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ne of the elusive goals of pharmacotherapy is
the ability to identify the relevant characteristics of a
patient with a particular disorder in such a way as to per-
mit selection of the best pharmacological agent: the med-
ication with the greatest likelihood of effectiveness and
the least likelihood of adverse or undesirable effects.
Despite the considerable number of treatments in our
psychotherapeutic armamentarium, any individual treat-
ment applied to a group of persons with a given disorder
will leave an unacceptably high percentage nonrespon-
sive, again consequent to lack of efficacy or inability to
tolerate the treatment.To increase the odds of therapeu-
tic success, it is incumbent on clinicians to consider the
multitude of factors that may influence response to a par-
ticular medication, eg, prior response to that medication,
family history of response, family history of psychiatric
disorders, tolerance of side effects, personality style, his-
torical factors (eg, history of hypomania or suicide
attempts), symptom constellation (eg, atypical symp-
toms), and coincident medical problems (eg, hepatic dys-
function). An additional factor that increasingly may
inform treatment decisions is sex. The following article
will review both the theoretical evidence for, and the
practical demonstrations of, the impact of gender and sex
steroids on the response to treatment.

The sexually dimorphic brain

Two papers in the 1950s and 1960s were critical in demon-
strating that the brain, like the gonads, was sexually dimor-
phic. First, Phoenix et al1 showed that prenatal exposure of
a female guinea pig to testosterone resulted in masculin-
ization and defeminization of behavior upon reexposure
to testosterone in adulthood. This ability of gonadal
steroids, when administered perinatally, to change the
repertoire of adult behavioral response to the same
steroid—a process Phoenix et al called “organization”—
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Sex-dependent modulation of 
treatment response
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The response to a psychotropic medication reflects char-
acteristics of both the medication and the substrate, ie,
the individual receiving the medication. Sex is an indi-
vidual characteristic that influences all elements of 
the pharmacokinetic process—absorption, distribution,
metabolism, and elimination. The effects of sex on these
components of the pharmacokinetic process often coun-
terbalance one another to yield minimal or varying sex-
ual differences in blood levels achieved. However, sex
also appears to influence pharmacodynamics, the tissue
response to a given level of medication. Consideration
by the practitioner of sex as a possible contributing fac-
tor to treatment nonresponse will enhance the efficacy
and precision of clinical interventions.
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showed that the parts of the brain mediating sex-specific
behavior were both developmentally plastic and distinct
(ie, different across sexes).The existence of sex-dependent
structural differences in the brain was subsequently con-
firmed by Pfaff, who showed both gross and cellular dif-
ferences between sexes, with the dimorphisms altered by
perinatal castration.2 There followed a number of papers
in the 1970s amplifying these findings.3-6 In addition to the
neuroanatomical differences (size of brain nuclei, neuritic
arborization patterns, and synapse formation), sexual dif-
ferences were observed in the response to stimuli, with
Rainbow et al7 demonstrating more robust progesterone
receptor induction by estrogen in the brains of females.
Two processes, then, appear to underlie sexual dimor-
phisms in the response to pharmacological agents: the neu-
romodulatory actions of gonadal steroids; and sex-depen-
dent differences that are independent of ambient gonadal
steroid levels.

Neuromodulatory effects

The intracytoplasmic/intranuclear receptors for gonadal
steroids are transcription factors that bind to enhancer ele-
ments to regulate the transcription of a wide range of
genes.These receptors, when activated by gonadal steroids,
can also interact with coregulatory proteins called cointe-
grators (eg, CBP [cAMP response element binding pro-
tein–binding protein]/GRIP [glucocorticoid
receptor–interacting protein]), permitting the gonadal
steroids to regulate genes that possess certain enhancer
elements (eg, AP1 [activator protein–1]) even in the
absence of classical hormone response elements. By these
means, gonadal steroids modify the expression of neuro-
transmitters/neuropeptides (eg, serotonin [5-hydroxy-
tryptamine, 5-HT] by affecting tryptophan hydroxylase; γ-
aminobutyric acid [GABA] by affecting glutamic acid
decarboxylase; acetylcholine by affecting choline acetyl-

