were purchased from Fer-

mentas-Thermo Fisher Scientific and used according to the manufacturer’s recommendations.

Oligonucleotide primers used for PCR amplification were synthesized by Eurogentec and are

listed in Table 1. Plasmids were extracted and purified using the Qiagen Plasmid Mini Kit.

Serine hydroxymethyltransferase from Helicobacter pylori
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The NucleoSpin Tissue Kit (Macherey-Nagel) was used to extract chromosomal DNA from H.

pylori strains.

Bacterial strains

E. coli strain SURE (e14– (McrA–) Δ(mcrCB-hsdSMR-mrr)171 endA1 supE44 thi-1 gyrA96 relA1
lac recB recJ sbcC umuC::Tn5 (Kanr) uvrC [F’ proAB lacIqZD(M15 Tn10 (Tetr)]) was used as

host for plasmid cloning experiments. E. coli strain SG 13009, containing pREP4 [26], was used

for expression of recombinant HpSHMT cloned into the pQE60 expression plasmid (Qiagen).

E. coli MG1665 (F- lambda- ilvG- rfb-50 rph-1) was used for deletion of glyA. All E. coli strains

were grown at 37˚C on solid or in liquid LB medium or M9 minimal medium (3 g L-1

Na2HPO4, 1.5 g L-1 KH2PO4, 0.25 g L-1 NH4Cl, and 0.15 g L-1 NaCl) supplemented with 2 mM

MgSO4, 0.1 mM CaCl2 and 0.1% glycerol as carbon source. Antibiotics for the selection of

recombinant E. coli strains were used at the following final concentrations: ampicillin, 100 μg

ml−1; kanamycin, 50 μg ml−1 and tetracycline 5 μg ml−1. H. pylori strain 26695 (NC_000915.1)

[27] was used as recipient for isogenic mutant construction and was cultured on horse blood

(10%) agar or in brain–heart infusion (BHI) (Oxoid) liquid medium supplemented with fetal

calf serum (10%) and with antibiotic and fungicide mix consisting of vancomycin (final concen-

tration, 10 μg ml−1), polymyxin B (2.5 IU l−1), trimethoprim (5 μg ml−1), amphotericin B (4 μg

ml−1) and fungizone (2.5 μg ml−1). Plates and flasks were incubated for 48 h at 37˚C under

microaerobic conditions [28]. For mutant strains derived from H. pylori strain 26695 by allelic

exchange, kanamycin was added to the growth medium at a final concentration of 20 μg ml−1.

H. pylori strain X47, a cagA-deficient strain, was used as control in immunoblot experiments.

Table 1. Nucleotide sequences of oligonucleotides used in this study.

Name Target gene or locus Sequence (5’ to 3’)a,b

SA36 glyA / HP0183 (H. pylori) GAggattcATGGCGTATTTTTTAGAACAAACG

SA37 CTTGagatctTTAAAAAATAGGTTGGTGGTACACAG

oEF22 GAGGCTATGGGGAGTGTTTT

oEF23 CGCCATAAGAAAAGCTCTGA

SK40 HP0182 (H. pylori) TCGCTAACGGCTTTAGCGAGT

SK41 HP0184 (H. pylori) GGCGTTTTGGTGTTATAAGCG

SA80 cagA / HP0547 (H. pylori) AGTGGTTTGGGTGGTGTAGG

SA81 CGTAAATGGGTTCAGGGCTA

SA82 TGGCGTTTCCCATTTAGAAG

SA83 CTCCAAATGCTCTCGTTTCC

SA129 ATGACTAACGAAACTATTGATCAAAC

SA130 TTAAGATTTTTGGAAACCACCTTTTG

SA39 glyA (E. coli) upstream region GGGCTTCACGTTGATCGCCATTACGCTGGTTAC

SA41 glyA (E. coli) downstream region and aphA-3 cassette TACCTGGAGGGAATAATGGCGAAACGGTGATTTGCTGTC

SA42 glyA (E. coli) upstream region GTTAATCGCTGCCTGGCAAAGTGGAGAACC

SA43 glyA (E. coli) upstream region and aphA-3 cassette GTTAGTCACCCGGGTACCCGCATCTCCTGACTCAGCTA

SA44 glyA (E. coli) upstream region GCCTCGCGATTGATAAATACA

SA45 glyA (E. coli) downstream region GTCTGCGACTGTGGACGTTAT

H50 aphA-3 cassette CCGGTGATATTCTCATTTTAGCC

H17 TTTGACTTACTGGGGATCAAGCCTG

a Lowercase letters indicate BamHI (SA36) and BgIII (SA37) restriction sites.
b Underlined sequences correspond to homologous nucleotides of the aphA-3 cassette

https://doi.org/10.1371/journal.pone.0208850.t001
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Cloning, expression and purification of H. pylori SHMT

Plasmid pQE60 (Qiagen), carrying the glyA gene (HP0183; NP_206982.1) from H. pylori strain

26695, contains an IPTG-inducible tac promoter and an ampicillin selection marker. The glyA
gene was PCR-amplified using primer pair SA36/SA37 (Table 1) and inserted into unique

BamHI and BglII sites. This construct, carrying a hexahistidine (6xHis)-tag at its carboxyl termi-

nus, was confirmed by DNA sequencing. The HpSHMT recombinant protein was expressed in

E. coli SG 13009 at 37˚C in 750 ml LB medium. Protein expression was induced by adding 1

mM IPTG to early exponential phase cultures (OD600 0.5) for 3 h. 6xHis-tagged proteins were

purified from cell-free extracts by gravity-flow chromatography on Ni-TED columns (Macherey

Nagel), followed by subsequent imidazole removal on Econo-Pac columns (Bio-Rad). The

eluted protein was stored at -80˚C. Protein samples were analyzed on 10% SDS-PAGE and by

quantitative capillary electrophoresis (Experion, Bio-Rad) and were more than 95% pure.

