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7Institut de Biologie de l’École Normale Supérieure, Paris, France

Infections caused by multi-drug resistant (MDR) pathogenic bacteria are a global health threat.
Phage therapy, which uses phage to kill bacterial pathogens, is increasingly used to treat patients
infected by MDR bacteria. However, the therapeutic outcome of phage therapy may be limited
by the emergence of phage resistance during treatment and/or by physical constraints that impede
phage-bacteria interactions in vivo. In this work, we evaluate the role of lung spatial structure
on the efficacy of phage therapy for Pseudomonas aeruginosa infection. To do so, we developed a
spatially structured metapopulation network model based on the geometry of the bronchial tree, and
included the emergence of phage-resistant bacterial mutants and host innate immune responses. We
model the ecological interactions between bacteria, phage, and the host innate immune system at
the airway (node) level. The model predicts the synergistic elimination of a P. aeruginosa infection
due to the combined effects of phage and neutrophils given sufficiently active immune states and
suitable phage life history traits. Moreover, the metapopulation model simulations predict that local
MDR pathogens are cleared faster at distal nodes of the bronchial tree. Notably, image analysis of
lung tissue time series from wild-type and lymphocyte-depleted mice (n=13) revealed a concordant,
statistically significant pattern: infection intensity cleared in the bottom before the top of the
lungs. Overall, the combined use of simulations and image analysis of in vivo experiments further
supports the use of phage therapy for treating acute lung infections caused by P. aeruginosa while
highlighting potential limits to therapy given a spatially structured environment, such as impaired
innate immune responses and low phage efficacy.

I. INTRODUCTION

The antimicrobial resistance crisis poses a major burden to global health, with 1.27 million deaths attributed to
drug-resistant bacteria in 2019 alone1. The discovery of new antibiotics has slowed2, with only two new chemical classes
of antibiotics approved since 2017. The antimicrobial resistance crisis has also catalyzed the search for alternative
therapies, including phage therapy. Phage therapy conventionally uses bacteriophage (phage) to target and kill
specific bacterial pathogens. However, the emergence of phage resistance and/or physical constraints hindering phage
propagation in situ can limit phage treatment efficacy.
The ability of phage to kill bacteria is typically assessed through in vitro liquid medium assays. In these well-mixed

systems, phage demonstrate efficient killing of both gram-positive3 and gram-negative3,4 bacterial pathogens. In con-
trast, phage are less efficient at clearing biofilms5–8, especially well-established and matured biofilms5,7,8. The spatial
heterogeneity of biofilms limits phage propagation and biofilm clearance9,10. For instance, slow-growing bacteria liv-
ing at the center of a biofilm restrict phage propagation and impede biofilm elimination9. Furthermore, clusters of
phage-resistant bacteria can protect susceptible bacteria by blocking phage infection in mixed-strain biofilms10.
Applications of phage therapy in vivo and in the clinic require consideration of context, including spatial structure

and host immune responses. For example, a three-phage cocktail targeting E. coli in the murine gut resulted in
the coexistence of phage and bacteria11. This study also found a significantly higher relative abundance of phage
in the luminal part of the ileum than in the mucosal part11, suggesting intestinal mucosa serves as a spatial refuge
for bacteria. In a similar study, high T7 phage and E. coli titers coexist in the mice colon for up to three weeks12.
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With 80% of isolated E. coli colonies susceptible to parental phage, the study proposes that susceptible bacteria in
the colon may be physically protected from phage infection12. The host immune responses may play a significant role
in shaping phage therapy outcomes in vivo. For instance, the synergistic interactions between phage and neutrophils
were responsible for the clearance of P. aeruginosa lung infection in WT mice13. In contrast, phage therapy failed
to eradicate P. aeruginosa infection in neutropenic mice13,14. Moreover, phage immunogenicity assays indicate that
phage do not significantly increase cytokine production and are well-tolerated by mammalian hosts13,15. However,
prolonged treatment (∼6 months) with intravenously administered phage might induce neutralizing antibody responses
against phage16.