transferase; endorphin; and oxytocin), their receptors (eg,
5-HT1A, 5-HT2A, endorphin receptor, and oxytocin recep-
tor), receptor conformation (eg, GABAA receptor), neu-
rotransmitter reuptake (eg, serotonin transporter [SERT]),
and postreceptor signal transduction (eg, G∝i). In addition
to these “genomic” mechanisms (in which the activated
hormone receptor plays a direct role in the modification
of genomic activity), gonadal steroids exert what has been
found to be an ever-increasing number of “nongenomic”
actions, effects that occur in seconds to minutes (compared
with the much longer times required for genomic effects)
and that, in many instances, are initiated at the cell mem-
brane without the requirement for diffusion of the hor-
mone into the cell.These nongenomic effects include mod-
ulation of ion channels (eg, calcium, potassium) and
activation of signal transduction cascades (eg, ERK [extra-
cellular signal–regulated kinase] or Akt [protein kinase
B]).As virtually all psychotropic drugs act via modulation
of neurotransmitter-gated ion channels or signal trans-
duction systems, sex-related differences in gonadal steroid
levels would be expected to produce different responses
to the same psychotropic agents. (Early support for this
hypothesis was provided by Kendall et al,8 who showed
that one of the expected neuromodulatory effects of
imipramine—downregulation of the 5-HT2 receptor—
occurred in vitro only in the presence of estradiol.)

Gonadal steroid–independent, sex-dependent 
differences in response

While it is tempting to assume that sex-related differ-
ences in response simply reflect exposure to different lev-
els of gonadal steroids, both in vivo and in vitro studies
suggest the inadequacy of this inference. Following up
their demonstration of dimorphisms in estrogen-induced
progesterone receptors,7 McEwen and colleagues9

demonstrated that estradiol increased choline acetyl-
transferase activity in the diagonal band of castrated
females and decreased it in castrated males. While there
are some sex-related differences in the distribution of
estradiol and gonadal steroid receptors, these cannot
explain the large differences in response observed in this
study. Consequently, the authors suggested that sex may
alter the response to the same biological stimulus.
Additionally, in vitro studies have shown similar sex-
dependent differences in the responses of cells in culture
(and hence isolated from circulating steroid levels).These
differences include a greater response seen in one sex,
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the presence of response in one sex only, or opposite
effects across sexes10,11 (Zhang et al, unpublished data). It
appears, therefore, that at a cellular level, the response to
a pharmacological stimulus may differ in males and
females, even when there are no differences in the levels
of gonadal steroids to which they are exposed.

Sexual dimorphisms in pharmacokinetics 
and metabolism

A patient may not respond to a medication for multiple
reasons: the levels are too low, the levels are too high
(either falling outside of a therapeutic window or causing
side effects that compromise tolerance of the medication
or compliance), or the biochemical changes induced by the
medication are ineffective. Sex may contribute to each of
these reasons by modifying pharmacokinetics (reasons
one and two) or pharmacodynamics (reason three).

Pharmacokinetics

In order for a drug to work, it must be available at the
relevant site of action, a process that involves absorption
from the portal of entry and regulation of the concen-
tration of the active moiety in the relevant tissue by bind-
ing proteins, volume of distribution, and metabolism.
Potentially, each of these may be modified by sex.

Absorption

The absorption of a drug depends on multiple factors
related to the characteristics of the drug and the gastroin-
testinal (GI) environment.These include the lipophilicity,
pKa, and molecular weight of the drug, and the acidity of
and transit time in the stomach and intestine. Sex differ-
ences in both gastric acidity and GI transit time have been
reported. Several studies12-15 observed decreased gastric
acid secretion in women compared with men, although
other and more recent studies failed to observe these dif-
ferences.16-18 While the positive studies, in general, had
larger sample sizes, they are also notable for having been
conducted outside of the USA and may, therefore, also
reflect ethnic differences.The consequence of decreased
acidity, if it occurs, would be to alter (usually increase) the
efficiency of the absorption of drugs, as a function of their
pKa, and to decrease their degradation. In general, GI
transit time is reported as slower in women,19,20 albeit
inconsistently.21 While longer GI transit time would be

expected to increase drug absorption by slowing transit in
the small bowel where most drug absorption occurs,22

increased (longer) GI transit time (particularly for solids)
has most consistently been observed in the stomach in
women,19,20,23-32 which would decrease absorption (conse-
quent to increased degradation). (In fact, the majority of
studies do not find sex-related differences in the small
intestine transit time.) Similarly, while observed sex dif-
ferences in gastric acidity would increase drug absorption
in women, differences in GI transit should decrease drug
absorption.This introduces what is perhaps the major con-
found in efforts to determine the effect of sex on drug
absorption in particular and pharmacokinetics in general,
namely the often opposing actions of sex on the multiple
physiological steps that determine circulating plasma con-
centrations of a drug.