Construction of glyA mutants

Deletion of glyA in E. coli. The EcΔglyA mutant was constructed in E. coli strain MG1655

using a three-step PCR procedure as described in [29]. First, the 492 bp sequence located

upstream of glyA (b2551; NP_417046.1) and the 513 bp sequence located downstream of glyA
were PCR-amplified with primer pairs SA39/SA43 and SA41/SA42, respectively (Table 1).

The SA43 and SA41 oligonucleotides have 21 and 18 bp homology to the upstream and down-

stream flanking regions of glyA, followed by 17 and 21 bp homology to the 5’ and 3’ region of

the aphA-3 kanamycin cassette, respectively. The non-polar cassette was obtained by SmaI

digestion of pUC18K [30, 31]. The deletion construct was assembled by two sequential PCRs

and then introduced into the chromosome of E. coli using the Lambda Red recombination sys-

tem. To this end, MG1655 was previously transformed with the thermosensitive pKOBEGA

plasmid (kindly provided by J-M. Ghigo, Pasteur Institute, France) that carries the λ phage

redγβα operon under the control of a pBAD promoter [29]. Recombinants were selected with

kanamycin at the non-permissive temperature of 37˚C (permissive temperature = 30˚C) and

were tested for chloramphenicol sensitivity to check for loss of pKOBEGA. Correct allelic

exchange was confirmed by PCR.

Deletion of glyA in H. pylori. Plasmid pILL570 (glyA::aphA-3) (kindly provided by H. de

Reuse, Pasteur Institute, France) is a derivative of the pILL570 vector [32], in which the non-

polar aphA-3 kanamycin resistance cassette was inserted into a unique site generated after

cloning of a 318-bp fragment, corresponding to the HP0183 50 end, and a 304-bp fragment,

corresponding to the HP0183 30 end, respectively. The H. pylori mutants were obtained by nat-

ural transformation [33] with approximately 2 μg of plasmid DNA. Clones that had undergone

allelic exchange were selected after seven days of growth on plates containing 20 μg ml−1 kana-

mycin. Correct allelic exchange was confirmed by PCR (S1 Fig).

Genome sequencing

To sequence the H. pylori ΔglyA mutant strain, library preparation was carried out using the

Ion Xpress™ Plus Fragment Library Kit (Life Technologies, Thermo Fisher Scientific), with

315 ng of genomic DNA (gDNA). gDNA was enzymatically fragmented using the Ion Shear™
Plus method. Adapter ligation, size selection, nick repair and amplification were performed

for 1 μg of gDNA, as described in the Ion Torrent protocol furnished with the kit. Treated

gDNA was subsequently loaded on an E-Gel1 SizeSelect™ 2% agarose gel and fragments with

sizes ranging from 450 to 480 bp were extracted. Amplification and enrichment steps were car-

ried out using the Ion PGM™ Template OT2 400 Kit. The Ion PGM™ Template OT2 400 Ion

Sphere™ particles’ quality was assessed with the Ion Sphere™ Control Kit and a Qubit 2.0

Serine hydroxymethyltransferase from Helicobacter pylori
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fluorometer (Life Technologies-Thermo Fisher Scientific). Sequencing was performed using a

314™ Chip v2 and the Ion PGM™ Sequencing 400 Kit. Once loaded, the chip was placed on the

Ion PGM™ Sequencer. Coverage analysis reports (S1 Table and S2 Fig) were generated using a

coverage analysis plugin (v5.8.0.8) of the IonTorrent server, indicating average base coverage

depths of 32.06 and 76.78 for wild type and ΔglyA H. pylori strains, respectively. Where indi-

cated, sequencing reads were mapped to the H. pylori 26695 reference genome (NC_000915.1)

using Artemis software [34].

Biochemical analyses

Ternary complex formation. E. coli SHMT forms a PLP-dependent ternary complex with

glycine and MTHF that absorbs at 502 nm. The affinity of H. pylori SHMT for MTHF was

determined by measuring the absorbance at 502 nm as a function of the MTHF concentration

at fixed concentrations of glycine [35]. Reactions were performed at room temperature in 50

mM phosphate buffer, pH 8.0, in the presence of 150 mM NaCl, 1 mM EDTA, 1 mM DTT,

20 μM SHMT, 250 μM PLP, 5 mM glycine and 0–2 mM MTHF.

Activity measurements. The activity of SHMT was measured indirectly using L-allo-

threonine as substrate. In this reaction, SHMT catalyzes the cleavage of L-allothreonine to gly-

cine and acetaldehyde. The produced acetaldehyde is reduced to ethanol by the NADH-

dependent alcohol dehydrogenase and the oxidation of NADH to NAD+ was monitored at 340

nm [36]. Reactions were performed at room temperature, in 50 mM phosphate buffer, pH 8.0,

in the presence of 150 mM NaCl, 1 mM EDTA, 1 mM DTT, 20 μM SHMT, 250 μM PLP, 20 μg

alcohol dehydrogenase and 250 μM NADH. NADH consumed in the reaction was calculated

using a molar extinction coefficient of 6220 M-1cm-1 [37].