Computational models and theory provide a route to evaluate the impacts of immune responses on the poten-
tial efficacy of phage therapy. For example, pioneering modeling work integrating immune mechanisms into phage
therapy17,18 allowed the assessment of the combined effects of phage life history traits and immune response intensity
on controlling a bacterial population. However, those models allowed the immune response to grow unconstrained
and assumed bacteria cannot evade the immune responses, leading to scenarios where the host immune system
alone could control bacterial infection17,18. Recent work incorporating more nuanced models reveals the necessity
of both phage and a sufficiently competent immune system to clear the infection13,19. Such synergy may also apply
to phage-antibiotic combination therapy20. Additionally, models integrating adaptive and innate immune responses
against phage predict that, if active, immune effects could contribute to phage therapy failure in controlling bacterial
infection21. It is important to note that the discussed models lack an explicit representation of space, a critical
component when modeling phage therapy in vivo.

Spatially explicit models are suitable tools for assessing the impact of the spatial organization of phage and bacteria
on infection dynamics and therapeutic outcomes. For instance, individual-based models (IBMs) of phage therapy iden-
tify that spatial structure limits phage dispersion and enables spatial refuges for bacteria to survive phage infection,
facilitating the coexistence of phage and bacteria22,23. In the context of phage-antibiotic combination therapy, an
IBM found that double-resistant mutants emerged when phage dispersion was restricted and antibiotics were hetero-
geneously distributed. This led to the creation of drug-free spatial refuges where bacteria replicate and acquire phage
and antibiotic-resistant mutations22. Moreover, an IBM of phage treatment of a mixed-strain biofilm identified that
fitness costs associated with phage resistance, coupled with spatial protection of susceptible cells vs. phage infection
by clusters of resistant bacteria, facilitated the long-term coexistence of susceptible and resistant strains10.
Spatial organization into subpopulations has been proposed as a key factor in fostering the persistence of predator-

prey interactions24. Metapopulation models are spatially explicit models, representing environments as interconnected
patches where local populations reside and interact via individuals moving among the patches. A metapopulation
model of the host-parasitoid pair, Callosobruchus chinensis and Anisopteromalus clalandrae, found that the persistence
of the host-parasitoid interaction increased with spatial subdivision and with the number of patches24. In a host
plant-pathogen metapopulation model, limited host dispersion led to increased pathogen diversity while increased
host dispersion homogenized the dynamics of local populations and decreased pathogen diversity25. Additionally,
a metapopulation model exploring pathogen circulation in healthcare settings found that pathogen control via host
sanitation, rather than environment sanitation, led to more rapid elimination of the circulating pathogen26. It is
worth noting that a metapopulation modeling framework and its ecological principles can be adapted to describe
microbial ecological dynamics within the lung environment, providing insights into the influence of spatial structure
on pathogen persistence.

In this study, we introduce a metapopulation model that integrates lung spatial structure and host immune responses
to evaluate their combined impact on phage therapy outcomes for acute pneumonia caused by P. aeruginosa. The
model simulates ecological interactions between two bacterial strains (phage-susceptible and resistant), phage, and
the innate immune response within a network structure resembling the branching pattern of the lungs. Our findings
reveal that the clearance of a P. aeruginosa infection is contingent upon sufficiently active innate immune states and
suitable phage life history traits. Moreover, we note the spatial model requires higher innate immune response levels to
increase the chances of therapeutic success, in contrast to a well-mixed model, which predicts infection resolution with
lower innate immune levels, highlighting the spatial structure’s role in shaping phage therapy outcomes. Throughout
our simulations, we observe a spatial pattern wherein infection clears faster at the network’s bottom compared to the
top, demonstrating robustness across varied distributions of bacterial inoculum and phage dose. Lastly, our analysis
of in vivo mice lung infection data13 identifies a concordant and statistically significant pattern: a bottom-to-top
spatial transition in pathogen clearance, aligning with the predictions of the metapopulation model.