Distribution

Binding proteins

The extent to which a drug is bound to carrier proteins
can influence its disposition within the body, such that
lower unbound (free) drug levels lead to more restricted
distribution outside the plasma space and potentially
decreased drug effectiveness.33 Albumin, one of the major
drug transport proteins, is not affected by either sex or
gonadal steroids.34 However, at least one binding protein,
α1-acid glycoprotein (AAG), may be lower in women35-37

(but see also reference 38) and is decreased by estra-
diol,35,39 an effect which should increase the proportion of
free drug.34,40 Drugs bound by AAG include amitriptyline,
chlorpromazine, desipramine, imipramine, doxepin, nor-
triptyline, olanzepine, reboxetine, thioridazine, and tria-
zolam.41 Disagreement regarding the existence of a sex
difference in circulating AAG levels could be a result of
the small numbers of subjects studied and the failure to
control for menopause or for menstrual cycle phase.
However, comparable free (active) levels of probe drugs
have been observed among individuals with different lev-
els of AAG, suggesting that these differences may have
minimal clinical impact.42-44

Volume of distribution

As with absorption and protein binding, the volume of
distribution will be determined by both drug-dependent
and drug-independent factors, the former including the
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pKa and lipophilicity of the drug, and the latter including
vascular and tissue volumes and the proportion of body
fat. Women have an increased fat-to-lean body mass
ratio45-47 and hence show a greater distribution of fat-sol-
uble drugs48 (eg, diazepam). Once again, the clinical
impact of the dimorphism in fat content is far from easy
to predict.While blood levels of a drug may decrease due
to increased volume of distribution, the half-life of the
drug may be prolonged due to increased retention in
body fat, which effectively serves as a drug reservoir.
Additionally, the proportion of body fat tends to increase
with age and increases disproportionately (faster and
greater) in women, suggesting that some sex-related dif-
ferences in drug distribution would increase with age. Sex
differences in body weight also need to be considered
when conducting studies on sex differences in pharma-
cokinetics. Since males tend to weigh more than females
and have larger bodies, some apparent sex differences
might actually be due to size differences.This is especially
relevant for studies that administer the same dose of a
drug to all subjects. Many past pharmacokinetic studies
failed to control for body weight; consequently, reported
sex differences must be examined critically, as they may
be artifactual.

Metabolism

As the oxidation and reduction of most drugs is carried
out by the cytochrome P450 (CYP) enzymes, sexual
dimorphisms in the activities (or levels) of these enzymes
could underlie sexual dimorphisms in the plasma levels of
drugs achieved following a given dose of medication. Five
isozymes from three families of CYP enzymes are the
most widely studied and the most relevant for the metab-
olism of drugs in the psychiatric armamentarium:
CYP3A4, CYP2D6, CYP2C9, CYP2C19, and CYP1A2.
The by now familiar confounds loom large in the assess-
ment of the effects of sex on the activities of these
enzymes. For example, the clearance of theophylline and
caffeine, substrates for CYP1A2, is slower in young women
than in men, suggesting increased activity in men.49-56

However, theophylline and caffeine, like most drugs, are
metabolized by multiple enzymes.57 Thus, studies using a
“probe” drug to assess the activity of the CYP isoenzyme
may yield spurious results due to the multiplicity of enzy-
matic pathways that may be involved in a drug’s metabo-
lism. Further, while there is indirect evidence for an effect
of gonadal steroids on CYP1A2 activity (because the lev-

els of caffeine and theophylline decrease during pregnancy
and with oral contraceptive [OC] use49,51,52 [but not during
the menstrual cycle]),58 smoking has a more prominent
effect,49,51,53,59-62 with possible greater induction of activity in
males than females.54 Thus, sex effects may be conveyed
through modulation of other influences on enzyme activ-
ity (eg, smoking or aging), as well as through direct effects
of gonadal steroids. Ethnicity, in particular, plays a key role
in explaining the large interindividual variation in drug
metabolism, because polymorphisms in the genes for the
CYP isoenzymes are expressed in varying frequencies
among different ethnic populations. These polymorphic
variants have been used to define three types of drug
metabolizers: (i) extensive metabolizers (EM), who are
homozygous or heterozygous for the wild-type gene and
make up the majority of the population; (ii) poor metab-
olizers (PMs), who are homozygous for the mutant gene
and have lower CYP enzyme expression; and (iii) ultrara-
pid metabolizers (UM), who have multiple copies of the
wild-type gene and have significantly increased CYP
enzyme expression.63 CYP2D6 has an additional subgroup,
the intermediate metabolizers (IM), who have more activ-
ity than the PMs, but less than the EMs.64 Besides sex dif-
ferences in the activity of the CYP isoenzymes, the poly-
morphic variants may themselves display sex-dependent
differences in prevalence.
• CYP3A4. This, the most abundant hepatic CYP450