Immunoblot analyses. H. pylori cells were harvested by centrifugation at 4200 g for 5

min. H. pylori proteins were separated on SDS PAGE and stained with Coomassie Brilliant

Blue R250 or were used for immunoblot analysis. Proteins were transferred at 4˚C to a nitro-

cellulose membrane (GE Healthcare) using a Transblot apparatus (Bio-Rad). Following trans-

fer, membranes were blocked in Odyssey Blocking Buffer (Li-Cor Biosciences) for one hour.

The membranes were incubated with primary antibody (diluted 1:1000) for one hour or over-

night, washed four times for 5 minutes each at room temperature in PBS + 0.1% Tween-20,

and subsequently incubated for one hour at room temperature with the fluorescently-labeled

secondary antibody (diluted 1:1000 in Odyssey Blocking Buffer). Mouse monoclonal anti-

polyhistidine antibody (Sigma-Aldrich), rabbit polyclonal anti-UreB antibody (Abcam), and

mouse monoclonal anti-H. pylori CagA antibody (Abnova) were used as primary antibodies.

IRDye 800CW conjugated goat polyclonal anti-rabbit and anti-Mouse IgG were used as sec-

ondary antibodies (Li-Cor Biosciences). The membranes were washed four times for 5 minutes

each at room temperature in PBS + 0.1% Tween-20 with gentle shaking protected from light.

The membrane was scanned using the Odyssey Infrared Imaging system following manufac-

turer’s instructions.

Crystallisation, data collection, structure determination and refinement

Crystals of HpSHMT were grown using the vapour diffusion method with hanging drops con-

sisting of 1μl of protein (7 mg ml-1) and 1μl of reservoir solution (20% PEG 3350, 0.2 M

sodium acetate). Small (10μm x 10μm x 50μm) needle crystals grew after a few days at room

temperature. For data collection, the crystal was transferred into silicon oil and subsequently

flash frozen in liquid nitrogen. Data were collected at 100 K at the European Synchrotron

Radiation Facility (ESRF) beamline ID14EH4. Diffraction images were integrated and scaled

with X-ray Detector Software (XDS) [38], then symmetry-related intensities were merged and
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structure factors derived using Aimless from CCP4 Program Suite [39]. HpSHMT crystals

belonged to the space group P212121 and diffracted anisotropically. In particular, the CC1/2 of

b� was 0.056 at the highest resolution shell, with an I/σI of 0.34. After several different process-

ing experiments we decided to use the overall resolution of 2.8 Å. Exploiting higher resolution

data did not change significantly either the structure or our conclusions. The structure was

solved by molecular replacement (MR) using a homology model of HpSHMT generated with

the Swiss Modelling server [40] that used the Thermus thermophilus SHMT (TtSHMT) struc-

ture as template (PDB ID 2DKJ) and the program PHASER [41]. PHENIX [41] was used for

refinement, alternated with manual model building in COOT [42]. Residues 4–411 were mod-

elled for chain A and residues 3–416 for chain B, with the exception of several loops where the

path of the peptide backbone could not be traced. Hence, residues 53–66 and 124–130 were

omitted in chain A and residues 54–67 and 120–134 were absent in chain B. Data collection

and refinement statistics of the final model are presented in Table 2. Figures were generated

with Pymol Software [43].

Accession number. The coordinates and structure factors of HpSHMT were deposited in

the Protein Data Bank with the entry code 6F93 (PDB ID 6F93).

Results

HP0183 complements an E. coli ΔglyA strain in vivo
In H. pylori 26695, the open reading frame HP0183 (1248 bp) is located at chromosomal posi-

tions 190186–191436. This ORF is part of a multigene operon where two non-essential ORFs

(HP0184 and HP0185) are located downstream from HP0183 (http://csbl.bmb.uga.edu/

DOOR/operon.php?id=3975). As the translated polypeptide shows (e.g.) 53% sequence iden-

tity (72% sequence similarity) with E. coli SHMT (EcSHMT) and 68% sequence identity (80%

sequence similarity) with the Campylobacter jejuni enzyme, ORF HP0183 was predicted to

code for a serine hydroxymethyltransferase. Moreover, BLAST searches using default parame-

ters revealed the presence of glyA genes in more than 500 sequenced H. pylori strains. As these

hits were 96–100% identical with HP0183 of H. pylori 26695, these findings indicate that this

gene is highly conserved in a wide range of clinical isolates. It has been shown for E. coli [44,

45] and humans [46] that SHMT-deficiency induces glycine-auxotrophy. This reflects the

presence of a glycine-inducible glycine cleavage system that provides an alternative biosyn-

thetic route for MTHF. As there is no in silico evidence for the presence of a glycine cleavage

system in H. pylori, we tested directly, whether the polypeptide encoded by HP0183 can func-

tionally complement growth defects of an E. coli strain specifically impaired in serine hydroxy-

methyltransferase activity. To this effect we interrupted the glyA gene in the E. coli strain

MG1665 with a kanamycin resistance cassette (see Materials and methods). We found the E.

coli ΔglyA deletion strain to be glycine-auxotroph in agreement with earlier results. The E. coli
ΔglyA strain was subsequently transformed with plasmid pQE60 carrying the IPTG-inducible

ORF HP0183, and functional complementation tests on solid minimal M9 medium were per-

formed in the presence or absence of glycine and serine. WT E. coli MG1665 and the deletion

strain transformed with pQE60 without insert served as controls. In the presence of IPTG,

transformants carrying the ORF HP0183 on the plasmid were found to be capable of growth

on minimal medium, as does the WT lacI+ E. coli strain MG1665, containing the functional

glyA gene (Fig 2). This genetic complementation test confirms as well that the E. coli ΔglyA
strain was not able to grow on minimal medium supplemented with serine, supporting the

hypothesis that under these conditions in E. coli SHMT catalyses in priority the conversion of

serine to glycine and not the inverse reaction.
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Cloning, expression, purification and activity of Helicobacter pylori SHMT