II. MODEL

The metapopulation network structure is based on the geometry of a symmetrical bronchial tree with a dichotomous
branching pattern (Fig. 1a). The nodes of the network represent the airways, and the network links represent the
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FIG. 1: Schematic of the metapopulation network model of phage therapy of a P. aeruginosa infection. The
structure of the metapopulation network is based on the geometry of a symmetrical bronchial tree with a dichotomous branching
pattern (a). The airways of the bronchial tree (a-left) are represented by the network nodes (a-middle), while the network
links represent the branching points of the bronchial tree. For example, the section that connects the trachea to the left and
right main bronchi is considered a branching point. We assume that the bronchial tree is symmetrical such that the left and
right parts of the tree are identical, and so are their dynamics in a deterministic system. Therefore, we only focus on one side
of the tree (the dashed line on the middle network) and reduce the number of nodes in our original network to one node per
generation. The final network topology of this reduced model consists of 15 connected nodes forming a chain (a-right). The
degree of the network nodes is 4, except for the first and last nodes, which have a degree of 2. In panel (b), we show the
ecological interactions between phage-susceptible bacteria (BS), phage-resistant bacteria (BR), phage (P ), and the host innate
immune response (I) at the node level (b-left). Phage infect the susceptible strain, while the resistant strain is targeted only
by the innate immune response. The immune response grows in the presence of bacteria and targets both bacterial strains.
Neutrophils are recruited to the site of the infection from the pulmonary vasculature, while phage and bacteria transfer between
connected nodes to spread across the network (a-right).

branching points on the bronchial tree. We assume bacteria colonize the airways (nodes) and spread across the
network through the network links. We consider the structure of the bronchial tree to be perfectly symmetrical, such
that the left and right sides of the tree are identical. Hence, in the absence of stochastic effects, the dynamics at every
node of the same tree generation, g, will be identical. Therefore, we can consider only one node in each generation
without losing any information on the whole network. The final network topology consists of a chain of connected
nodes (Fig. 1a-right), where each node represents one airway per generation (g) of the tree.
To determine the number of generations of the metapopulation network, we estimate the volume of the network

in terms of the ∼1 ml total lung capacity (TLC) of mice27. To do so, we calculate the volume of individual airways
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of different generations using the anatomical airway information28. Then, we consider the number of airways per
generation (i.e., 2g−1 airways per generation, g) to estimate the network volume. We estimated that 15 generations
yield a network volume of 0.9 ml that does not exceed the mouse TLC.

Nonlinear interactions between bacteria, phage, and neutrophils govern the population dynamics at the node level,
Fig. 1b-left. We represent the ecological interactions between bacteria, phage, and neutrophils using a system of
nonlinear, ordinary differential equations (Eqns 1-4) for each generation (g). We propose a model with two P.
aeruginosa strains, one of which is phage-susceptible (BS) and a second which is phage-resistant (BR). The growth
of bacteria is density-dependent and is limited by the carrying capacity, KC . BS can be infected and lysed by phage
(P ) while BR resists phage infection. Phage, P , replicate inside bacteria and decay in the environment at a rate ω.
The host innate immune response, I, is activated by bacteria and recruited at a maximum rate α. Neutrophils target
and kill both BS and BR bacterial strains.

dBS,g

dt
=

BS Growth︷ ︸︸ ︷
rPBS,g

(
1− Btot,g

KC

)Mutation to BR︷ ︸︸ ︷
(1− µ1) +

Mutation from BR︷ ︸︸ ︷
µ2rABR,g

(
1− Btot,g

KC

)

−

Immune killing︷ ︸︸ ︷
εIgBS,g

1 +
Btot,g

KD

−

Lysis︷ ︸︸ ︷
BS,gF (Pg)−

Outflux︷ ︸︸ ︷
8DB

l2g
BS,g +

Influx from g-1︷ ︸︸ ︷
(
8DB

l2g−1
ρg−1BS,g−1

Vg−1

Vg
)(1− δ1,g)

+

Influx from g (sister branch)︷ ︸︸ ︷
(
8DB

l2g
ρgBS,g)(1− δ1,g)+

Influx from g + 1︷ ︸︸ ︷
(2

8DB

l2g+1
ρg+1BS,g+1

Vg+1

Vg
)(1− δN,g), (1)

dBR,g

dt
=

BR Growth︷ ︸︸ ︷
rABR,g

(
1− Btot,g

KC

)Mutation to BS︷ ︸︸ ︷
(1− µ2) +

Mutation from BS︷ ︸︸ ︷
µ1rPBS,g

(
1− Btot,g

KC

)