enzyme and metabolizer of 50% of all drugs, shows
increased activity in women for some but not all sub-
strates (see reference 63). On average, women have 
20% to 50% greater CYP3A4 activity than men.63,65

Additionally, age and sex interact, so that the declining
activity of CYP3A4 with age is seen more in men than in
women.65 This effect, combined with increased fat pro-
portion in aging women and decreased oxidation in aging
men,34 suggests that older women should have markedly
lower benzodiazepine levels than older men at a compa-
rable dose (all else being equal, which, of course, it is not,
eg, glomerular filtration rate [GFR] is proportional to
weight and men are larger than women, thus increasing
clearance in men).34 All of the aforementioned confounds
(multiple enzymatic processing of probe drugs, ethnic
effects, and age) plus small sample sizes and concurrent
disease apply to inferences about the effects of sex on
CYP3A4 activity.When examining the possible influence
of sex on CYP3A4 activity, it is important to control for
ethnicity, as CYP3A4 activity is higher in Caucasians
than in African-Americans,44 and Asian women also have
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lower CYP3A4 activity than Caucasian women.66 Finally,
although sex affects CYP3A4 activity, sex steroid levels
do not appear to be responsible for the observed sex dif-
ference.67-69

• CYP1A2. This major metabolizer of olanzapine and
clomipramine is induced by smoking59,60 (as mentioned
above) and ingestion of cruciferous vegetables,51 and is
also influenced by ethnicity. African-Americans are
reported to have lower CYP1A2 activity than
Caucasians,50 and Chinese women have nonsignificantly
lower activity than Caucasians.70 Studies are fairly con-
sistent in demonstrating higher CYP1A2 activity in
males49,52 (at least in Caucasians and Chinese). Finally,
while OCs clearly inhibit CYP1A2,49,51-53,62,71,72 the failure
of CYP1A2 activity to change over the menstrual
cycle58,68 makes the role of sex steroids in the observed
sexual dimorphism in CYP1A2 activity uncertain.

• CYP2D6.This metabolizes many psychotropic drugs of
relevance to psychiatry, including most antidepressants,
haloperidol, and analgesics.65 As noted above, in enzymes
with polymorphic allelles, sex differences may occur in
the proportion of PMs, as well as in the relative activity
of the enzyme. No sex differences have been identified
in the incidence of CYP2D6 PMs. Studies with the probe
dextromethorphan found CYP2D6 activity to be higher
in female EMs than among male EMs,73-75 although one
study found no sex difference.68 Because CYP2D6 activ-
ity is increased during pregnancy,76 it would be expected
that female sex steroids influence CYP2D6 activity.
Studies across the menstrual cycle, however, do not sup-
port this hypothesis; only one study found increased
CYP2D6 activity during the luteal phase using debriso-
quine as the probe,77 while two other small studies using
dextromethorphan found no changes in CYP2D6 activ-
ity over the menstrual cycle.68,73 OC use does not appear
to affect CYP2D6 activity,78 further bolstering the argu-
ment that sex steroids are not responsible for the
observed sex difference.

• CYP2C19.This is responsible for the metabolism of an
assortment of drugs, including amitriptyline, citalopram,
clomipramine, phenytoin, topiramate, valproic acid, and
imipramine.63 Age and ethnicity are factors that could
potentially confound sex effects, because there is some
evidence that CYP2C19 activity declines with age79 and
Asians have a higher percentage of CYP2C19 PMs
than seen among people from Europe or the Middle
East.80-82 Findings from studies on sex and CYP2C19
activity are quite inconsistent, due in part to ethnic dif-

ferences as well as the inclusion of users of OCs, which
inhibit CYP2C19 activity.74,75

• CYP2C9.This accounts for about 20% of hepatic CYP
enzyme activity and contributes to the metabolism of
medications like phenytoin, imipramine, diazepam, and
amitriptyline.63 While ethnicity plays a significant role
in explaining observed interindividual variation in
CYP2C9 metabolism, sex does not,63,83 nor are there sex
differences in the frequency of PMs.84

To summarize, multiple confounds (ethnic and age effects,
smoking, body size, multiple enzymatic processing of
probes, small sample sizes, etc) notwithstanding, it
appears that the activity of CYP3A4 and CYP2D6 are
increased in women, CYP1A2 activity is increased in
men, and CYP2C9 and CYP2C19 are unaffected by sex.