The polypeptide corresponding to HP0183 was expressed in E. coli SG 13009 (containing

pREP4 that carries lacIq); see Materials and methods) with a C-terminal 6xHistidine-tag and

purified using Ni-affinity chromatography followed by gel filtration chromatography. The

purified protein (purity >95%) shows an apparent molecular mass of� 45 kDa on SDS PAGE

(predicted molecular mass per monomer 46,776 Da) and is recognized by immunodetection

with monoclonal anti-6xHis antibodies (Fig 3A). Dynamic light scattering measurements

characterized HpSHMT as a polydispersed sample with the majority of particles showing a size

of approximately 10 nm, indicative for a dimeric state of the protein. A small fraction of puri-

fied HpSHMT had a particle size of about 100 nm, likely representing aggregation products.

Table 2. Data collection and refinement statistics for the SHMT structure from H. pylori 26695.

Data collection
Beamline ID14eh4-ESRF

Wavelength (Å) 0.9790

Space group P212121

Unit cell dimensions (Å) a = 57.349 b = 87.548 c = 162.476 α = β =

γ = 90

Resolution range (Å) 46.85–2.80 (2.95–2.85)

Unique reflections 20625 (2920)

Rsym (%) 11.7 (54.6)

Rpim (%) 11.3 (52.5)

CC1/2 0.999 (0.925)

CC� 0.994 (0.749)

Completeness (%) 99.1 (98.7)

Multiplicity 3.6 (3.6)

<I/s(I)> 10.2 (2.3)

Refined model composition
Monomers / a. u 2

Protein residues

Molecule A A4-A52

A67-A123

A131-A411

Molecule B B3-B53

B68-B119

B135-B416

Water molecules 16

Wilson B-value (Å2) Mean B-Value (Å2) 42.01 43.1

Model quality indicators
Rwork / Rfree (%) 19.53/23.56

Rmsd bond lengths (Å) 0.005

Rmsd bond angles (˚) 0.795

Estimated coordinate error (Å) 0.37

Molprobity clash/overall scores 2.26/9.6
bRamachandran analysis
% Favoured % Allowed 95.29 4.45

% Disallowed % Rotamer outlier 0.26 3.76

PDB ID code 6F93

https://doi.org/10.1371/journal.pone.0208850.t002
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The purified H. pylori SHMT protein exhibits a very faint yellow colour, suggesting that an

expected pyridoxal 5’-phosphate cofactor might be present only at small concentrations. The

absorption spectra of the purified enzyme and of free PLP were measured between 280 and

500 nm. Free PLP in solution shows two distinct absorption peaks at 327 and 390 nm. The

absorption spectrum of the enzyme and PLP in stoichiometric quantities (monomer : PLP = 1

: 1) shows a shift of the 390 nm peak to 421 nm, corresponding to the formation of a Schiff

base between the aldehyde group of PLP and an amino (NH2) group of the protein, typical for

SHMT enzymes (Fig 3B). These findings indicate that, differently from most other serine

hydroxymethyltransferases, HpSHMT binds its cofactor PLP only weakly, essentially resulting

in the loss of PLP during protein purification.

Serine hydroxymethyltransferases are capable of catalysing both, folate-dependent and

folate-independent reactions, with the former being the main physiological reaction, involving

the reversible interconversion of serine to glycine. The affinity of SHMT for MTHF can be

determined by measuring the absorbance at 502 nm, corresponding to the intermediate ter-

nary enzyme-PLP-glycine-folate complex, with increasing substrate concentrations [35]. An

apparent binding constant for MTHF was determined by plotting the absorption values at 502

nm as a function of the MTHF-concentration (Fig 3C). A concentration of 0.3 mM of folate

substrate resulted in 50% of the maximal signal. This value was considered as apparent KFol

value and is similar to what is observed for the E. coli enzyme (KFol, 0.1 mM) [35] and cyto-

plasmic (KFol, 0.2 mM) or mitochondrial (KFol, 0.07 mM) SHMTs from rabbit under similar

reaction conditions [47, 48]. Our data indicate that the H. pylori enzyme forms a stable ternary

complex upon external addition of pyridoxal 5’-phosphate, characteristic for SHMTs.

Fig 2. Genetic complementation assays in vivo, testing for the function of HP0183. The glyA gene in E. coli strain

MG1665 was partially deleted and replaced with a kanamycin (Kn) resistance cassette. The resulting deletion strain

EcΔglyA was transformed with plasmid pQE60, containing the HP0183 gene under control of an IPTG-inducible T5

promoter, resulting in strain EcΔglyA + HpglyA. Complementation tests were performed on solid M9 minimal

medium in the presence of glycine (Gly) and serine (Ser). WT E. coli MG1655 was used as positive control, EcΔglyA
transformed with pQE60 without insert (EcΔglyA + pQE) as negative control.

https://doi.org/10.1371/journal.pone.0208850.g002
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In addition, SHMT is able to catalyze the folate-independent retroaldol cleavage of L-allo-

threonine and 3-phenylserine to glycine and acetaldehyde [36]. The produced acetaldehyde is

reduced to ethanol by NADH-dependent alcohol dehydrogenase, and the oxidation of NADH

to NAD+ can be monitored at 340 nm, thus establishing a direct link between NADH oxida-

tion and the catalytic activity of SHMT. The measured oxidation curve for the H. pylori
enzyme is presented in Fig 3D and indicates that it is able to transform L-allothreonine to acet-

aldehyde, thus confirming its activity as SHMT.