−

Immune killing︷ ︸︸ ︷
εIgBR,g

1 +
Btot,g

KD

−

Outflux︷ ︸︸ ︷
8DB

l2g
BR,g +

Influx from g-1︷ ︸︸ ︷
(
8DB

l2g−1
ρg−1BR,g−1

Vg−1

Vg
)(1− δ1,g)

+

Influx from g (sister branch)︷ ︸︸ ︷
(
8DB

l2g
ρgBR,g)(1− δ1,g)+

Influx from g + 1︷ ︸︸ ︷
(2

8DB

l2g+1
ρg+1BR,g+1

Vg+1

Vg
)(1− δN,g), (2)

dPg

dt
=

Viral release︷ ︸︸ ︷
βBS,gF (Pg)−

Decay︷︸︸︷
ωPg −

Outflux︷ ︸︸ ︷
8DP

l2g
Pg +

Influx from g-1︷ ︸︸ ︷
(
8DP

l2g−1
ρg−1Pg−1

Vg−1

Vg
)(1− δ1,g)

+

Influx from g (sister branch)︷ ︸︸ ︷
(
8DP

l2g
ρgPg)(1− δ1,g) +

Influx from g + 1︷ ︸︸ ︷
(2

8DP

l2g+1
ρg+1Pg+1

Vg+1

Vg
)(1− δN,g), (3)

dIg
dt

=

Immune stimulation︷ ︸︸ ︷
αIg

(
1− Ig

KI

)(
Btot,g

Btot,g +KN

)(
1−

∑15
g=1 IgVg2

g−1

NLung

)
. (4)

In our model, BS grows at a maximum rate rP , while BR grows at a maximum rate rA, and total bacterial density
is represented by Btot = BS + BR. Phage infect and lyse the phage-susceptible bacteria (BS) at a rate F (P ) with a
burst size of β. Locally, the innate immune response (I) saturates at a maximum density of KI . The immune response
is also globally constrained by the total number of neutrophils available in the lungs, NLung. KN is a half-saturation
constant, i.e., the bacterial density at which the growth rate of the immune response is half its maximum. Both
susceptible and resistant bacteria are killed by the innate immune response with a maximum killing rate ε. However,
at high densities, bacteria can activate mechanisms such as biofilm formation and production of virulence factors to
evade the host immune response and reduce the immune killing efficiency19. KD is the bacterial density at which the
immune killing rate is half its maximum.

Bacteria and phage can hop between connected nodes (Fig. 1b-right). The rate at which they hop is determined
by the time, τg, required for each species to cross half of the airway length (lg) via diffusion D. The hopping rate is
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calculated as the reciprocal of these times, 1
τg
. In the model, influx and outflux terms govern the transfer of bacteria

and phage between neighboring nodes. We assume a homogeneous spreading between airways such that the links
between nodes are non-weighted and the flux from node j to node g is inversely proportional to the degree of node j
(i.e., ρj = 1/dj). Additionally, the number of bacteria and phage transferred from a neighbor node j to a local node

g is re-scaled to the local density, i.e.,
BS,jVj

Vg
.

Changes in the concentration of mucin lining the airways impact bacteria motility29 and phage diffusion30,31, thereby
affecting their hopping rate throughout the bronchial network. In text S1C-D, we explain in detail how we calculate
the diffusion constants and the hopping rate of phage and bacteria across different mucin levels. Additionally, the
diffusion values of phage and bacteria can be found in Table S2.

For phage infection, we use a model, F (P ), that assumes spatial heterogeneities inside the mouse lungs might limit

phage-bacteria encounters. F (P ) = ϕ̃Pσ, where ϕ̃ is the nonlinear phage adsorption rate and σ < 1 is the power-law
exponent in the phage infection rate. This heterogeneous mixing model13 has been used previously to recapitulate
phage-bacteria dynamics in vivo.
Text S1 includes additional details on the model, network structure, parameter estimation, and numerical simula-

tion.
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III. RESULTS

A. Spatiotemporal dynamics of phage therapy of acute pneumonia caused by P. aeruginosa
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FIG. 2: Spatiotemporal dynamics of phage therapy of a P. aeruginosa lung infection. We show the population
dynamics at the node level of phage (solid yellow line), phage-susceptible bacteria (solid blue line), phage-resistant bacteria
(solid orange line), and the host innate immune response (purple solid line). We infect an immunocompetent host with 106 P.
aeruginosa cells. Phage therapy (107 PFU) is administered 2 hr after the bacterial inoculation. We uniformly distribute the
phage dose and the bacterial inoculum in the network such that each node had the same initial bacterial density (1.11 × 106