Elimination

Following metabolic transformation, drugs are eliminated
from the body via the kidneys.A few studies found lower
GFR and renal blood flow in women,85,86 although the
authors noted that this sex difference can be partly
explained by increased muscle mass in men. Other
researchers found no sex differences in GFR and renal
blood flow,87 including two studies that controlled for
weight differences.88,89 Nonetheless, the data appear to
suggest slightly elevated renal function in males, leading
to increased renal secretion of drugs.
In short, the myriad factors affecting drug kinetics in the
body make it impossible to come to any simple conclu-
sions about sex and pharmacokinetics and, more impor-
tantly, about the effects of sex on drug plasma levels and
efficacy.

Pharmacokinetics of psychotropic medications

While sex can affect virtually any aspect of medication
processing, there is surprisingly little evidence that sex
has a major impact on actual blood levels of most psy-
chotropic drugs. What follows is a summary of studied
sex effects for benzodiazepines, antidepressants, and
antipsychotics.

Benzodiazepines

Despite several examples of increased benzodiazepine
absorption in women, almost all studies of benzodi-
azepine pharmacokinetics found no sex differences in
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absorption.90-100 It appears, then, that sex has little, if any,
influence on the absorption of benzodiazepines and is
not of general clinical relevance. With distribution, the
results are less clear as to whether a sex difference exists.
Benzodiazepines are highly lipophilic drugs and are,
therefore, preferably distributed in adipose tissue. As
such, observed sex differences in drug distribution are
thought to be the result of sex differences in body com-
position. Nonetheless, the majority of studies on benzo-
diazepine pharmacokinetics reveal no sex differences in
distribution.90-92,94,99,101-107 The most notable exception to this
observation is diazepam, studies of which have consis-
tently found increased volume of distribution in
women.96,97,108 Apart from diazepam, then, sex and repro-
ductive steroids, both exogenous and endogenous, have
little effect on the distribution of benzodiazepines.
While elimination was clearly not sexually dimorphic for
many benzodiazepines, several studies showed mixed
results, with some researchers finding sex differences in
elimination rates for a particular medication and other
researchers finding none.90-92,94,99-101,103-107,109-113 With the excep-
tion of alprazolam, which was found in one study to have
faster elimination in women,92 most benzodiazepines are
not affected by sex or have a weak tendency toward
slower elimination in women. Sex also does not signifi-
cantly contribute to the observed free (unbound) frac-
tion of many benzodiazepines, but several reports sug-
gest higher plasma levels of diazepam in women,104,114

although, again, other reports failed to observe sex
dimorphisms in the free fraction of diazepam.108,115 In con-
clusion then, sex and sex steroid levels do not signifi-
cantly affect the pharmacokinetics of most benzodi-
azepines. For the most part, any observed differences due
to sex, menstrual cycle, or OCs are inconsistent and do
not appear to be clinically significant.69,90,103,111,116-120 Finally,
studies on benzodiazepine pharmacokinetics tend to be
compromised by the small number of subjects studied
and by the failure to control for menopausal status,
smoking, and the use of other medications.

Antidepressants

For most antidepressants, there are no reported sex dif-
ferences in absorption, particularly after adjustment for
body weight and surface area.121-127 Similarly, most antide-
pressant studies do not exhibit sex-related differences in
distribution, although dothiepin,122 trazodone,124 and bupro-
pion128 may have increased volumes of distribution in

women, suggesting that women would experience lower
plasma levels when given the same dose by weight.
Elimination appears unaffected by sex for many antide-
pressants (eg, nefazodone129) and where sex differences are
reported, they are usually only in one variable, ie, clear-
ance or elimination half-life, but not both.130 Elimination
half-life does appear to be increased in women for sertra-
line131,132 and, less consistently, for bupropion.128,133 When one
examines the clinically relevant measure—plasma levels—
most evidence suggests that sex does not influence circu-
lating antidepressant levels (eg, nortriptyline, fluvoxamine,
moclobemide, maprotiline, and trazodone). Nonetheless,
several studies do suggest that women experience higher
plasma levels of the selective serotonin reuptake inhibitors
(SSRIs) fluoxetine and sertraline.132,134