Structure of SHMT from Helicobacter pylori
Crystal structures of serine hydroxmethyltransferases were determined from prokaryotes [49–

54], protozoans [55] and eukaryotes [56–58] and were found to display a characteristic fold,

similar to other type I PLP enzymes [59]. Prokaryotic SHMTs are homodimers, whereas the

eukaryotic enzymes are homotetramers, with no apparent differences in activity [6]. The active

site is located at the dimer interface and delineated by amino acid residues from both dimer

subunits. In order to obtain structural and functional insight into the H. pylori enzyme and

address the weak PLP binding observed in purified HpSHMT, we solved the crystal structure

of H. pylori SHMT at a resolution of 2.8 Å (see Material and methods and Table 2). HpSHMT

crystallized as dimer, like the other known bacterial SHMTs, and no evidence was found for

higher oligomeric states in the crystal packing. The HpSHMT structure displays the typical

highly conserved overall fold of type I PLP-dependent proteins and is formed by one large and

one small domain. The spatial organization is very similar to that observed in TtSHMT and

EcSHMT (Fig 4A) [49]. The large domain contains a seven-stranded β-sheet surrounded by α-

helices. All strands, but one, are parallel. The small domain at the C-terminal part contains

three short antiparallel strands and four α-helices and consists of residues 277–409. The first

twenty-five residues of the N-terminus and the last ten residues of the C-terminus interact

with the adjacent subunit. Superposition of chains A and B shows the same structure (rmsd of

0.56 Å on 376 Cα), with one loop being slightly more ordered in chain A (Fig 4A, right). The

structure of EcSHMT (PDB ID 1DFO) was solved in the presence of PLP-glycine and 5-formyl

tetrahydropteroylglutamate ([49]; Fig 4A, left), while the TtSHMT structure (PDB ID 2DKJ)

has PLP covalently linked to a conserved lysine residue (Lys 226 in TtSHMT); Fig 4A, center).

The active sites (one per monomer) of SHMTs reside at the dimer interface (Fig 4B) and

amino acids from each subunit are involved in PLP binding.

The PLP binding pocket is essentially formed by five loops from one subunit, including

loop 2 (residues 92–96), loop 3 (residues 118–138), loop 4 (residues 170–174), loop 5 (residues

197–200) and loop 6 (residues 223–227), and is completed by two loops from the adjacent

Fig 3. Biochemical properties of HpSHMT. (A) Expression and purification of HpSHMT. Left: SDS-PAGE (15%)

analysis. Lane 1: crude extracts before IPTG induction; lane 2: crude extracts 3h after IPTG induction; lane 3: purified

HpSHMT; MM: molecular weight standards. The purified protein (2 μg) shows an apparent molecular mass of� 45

kDa. Right: immunodetection of HpSHMT with monoclonal anti-6xHis antibody. (B) Absorption spectrum of purified

HpSHMT (blue curve), free PLP in solution (black curve) and a stoichiometric mixture HpSHMT/PLP (monomer :

PLP = 1 : 1) (red curve) registered at room temperature. The latter presents a characteristic shift of the peak to 421 nm,

corresponding to the Schiff base formed between the pyridoxal cofactor and an amino group of the protein. (C)

Measurement of the affinity of HpSHMT for MTHF based upon the absorption at 502 nm, corresponding to the

intermediate ternary enzyme-PLP-glycine-folate complex, using increasing substrate concentrations. An apparent

binding constant was determined by plotting the absorption values at 502 nm as a function of the MTHF-

concentration. The values shown are averages of two independent measurements that were within 20% of each other.

(D) Oxidation of NADH and HpSHMT activity. SHMT also catalyzes the folate-independent retroaldol cleavage of

allothreonine and 3-phenylserine to glycine and acetaldehyde. The reduction of acetaldehyde to ethanol via an NADH-

dependent alcohol dehydrogenase directly links the oxidation of NADH to the enzymatic activity of SHMT. Red curve:

with HpSHMT; grey curve: without HpSHMT.

https://doi.org/10.1371/journal.pone.0208850.g003
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subunit, loop 1 (50–67) and loop 7 (residues 252–259) (Fig 5A and 5B). Despite sequence con-

servation of these seven loops, no PLP was present in the HpSHMT structure, providing one of

the very few apoprotein structures of an SHMT enzyme [52, 53]. Superposition of one PLP-

bound monomer of TtSHMT on each HpSHMT subunit (rmsd of 1.29Å on 364 Cα) was used

to visualise the position of PLP in HpSHMT. The two active sites of HpSHMT are separated by

a distance of 24 Å (calculated between the two PLP α-phosphates), which is considerably lon-

ger than the average distance of 18 Å observed in most SHMT structures (Fig 4B) [60]. This

illustrates a modification of the HpSHMT dimer interface, where one subunit is rotated about

17˚ from the other in comparison to PLP-bound TtSHMT or EcSHMT (Figs 4B and 5A). This

modification is accompanied by marked differences at the HpSHMT active site loops 1, 3 and

7 (Fig 5A). Loop 1 of EcSHMT is essential in both, formation of the homodimer interface and

tetrahydrofolate substrate binding, together with loop 3 and a conserved C-terminal loop 429-