CFU/ml) and phage density (1.11 × 107 PFU/ml). When the host is immunocompetent, we set the initial immune density to
I0 = 4.05 × 105 cells/ml in all the network nodes. The simulation runs for 33 hr. Here, Node 1 = Generation 1 = trachea, and
Node 15 = Generation 15 = terminal airway.

We begin by simulating phage therapy treatment of a P. aeruginosa infection in an immunocompetent host. The
infection starts by inoculating the host with 106 bacterial cells. For phage treatment, we add 107 phage 2 hr after the
beginning of the infection, which are parameters consistent with in vivo treatment of the MDR P. aeruginosa strain
PAKlumi with the phage PAK P113. The bacterial inoculum and the phage dose are uniformly distributed among
network nodes, ensuring that each node has the same initial bacterial density of 1.11×106 CFU/ml and phage density
of 1.11 × 107 PFU/ml, considering a network volume of ∼0.9 ml. We simulate baseline neutrophil levels by setting
an initial immune density of 4.05× 105 neutrophils/ml32 in all network nodes.
By analyzing the dynamics that emerge from the phage therapy of a P. aeruginosa infection (Fig. 2), we observed

that the phage-susceptible bacterial population (BS) initially grew and reached its peak density after 13 hr. The
phage population (P ) grew together with the BS population during the first hours of the simulation. The host innate
immune response (I) also increased in the presence of bacteria during the first 10 hr of the simulation. Once the phage
population reached high-density levels, i.e., ∼1011 PFU/ml, we observed a reduction of the BS population across the
network. The bacterial elimination rate accelerated as the phage reduced the BS population density to a level that
facilitated the innate immune response to control the infection. Although phage-resistant mutants (BR) emerged and
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increased primarily in the top nodes of the network, the BR population was maintained at levels that eased their
control by the host innate immune response. The combined effects of phage and neutrophils led to the clearance of
the infection in the network after 32 hr (Fig. 2), similar to observed clearance times of 24-48 hr in phage therapeutic
treatment of P. aeruginosa in immunocompetent mice13. Note despite similar population dynamics between nodes,
the infection clearance did not occur simultaneously in all the nodes. The infection resolved first in the bottom (∼28
hr) and later in the top nodes (∼33 hr).
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B. Joint action of phage and host innate immunity in bacterial infections

FIG. 3: Bacterial dynamics under different phage and innate immune treatments. We simulate four treatment
scenarios that result from the presence or absence (−) of both phage and the innate immune response. We show the bacterial
dynamics across the metapopulation network when the host is immunodeficient untreated (a) or phage-treated (c). Similarly,
we show the bacterial dynamics when the host is immunocompetent untreated (b) or phage-treated (d). The heatmaps depict
the progression of the bacterial infection across the network; each row represents a network node, g, while the columns indicate
the simulation time (hr). The node color represents the bacterial density at a given time. The yellow regions represent high
bacterial density, and the white areas represent infection clearance. When the host is immunocompetent and phage-treated, we
zoom in and show the infection clearance pattern (e). We also test the effects of varying the mucin level (1-4%) on the infection
clearance time (f). In all simulations, we inoculate a host with 106 bacterial cells. If phage therapy is used, we administer 107