Antipsychotics

Few studies have examined the effect of sex on neu-
roleptic pharmacokinetics.While increased absorption or
higher peak concentrations have been observed in
women on ziprasidone, sertindole, and fluphenazine,135-137

confounds, such as OC use, inclusion of outliers, and age-
dependent phenomena compromise the generalizability
of the findings.The metabolism and elimination of some
antipsychotic medications (thiothixene, olanzapine, and
clozapine) occur more slowly in females than in males,
possibly leading to higher drug levels for a given dose,
while the elimination of sertindole and ziprasidone is not
sexually dimorphic.135,137-141 While sex differences were
identified in sertindole pharmacokinetics, the authors
concluded that these were not clinically relevant.137

Plasma levels of most neuroleptics are similar for men
and women when dosed according to efficacy.An excep-
tion, however, is clozapine, the blood levels of which are
30% to 35% higher in women than in men when dosed
by efficacy.142-145 Neuroleptic blood levels also do not
appear to differ in men and women even at the same
dose. Nonetheless, exceptions include higher olanzapine
plasma levels in women, even after controlling for body
mass index,146 and higher mean plasma levels of sertin-
dole, which the authors attributed to a higher dose per
weight, better absorption, and slower metabolism in
women.137

In conclusion, for neuroleptics as for antidepressants and
benzodiazepines, with several notable exceptions (eg,
clozapine and olanzapine), plasma levels are similar in
men and women.
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Pharmacodynamics

While sexual dimorphisms in pharmacokinetics alter the
exposure of a tissue to the medication administered, a
considerable degree of variance in the observed effect
potentially resides in differences in the response of the
tissue, ie, identical drug exposure of a tissue to a drug
may elicit very different responses across individuals.
Differences in tissue response—the pharmacodynam-
ics—may be quite dramatic, seen, for example, in differ-
ent profiles of side effects or mood destabilization
induced by identical levels of gonadal steroids in differ-
ent subpopulations of women.147

Antidepressants

Most studies of the effect of sex on the efficacy of anti-
depressants have many more female subjects than male
subjects, and thus are not adequately powered.
Nonetheless, although there is the possibility of report-
ing bias (ie, selectively publishing studies demonstrating
sex differences), substantial evidence suggests that males
respond better to tricyclic antidepressants (TCAs) than
females.An early study of 250 depressed patients by the
Medical Research Council reported that imipramine is
more effective in men than in women.45 A study of 60
depressed inpatients also found that men responded bet-
ter to imipramine,148 as did a 4-week study of 55
depressed inpatients treated with imipramine149 and a
large study of 200 patients on imipramine.150 More
recently, a study of 230 depressed patients also described
imipramine therapy as more effective in men.151

However, not surprisingly, some studies failed to observe
sex differences in response to TCA treatment. An 8-
week, double-blind clinical trial of imipramine efficacy in
80 depressed patients found clinical improvement was
not significantly related to sex152; a 6-week clinical trial of
imipramine and phenelzine efficacy found no sex differ-
ence in imipramine response rate153; a study of 29
depressed inpatients found no sex difference in response
after 2 weeks of nortriptyline treatment154; an open-label
trial of desipramine in 118 dysthymic patients found
equal numbers of men and women responded to treat-
ment after 10 weeks155; and a 4-week study of 66
depressed inpatients found no sex difference in treat-
ment response to imipramine.156

Several studies also suggest that women have a superior
response to SSRIs. The largest study with positive find-

ings, a double-blind clinical trial comparing response
rates to sertraline or imipramine after 12 weeks of treat-
ment in 635 depressed patients, found women
responded better to sertraline, while men responded
better to imipramine. Researchers also noted a sex
effect in dropout rates: men were more likely to with-
draw from the study if randomly assigned sertraline,
while women were more likely to drop out if given
imipramine.157 Similarly, while a study of 195 depressed
outpatients comparing response to fluoxetine versus nor-
triptyline found no sex difference in study completers, an
intention-to-treat analysis revealed that fluoxetine treat-
ment led to superior results for women (due to lower
drop-out rates), while men were significantly more likely
to drop out of the study if randomly assigned to fluoxe-
tine.158 A third paper presented a retrospective meta-
analysis of 11 double-blind studies, which compared the
efficacy of fluoxetine with that of a variety of TCAs
(amitriptyline, desipramine, doxepin, imipramine, or nor-
triptyline) in female patients. The authors found no sig-
nificant difference in the effectiveness of TCAs and flu-
oxetine in the treatment of depressed women, but more
women completed the trial if assigned to fluoxetine.159