(residues 344–363) from the adjacent subunit (Fig 5A). Remarkably, loop 1 is completely dis-

ordered in the two chains of HpSHMT. In the structure of EcSHMT, loop 3 acts as a “lid” for

the cofactor and as a “side wall” for the tetrahydrofolate substrate. A conserved histidine resi-

due (His126 in TtSHMT; His122 in EcSHMT) is involved in stacking with PLP in TtSHMT

and EcSHMT, and is oriented towards the empty PLP binding site cavity in HpSHMT (Fig

5A). In addition, the inter-domain loop 7 closes the PLP binding site in concert with loop 3

Fig 4. Structural characteristics of HpSHMT. (A) Ribbon representations of the dimeric SHMTs from E. coli (PDB

ID 1DFO, [49]), Thermus thermophilus (PDB ID 2DKJ) and H. pylori (PDB ID 6F93). Two representations of each

structure are depicted. The position of the PLP cofactor is indicated in the E. coli and T. thermophilus enzymes; SHMT

of H. pylori contains no bound PLP in the crystal structure. (B) Structural alignment of both TtSHMT and HpSHMT

dimers revealing a significant change at the homodimer interface.

https://doi.org/10.1371/journal.pone.0208850.g004
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from the facing subunit in TtSHMT and EcSHMT (Fig 5A). In HpSHMT, loop 7 presents high

B-factor values suggesting an increased flexibility (Fig 4C and Table 2). Surprisingly, the PLP

pocket is found almost pre-organised in one subunit of the HpSHMT structure despite the dis-

order observed for loops 1, 3 and 7. Indeed, the important residues Y52, S94, S96, S172, D197,

Fig 5. Close-up views of PLP-binding regions and structure-based alignements of SHMTs. (A) Close-up view of the

PLP-binding region of TtSHMT (left panel), EcSHMT (middle panel) and of a model of HpSHMT apoprotein with

PLP (right panel). Contributions of chains A and B and the positions of loops 1, 2, 3, 4, 5, 6 and 7 are indicated in cyan,

purple, red, pale green, grey, pink and wheat, respectively. The following residues are missing in loop 1 and 3: 54–67

(53–66) and 124–130 (120–134) from HpSHMT monomer A (monomer B). (B) Structure-based alignments of the

protein sequences of SHMTs from E. coli, T. thermophilus and H. pylori highlighting structural elements, conserved

features (dots), conserved loops 1–7 and residues acting on loop 3 conformation (stars). (C) Close-up of the “open lid”

conformation of loop 3 from HpSHMT colored in red versus the “closed lid” conformation from EcSHMT colored in

blue. Loop 5 is colored in blue and pale green for EcSHMT and HpSHMT, respectively.

https://doi.org/10.1371/journal.pone.0208850.g005
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H200, G256, G257 from loop 2, 4, 5 and 7 of each subunit are positioned to interact with a PLP

moiety (Fig 5A and 5B). This also includes the TTHKTL motif (residues 223–228) containing

the Lys 226 residue that covalently binds the 4’ aldehyde of PLP, resulting in the formation of

an internal aldimine intermediate, required for SHMT activity.

Interestingly, some residues of HpSHMT could favour an “open lid” conformation of loop

3. HpSHMT Ile 178 (Val in EcSHMT) does not favour the same conformer of Phe 171 in

EcSHMT, which in turn is not compatible with a “closed lid” conformation of loop 3 as

observed in EcSHMT (Fig 5C). It was previously shown that SHMTs could bind either PLP or

tetrahydrofolate substrates independently [61]. In this context, binding of the tetrahydrofolate

moiety in HpSHMT would likely modify the homodimer interface to bridge loop 1 and the

required “closed lid” conformer of loop 3, therefore together promoting PLP binding. To date,

most 3D structures of SHMTs were solved with the pyridoxal-phosphate cofactor covalently

linked to a conserved lysine residue of the active site, whereas PLP is absent in the structure of

HpSHMT reported here. This is in agreement with the low PLP occupancy in purified enzyme

preparations, also suggesting that PLP does not bind as strongly to the H. pylori enzyme as it

does in most other SHMTs.

Functional implication of HpSHMT

To improve our understanding of the physiological role of H. pylori SHMT, we inactivated the

glyA gene in the parental strain Hp26695, resulting in the deletion strain HpΔglyA. For inacti-

vation of glyA, the strain Hp26695 was transformed with plasmid pILL570 (glyA::aphA-3), and

a non-polar kanamycin resistance cassette was inserted into the glyA gene of H. pylori by

homologous recombination. A schematic representation of this inactivation is presented in

Fig 6A.

The H. pylori ΔglyA deletion strain shows growth both on solid medium and in liquid cul-

tures, although with a growth rate considerably slower compared to the wild-type strain

Hp26695 under the same conditions. In liquid cultures we measured a doubling time of 21

hours for HpΔglyA, compared to four hours for the WT strain Hp26695 (Fig 6B). Altogether,

our findings demonstrate that glyA codes for crucial metabolic functions in H. pylori, as exem-

plified by considerably impaired cellular growth.