phage (PFU) 2 hr after the beginning of the infection. We uniformly distribute the phage dose and the bacterial inoculum
such that each node has the same initial bacterial density (1.11 × 106 CFU/ml) and phage density (1.11 × 107 PFU/ml).
When the host is immunocompetent, we set an initial immune density of 4.05 × 105 cells/ml in all the nodes. If the host is
immunodeficient, we set the immune density to I0 = 0 cells/ml. A 2.5% mucin concentration was used for scenarios (a) to
(e). All the simulations ran for 50 hr. On the heatmaps, row 1 represents Generation 1 and the top of the lungs, while row 15
represents Generation 15 and the bottom of the lungs.
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Next, we study how different treatment scenarios impact the bacterial infection spatiotemporal dynamics across
the metapopulation network. We test four treatment scenarios that result from the presence (+) or absence (−)
of both phage and innate immunity. As before, we inoculate a total of 106 bacterial cells that are homogeneously
distributed in the network. When phage therapy is applied, we inoculate the host with 107 phage (MOI ≈ 10) 2 hr
after the beginning of the infection. If the host is immunocompetent, we set an initial immune density of 4.05× 105

neutrophils/ml for all network nodes, totaling 3.64×105 neutrophils in the lungs32. When the host is immunodeficient,
we set the immune density to I = 0 neutrophils/ml in the network nodes. The bacterial inoculum and the phage
dose are uniformly distributed in the network such that each node has the same initial bacterial density (1.11 × 106

CFU/ml) and phage density (1.11× 107 PFU/ml), as in the prior section.
When an immunodeficient host was not treated with phage, bacteria grew unimpeded (Fig. S2a), reaching carrying

capacity levels (1.5×109 CFU/ml) after 10 hr in all the nodes (Fig. 3a). On the other hand, an active innate immune
response delayed the initial growth of bacteria due to neutrophils killing the bacteria (Fig. 3b). However, in the
absence of another antimicrobial effect, bacteria continued to grow and overwhelmed the innate immune response,
rendering it insufficient for controlling the infection (Fig. S2b). The phage treatment of P. aeruginosa infection
in an immunodeficient host led to eliminating the BS population after 50 hr in most network nodes. However, it
took about 90 hr to eliminate the BS population in the top nodes (Fig. S2c). During this time, phage-resistant
mutants (BR) emerged and spread throughout the network, causing the infection to persist (Fig. 3c). Finally, the
model predicted therapeutic success when the host innate immunity complemented phage therapy. The predictions
indicated eliminating bacteria from the network after 32 hr (Fig. 3d). The elimination of the infection followed a
spatial pattern that started at the bottom and continued to the top network nodes (Fig. 3e). The observed pattern
is compatible with a situation where phage help decrease the bacterial density to the point where the innate immune
system is able to control and drive bacteria to extinction; refer to Text S1E for additional analysis on the spatial
structure in pathogen clearance. Next, we sought to characterize how changes in mucin levels—known for shaping
phage and bacteria propagation rates29–31—impact the observed clearance pattern. The spatial clearance pattern was
recapitulated for mucin levels varying from 1% to 4% (Fig. 3f). This suggests infection clearance is robust to changes
in conditions that affect phage and bacteria propagation rates when the host is fully immunocompetent. Overall,
modeling outcomes show that synergistic interactions between phage and neutrophils may lead to the resolution of
the infection in spatially structured environments.
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C. Varying the allocation of bacterial inoculum and phage dose in the network does not affect the
therapeutic outcome

FIG. 4: Infection dynamics as a result of varying the distribution of phage dose and bacterial inoculum in
the network. We evaluate different forms of allocating the bacterial inoculum (B0) and the phage dose (P0) among network
nodes (a). For example, 1) we uniformly distribute the phage dose or the bacterial inoculum among the network nodes, 2)
we distribute the phage dose or the bacterial inoculum between the first three nodes of the network (Top distribution), 3) we
distribute the phage dose or the bacterial inoculum among the last 12 nodes of the network (Bottom distribution), or 4) we
inoculate the first node of the network with phage or bacteria. We use a heatmap to represent paired distributions of phage
dose and bacterial inoculum. We show how bacterial infection progresses per network node (g). In the heatmap, each row
represents a network node, while the columns indicate the simulation time. The node color represents the bacterial density, the
yellow regions represent high bacterial density, and the white areas represent infection elimination. Given a pair of bacterial
inoculum and phage dose distributions, we calculate the infection clearance time at the node level (b). For (a) and (b), we
infect an immunocompetent host with 106 bacterial cells. We administer 107 phage (PFU) 2 hr after the bacterial infection.
We set an initial immune density of I0 = 4.05 × 105 cells/ml in all the nodes. The simulation ran for 50 hr. On the heatmaps,
row 1 represents Generation 1 and the top of the lungs, while row 15 represents Generation 15 and the bottom of the lungs.
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Thus far, we have explored the impacts of phage therapy on a P. aeruginosa infection by uniformly distributing
the bacterial inoculum and the phage dose in the network. However, the actual distribution of phage and bacteria
in the bronchial tree after intranasal inoculation is not necessarily well-constrained. Hence, we try different forms of
allocating the bacteria and phage inocula in the metapopulation network. For example, (1) we uniformly distribute
the bacterial inoculum such that every node has the same initial density (uniform distribution), (2) we distribute the
inoculum among the first three nodes of the network (top distribution), (3) we distribute the inoculum among the
last twelve nodes of the network (bottom distribution), and (4) we only inoculate the first node of the network (i.e.,
intratracheal instillation). We use the same distribution forms as the bacterial inoculum for the phage dose. In total,
we test 16 ways of distributing the bacterial inoculum and the phage dose in the network (Fig. 4a).