Finally, in a double-blind study comparing the response
to imipramine versus sertraline and permitting nonre-
sponders to switch treatment groups after 12 weeks,
researchers found women tended to be overrepresented
in the group that switched from imipramine to sertra-
line.160 From these studies, it appears that women are
more likely to discontinue treatment if given a TCA, due
to either increased side effects or lack of response or
both, and are more likely to continue treatment if given
an SSRI.
Support for the existence of sex-related differences in
response to antidepressants is found in several studies
showing that younger women (a presumed proxy for
reproductive status) respond better to fluoxetine, while
older women respond better to imipramine or maproti-
line.150,153,157,161,162 Nonetheless, substantial evidence exists
for the absence of sex-differences in antidepressant
response,163 including two large meta-analyses,164,165 the
most recent of which found no differences between men,
premenopausal women, and postmenopausal women in
their response to TCAs and fluoxetine.165 Despite these
impressive negative findings, it is nonetheless striking
how rarely we see data in the opposite direction, ie, supe-
rior response to fluoxetine in men or to TCAs in
(younger) women.
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While subject to limited study, it appears that women
have a more favorable response to monoamine oxidase
inhibitors (MAOIs). MAOIs were noted to more effec-
tively treat atypical depression in women than in men.166

While women are more likely to report atypical symp-
toms,157,167 female sex was a predictor of response to
MAOI treatment, while atypical depressive symptoms
were not.168 A meta-analysis of numerous antidepressant
studies similarly found women have a better response to
MAOIs than do men.165 In contrast, however, a clinical
trial comparing the efficacy of imipramine versus
phenelzine in the treatment of 100 depressed patients
found significantly more men than women responded to
phenelzine treatment.153

The literature on the possible effects of sex on the treat-
ment of bipolar disorder is not as extensive as that seen
for treatment of depression. Sex is not a valid predictor
of response to lithium treatment of bipolar disorder,169

and a retrospective study of 1548 bipolar patients treated
with lithium found no sex difference in treatment
response rate.170 Another study of 360 bipolar patients
reported a nonsignificant superior response in women
despite lower mean plasma levels of lithium.171 Data,
then, while exiguous, do not suggest a meaningful differ-
ence in pharmacodynamic response to bipolar pharma-
cotherapy in men and women.

Neuroleptics

Underlying sex differences in the age of onset, course,
and symptomatology of schizophrenia present difficul-
ties when studying potential sex differences in treatment
response to neuroleptic medications. Nonetheless, many
studies have examined sex differences in treatment
response to neuroleptics.After initial observational stud-
ies noted that females responded better to neuroleptic
treatment,172 clinical trials of neuroleptic efficacy were
conducted, and most confirmed that females respond
better to neuroleptic treatment than do males,173-181

despite comparable drug plasma levels.182 However, many
of these studies were compromised by their failure to suf-
ficiently control for sex differences in smoking, dose,
weight, and severity and type of symptomatology. Several
more recent studies found no sex differences in treat-
ment response to neuroleptic medication,183-186 and two
studies of neuroleptic-refractory patients showed a trend
for males to respond better to clozapine treatment than
females187,188 (although results from studies of neurolep-

tic-refractory patients might not be generalizable). The
inconsistency in results regarding sex differences in treat-
ment response to antipsychotic medication may be due
to differences in choice of neuroleptic and dose. For
example, in a study of 50 schizophrenic patients, females
responded significantly better to clozapine treatment at
100 mg/day, but there were no sex differences in response
among schizophrenic subjects randomly assigned daily
doses of 300 or 600 mg/day.189