To obtain further insight into the properties of the HpΔglyA deletion strain, we compared

the overall protein profiles in crude cell extracts of H. pylori WT with the ΔglyA strain at differ-

ent growth times. Using two independent experimental methods, we observed the loss of a

polypeptide with an apparent molecular mass of about 145 kDa in HpΔglyA (note that the

molecular mass of HpSHMT is 45 kDa) (Fig 7A). The band corresponding to the unknown

protein with altered expression level was subjected to chymotryptic digests and mass spectro-

metric analyses (MALDI-TOF) and was identified as CagA, the principal virulence factor in H.

pylori, with a molecular mass of 146 kDa. The peptides that were identified by mass spectrome-

try and attributed to CagA are listed in S2 Table. Immuno-detection analysis with monoclonal

antibodies directed against the CagA protein confirmed the absence of CagA in crude extracts

of the HpΔglyA strain (Fig 7B). A 307 bp DNA fragment that corresponded to an internal

region of cagA was amplified in the WT strain Hp26695 (glyA+cagA+) and in HpΔglyA (glyA-

cagA+). No amplification was observed in the type II control strain X47 (glyA+cagA-) [62, 63]

(Fig 7C).

Systematic PCR amplifications showed that the promoter region and the 5’ region of cagA

were not amplified in the HpΔglyA strain (S2A Fig). Deep sequencing of the complete genome

of HpΔglyA using IonTorrent technology strikingly revealed the full deletion of a 27,716 bp

region (from coordinate 552,383 to 580,099) (S2B Fig). This deletion extends from the cag5
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gene to the cagA gene, with the loss of the 178 first nucleotides of cagA. Note that this region

was present in the 26695 parental strain used to construct the aforementioned deletion strain,

as confirmed by whole genome sequencing. These data explain the absence of PCR amplifica-

tion with the primer pair SA129/SA83 and consequently the lack of production of the CagA

protein in the HpΔglyA strain. Altogether� 77% of the cag pathogenicity island (cagPAI) are

lost in the HpΔglyA deletion strain (S2 Fig).

Discussion

Here, functional in vivo complementation of an E. coli ΔglyA strain demonstrated that the

Helicobacter pylori HP0183 gene product displayed serine hydroxymethyltransferase activity

(Fig 2). The physiologically relevant cellular reaction of SHMT is the reversible interconver-

sion of serine and THF to glycine and MTHF [1–3]. This reaction is the principal source of

cellular glycine, so consequently loss of SHMT activity has been correlated with glycine auxot-

rophy in E. coli [44, 45] and humans [46]. Importantly, the SHMT-catalysed reaction results in

Fig 6. (A) Schematic representation of glyA (HP0183) inactivation in H. pylori. glyA, coding for SHMT, was partially deleted and replaced with a kanamycin resistance

cassette resulting in plasmid pILL570 (glyA::aphA-3). H. pylori 26695: WT strain; HpΔglyA: glyA deletion strain. (B) Growth curves of strains H. pylori 26695 WT (black

curve) and HpΔglyA (red curve) in BHI medium supplemented with 10% fetal calf serum. Each point represents the mean of three independent measurements.

https://doi.org/10.1371/journal.pone.0208850.g006
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formation of MTHF, which is one of the few C1 donors in biosynthesis. MTHF is subsequently

utilized for thymidylate, methionine or purine biosynthesis. Interestingly, in many organisms

including animals, plants and bacteria, a glycine-inducible glycine cleavage system is present

that provides an alternative biosynthetic route for the generation of MTHF. It is part of the

most prominent glycine and serine catabolism pathway and, when coupled to SHMT, catalyzes

the following reversible reaction: 2 glycine + NAD+ + H2O! serine + CO2 + NH3 + NADH +

H+. Here the methyl group derived from the catabolism of glycine can be transferred to other

key molecules, such as purines and methionine. Based upon the KEGG database [20, 21], in

organisms containing ThyX as the only thymidylate synthase, as is the case for H. pylori,
SHMT appears to be the only enzyme capable of synthesizing MTHF from THF.

Fig 7. (A) Comparison of the overall protein profiles in crude cell extracts of wild-type H. pylori 26695 (red) and the HpΔglyA deletion strain (blue)

as determined by capillary electrophoresis (Experion, Bio-Rad) (left) and by migration on SDS-PAGE (right). The absence of a discrete protein band

(�) with a molecular mass around 145 kDa is observed in the ΔglyA strain. (B) Immunoblot of crude extracts of H. pylori strains: 26695 (glyA+, cagA+),

HpΔglyA (glyA-, cagA+) and X47 (glyA+, cagA-). Immunodetection was performed with antibodies directed against CagA and UreB proteins from H.

pylori. (C) PCR amplification of a 307 bp internal fragment of cagA performed with the primer pair SA82/SA83 (Table 1). Amplification is observed

in the wild-type 26695 and HpΔglyA deletion strains, but not in the X47 control strain.

https://doi.org/10.1371/journal.pone.0208850.g007
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HpSHMT binds its cofactor PLP only weakly, essentially resulting in the loss of PLP during

protein purification, but is able to form a stable ternary complex with PLP in the presence of

substrates/products, as demonstrated biochemically and spectroscopically (Fig 3B and 3C).

No PLP was present in the HpSHMT structure (Fig 4), providing one of the very few apopro-

tein structures of an SHMT enzyme. Superposition of the HpSHMT apoprotein with TtSHMT

and EcSHMT reveals marked differences at the active site that is almost completely disordered

in HpSHMT. As a more detailed view of the active site (Fig 5A) indicates a very strong struc-

tural conservation of the residues involved, we propose that the structure of HpSHMT repre-

sents an inactive conformation of the enzyme prior to PLP binding. Two consecutive glycine

residues that precede the PLP-stacking histidine residue are conserved across bacterial SHMT

sequences and are located in a glycine rich loop. In the HpSHMT apoprotein these residues

(G121, G122) are located in the disordered loop 2 (residues 117–137). This was found to be the

case also for the equivalent glycine-rich loops of apo-SHMT of the psychrophilic bacterium

Psychromonas ingrahamii [53] and in the X-ray structure of apo-SHMT from Salmonella
typhimurium [54]. It has been suggested that the flexibility of this loop may be essential for the

PLP cofactor uptake mechanism, which may be possibly shared by most bacterial SHMTs [53].