When the bacterial inoculum is uniformly distributed, the model predicted the elimination of bacteria 32 to 34
hr after the beginning of the infection, regardless of how phage dose was allocated in the network (Fig. 4a-1st left-
column). When the first three nodes were inoculated with bacteria, it took ∼4 hr for bacteria to colonize the bottom
of the network and around 32 hr to eliminate the infection from the network regardless of phage dose distribution
(Fig. 4a-2nd column). The delay in colonizing bottom nodes led to delayed elimination of the infection in those
nodes; e.g., compare clearance times of top vs. uniform distribution of B0 in Fig. 4b. When the bacterial inoculum
was distributed among the last twelve nodes of the network, it took ∼37 hr to clear the infection from the network.
The colonization of bacteria in the top nodes was delayed due to the initial distribution of the inoculum (Fig. 4a-3rd
column). In this scenario, there was a longer infection clearance time difference between the top (clearance occurred
at 37 hr) and the bottom (clearance occurred at 28 hr) of the network (Fig. 4b-Bottom distribution of B0). Finally,
the inoculation of bacteria in node one resulted in the colonization of bottom nodes after ∼6 hr and elimination of
the infection after 36 hr (Fig. 4a last right-column). There was a delay in removing the bacterial infection from the
bottom nodes, similar to the previous scenario where the inoculum was distributed only among the top nodes. We
observed different bacterial colonization patterns depending on how the bacterial inoculum was initially distributed in
the network. Varying the allocation of the phage dose in the network did not significantly impact bacterial colonization
or infection clearance patterns. As in previous simulations (Fig. 2 and Fig. 3e), we noticed a consistent spatial pattern
of infection resolution across all phage and bacteria inocula distributions, where the infection resolved faster at the
bottom than at the top of the network (see Text S1E for details of the spatial pattern of infection elimination).
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D. Sufficient neutrophil levels and phage adsorption rates are required for effective clearance of P.
aeruginosa lung infection
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FIG. 5: Probability of therapeutic success given intermediate phage efficacy and host innate immune levels. To
explore intermediate innate immune responses, we vary the percentage of neutrophils available in the lungs from 1 to 100%.
We also test intermediate phage efficacy by varying the phage adsorption rate within the range 10−9 to 10−6 (ml/PFU)σh−1.
We test the robustness of the model by randomizing the initial conditions and trying 84 different ways of distributing phage
dose and bacterial inoculum across the network. Then, we calculate the probability of clearing the infection by simulating the
84 initial conditions under specific phage adsorption rates and immune response levels. The heatmap shows the probability of
clearing the infection for the specified phage adsorption rates and immune response levels. The colored regions represent a p > 0
of clearing the infection, while black regions represent failure to clear the infection, i.e., a p = 0 of therapeutic success. The
white solid line contours the region of infection clearance predicted by the well-mixed model. To simulate the phage treatment
of a P. aeruginosa infection, we inoculate a host with 106 bacterial cells and introduce 107 phage 2 hr after the bacterial
infection. The simulation runs for 250 hr. A 100% neutrophil availability represents a total of 3.24 × 106 lung neutrophils32.
In this simulation, we use a 2.5% mucin level.