Some studies claim that female schizophrenic patients
require lower doses of neuroleptics (after accounting for
weight differences) than male schizophrenic patients,190,191

while other studies find no significant sex difference in
neuroleptic dose requirements.192-194 This contradiction
could reflect differences in neuroleptics used. A study
comparing chlorpromazine and fluspirilene, for example,
found no sex difference in the chlorpromazine dose
required to ameliorate symptoms, but males needed a
significantly higher dose of fluspirilene.195 Because estro-
gen is hypothesized to have a neuroleptic-like effect
through its modulation of dopamine receptors, a protec-
tive effect of estrogens has been invoked to explain why
female schizophrenic patients have better social adjust-
ment, fewer and less severe symptoms, and better treat-
ment response.196 If estrogen impacts neuroleptic
response, it would be expected that female response to
neuroleptics would decline after menopause. A study
examining this possibility found that the daily neurolep-
tic dose for female schizophrenia patients remained con-
stant from age 20 to 59, with no decline in efficacy corre-
sponding to menopause.197 In a conflicting study, however,
females under age 40 were on lower neuroleptic doses
than their male peers, but after age 40, the trend was
reversed and female patients required higher doses than
male patients over age 40.198 The overall prevalence of
schizophrenia is not sexually dimorphic, but the age of
onset is 3 to 6 years earlier in men than in women.199 This
raises the possibility that any observed sex differences in
response to neuroleptics may reflect differences in the
evolution of the illness expressed at a tissue level.

Conclusions

There are myriad sex differences in neurobiology, affect-
ing diverse processes from signal transduction to receptor
distribution and receptor function to response to stressors.
Not surprisingly, multiple effects of sex on pharmacoki-
netics have also been identified.200 Given the multiple steps
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involved in the translation of a dose of ingested medica-
tion to its steady state plasma level, one might imagine that
the effects of sex could either summate to produce dra-
matic sex differences or balance to result in negligible dif-
ferences.While considerably more work could and should
be done to determine the role played by sex in the phar-
macokinetics of psychotropic drugs, the data collected to
date suggest that the effect is not likely to be large for most
classes of psychotropic agents.
While pharmacodynamic differences are also likely to
exist, data to date are exiguous and far from impressive.
As befits the complexity of the brain, there are likely few
instances in which sex alone comprises a large part of the
variance in the response to psychotropic medications.

Nonetheless, the practitioner must realize that, under the
right circumstances, sex may strongly influence the
response to medication, just as the serotonin transporter
genotype (5-HTTLPR) and past history of adverse life
events combine to predict depression, despite the low
predictive value of either of these factors in isolation.201

One size, undoubtedly, does not fit all, and factors related
to sex will provide the attentive careful clinician with pos-
sible explanations for an unsatisfactory therapeutic
response. ❏

The authors gratefully acknowledge the assistance of Kristen Dancer in the
preparation of this manuscript.

La modulación de la respuesta al tratamiento
dependiente del sexo

La respuesta a los fármacos psicotrópicos refleja las
características tanto de la medicación como del sus-
trato, es decir, del sujeto que recibe el fármaco. El
sexo es una característica individual que influye en
todos los elementos del proceso farmacocinético:
absorción, distribución, metabolización y elimina-
ción. Los efectos del sexo en estos componentes del
proceso farmacocinético a menudo se compensan
unos con otros produciendose diferencias mínimas
o variables entre los dos sexos en los niveles plas-
máticos alcanzados. Sin embargo, el sexo también
parece influir en la farmacodinámica, la respuesta
del tejido a una determinada concentración del fár-
maco. El hecho que el clínico considere el sexo
como un posible factor que contribuye a la falta de
respuesta terapéutica, aumentará la eficacia y pre-
cisión de las intervenciones clínicas.

Modulation sexe-dépendante de la réponse
au traitement

La réponse à un médicament psychotrope reflète
les caractéristiques du médicament et du substrat,
c’est-à-dire le sujet recevant le médicament. Le sexe
est une caractéristique individuelle qui influe sur
tous les éléments du processus pharmacocinétique
– absorption, distribution, métabolisme et élimina-
tion. Les effets du sexe sur ces composantes du pro-
cessus pharmacocinétique s’équilibrent souvent l’un
l’autre et n’entraînent de ce fait que des différences
liées au sexe minimales ou variables dans les
concentrations sanguines obtenues. Cependant, le
sexe semble aussi influer sur la pharmacodyna-
mique, la réponse tissulaire à une concentration
donnée de médicament. La prise en compte du sexe
par le médecin en tant que facteur pouvant contri-
buer à la non-réponse au traitement augmentera
l’efficacité et la précision des interventions cli-
niques.
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