In the apo-SHMTs, the loop containing the invariant histidine residue (His123 in HpSHMT)

that makes a stacking interaction with the pyridine cofactor ring is disordered, indicating the

pivotal role of this interaction in the structural rearrangement occurring upon cofactor bind-

ing (Fig 5A). These findings are in agreement with earlier studies indicating that the PLP

cofactor binds to the already folded dimeric apo-SHMT [64]. In bacterial type I PLP-depen-

dent enzymes [65, 66] and the human enzyme DOPA decarboxylase [67], binding of PLP

was found to induce folding and rearrangement of loops located around the active site. Thus

the folding of specific loops is a prerequisite for PLP binding and in agreement with our pro-

posal that the HpSHMT structure represents an inactive conformation. This is analogous to

what has been previously proposed for thymidylate synthase ThyA that has been shown to

exist in active and inactive loop configurations [68]. Note that the stabilization of the proposed

inactive configuration using small molecules may provide a specific way for inhibiting

HpSHMT.

The H. pylori ΔglyA deletion strain shows growth on both solid media and in liquid cul-

tures, although with a growth rate considerably slower compared to the parental wild-type

strain Hp26695 (Fig 6B). At first sight, the non-essential nature of the ubiquitous SHMT

enzyme might appear surprising. However, a genomic study mapping the location of transpo-

son (Tn) insertions in H. pylori showed one Tn hit in glyA [69], supporting the idea that glyA
is not essential. In Leishmania, in serine rich medium, the glyA genes are dispensable for

growth, but when the cells are grown in poorer medium, the glyA deletion mutants appear

auxotroph for serine [70]. In E. coli, multicopy suppression of ΔglyA by the isoenzyme LtaE

(L-allo-threonine aldolase) has been described [71, 72]. Moreover, rescue of glyA mutants was

observed in a pathway catalysed by the tdh and kbl gene products, threonine dehydrogenase

and glycine C-acetyltransferase, respectively [72, 73]. Analysis of the KEGG database [20, 21]

revealed the presence of the respective homologs of these proteins in H. pylori 26695, inviting

further investigation. Altogether, this suggests that these potential alternative pathways likely

exist in H. pylori, but that they are considerably less efficient than HpSHMT itself.

Our findings highlight the crucial metabolic functions of SHMT in H. pylori, as exemplified

by the considerably impaired cellular growth of the glyA deletion strain. Together with thymi-

dylate synthase ThyX, SHMT is crucial for de novo synthesis of thymidylate (dTMP) in H.

pylori (Fig 1). Inadequate de novo thymidylate biosynthesis is known to slow down DNA repli-

cation and increase genome instability. For example, de novo thymidylate biosynthesis activity

was found to be reduced by 75% in nuclei isolated from shmt1 knockout mice [74]. Mice
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lacking SHMT1 are vital, but have an abnormal accumulation of uracil in DNA [75]. In lung

cancer cells, knockdown of SHMT1 induces apoptosis as a result of uracil misincorporation

during DNA replication and a decrease in dTMP synthesis [76]. It it thus reasonable to pro-

pose that metabolically challenged H. pylori ΔglyA cells may replicate their chromosomal DNA

even slower than wild-type cells [19], resulting in replication stress known to be linked to chro-

mosomal instability [77, 78].

Protein profiling together with PCR and deep sequencing approaches showed the loss of�

77% of cagPAI [79] in the characterized HpΔglyA deletion strain (Fig 7). Although this obser-

vation per se does not imply causation and H. pylori strains are known to exhibit a high level of

genetic diversity [80, 81], it is of interest to note that the glyA deletion strain shows no chromo-

somal changes in the known genome plasticity regions I and II [82]. Further analyses of inde-

pendent deletion mutants will be required to investigate a potential direct link between the

deletion of glyA and the loss of cagPAI.

Conclusions

In the present study we identified and characterized the enzyme SHMT from the human path-

ogenic bacterium H. pylori. Its activity was confirmed by functional complementation assays,

supported by biochemical studies. A H. pylori ΔglyA strain was viable, but exhibited markedly

slowed growth compared to wild type and lacked CagA. The possibility of a direct link between

the glyA deletion and genomic stability in H. pylori clearly mandates further studies. The

three-dimensional structure of the H. pylori SHMT apoprotein provided insight into the low

affinity of the enzyme for its PLP cofactor and revealed marked differences in loop configura-

tions at the active site. It is of note that the stabilization of the proposed inactive configuration

using small molecules may provide a specific way for inhibiting HpSHMT.
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tial deletion and chromosomal replacement of the glyA gene by a non-polar cassette aphA-3
(KnR) in H. pylori 26695. The chromosomal organization of the 26695 wild type and the result-
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shots illustrating the coverage overview of the 26995 wild type and ΔglyA mutant genomes

sequenced on an Ion Torrent PGM. The inset shows the 27,716 bp deletion into the cag-PAI in

the ΔglyA mutant (coordinates: 552,383–580,099). The extremities of the gap are located at 80

bp from the 5’ extremity of the cag5 gene (HP0524) (left end) and at 178 bp from the 5’
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Supervision: Stéphane Skouloubris, Ursula Liebl.

Validation: Laurent Terradot, Stéphane Skouloubris.
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