As part of our model analysis, we study how intermediate phage efficacy and host innate immunity states impact
metapopulation model outcomes, comparing the results with those from the well-mixed case. To model intermediate
immune states, we vary the percentage of neutrophil availability in the lungs from 1% to 100%, where 100% availability
corresponds to ∼ 3.24×106 lung neutrophils in immunocompetent mice32. To explore intermediate phage efficacy, we
vary phage adsorption rate across a range from 10−9 to 10−6 (ml/PFU)σh−1. We simulate the phage treatment of a P.
aeruginosa infection by inoculating a host with 106 bacterial cells and introducing 107 phage 2 hr after the bacterial
infection. To assess the robustness of model predictions, we randomize the initial conditions and try 84 different ways
of allocating the bacterial inoculum and the phage dose in the network. Then, we calculate the probability of clearing
the infection by simulating the different initial conditions, given a specific immune state and phage adsorption rate.

When neutrophil availability is limited (e.g., 10-35%), the metapopulation model predicted between 25% to 42% the

chances of therapeutic success for phage adsorption rates (ϕ̃) ranging between ∼ 2.5× 10−7 to 10−6 (ml/PFU)σh−1

(Fig. 5). In contrast, the well-mixed model, lacking consideration of spatial structure, predicts infection persistence in
the same parameter range. The spatial model predicts between 40% to 100% the probabilities of therapeutic success

when ϕ̃ > 10−7 (ml/PFU)σh−1 and for neutrophil availability >50%. In contrast, infection was always resolved in
the well-mixed model within the specified parameter range (Fig. 5, region limited by solid white line). For example,

if we compare the metapopulation model predictions for a ϕ̃ = 1.58 × 10−7 (ml/PFU)σh−1, neutrophil availability

should be >85% to have increased chances of therapeutic success (i.e., >60%), while for the same ϕ̃ value, infection
always clears in the well-mixed model when neutrophil availability is >55%. These findings highlight the role of
spatial structure in shaping phage therapy outcomes and suggest that higher levels of host innate immunity might be
required to successfully clear a P. aeruginosa infection when spatial constraints are considered.

Within the metapopulation model outcomes, we noticed a trend where the higher the neutrophil availability the
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wider the range of ϕ̃ values for which the model predicts increased chances of infection clearance. This suggests that
despite spatial structure effects that may affect phage-bacteria encounters and the phage adsorption rate, having a
robust immune response may facilitate the control of the P. aeruginosa infection. On the other hand, low phage effica-

cy, e.g., ϕ̃ < 10−7 (ml/PFU)σh−1, may render phage therapy inefficient even when the host is fully immunocompetent,
according to predictions from both the metapopulation and well-mixed models (Fig. 5, black region).

Note that we also explored how variations in mucin and innate immune levels impact phage therapy outcomes. The
exploratory analysis confirms the synergistic elimination of the infection by phage and neutrophils given sufficiently
active immune states and depicts a weak effect of mucin level variation (Fig. S4/Text S1F).
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E. Analysis of in vivo P. aeruginosa infection data confirms a bottom-to-top infection clearance pattern
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FIG. 6: In vivo P. aeruginosa murine pneumonia data. We show mice images depicting the evolution of a P. aeruginosa
infection in vivo during 72 hr. We show data for two mice groups, WT (N = 4; mouse #1 to 4) and Rag2−/−Il2rg−/− (N = 9;
mouse #5 to 13). The intensity of the bioluminescence signal represents the intensity of the infection in different mouse regions.
The pixel intensity value is our proxy for the bacterial density. A pixel intensity of 1 represents the highest bacterial density,
while 0 represents the threshold of detection. The white dashed line separates the upper and lower compartments of the mouse
respiratory system. The orange and green boxes highlight the approximate time when the total intensity signal drops below
the intensity threshold in the lower and upper compartments, respectively. Mice were inoculated with 107 P. aeruginosa cells,
and 2 hr after the bacterial inoculation, mice were treated with phage (108 PFU).
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FIG. 7: Time series of total intensity signal and the infection clearance analysis using in vivo P. aeruginosa
murine pneumonia data. We show the time series of total intensity signals for the upper and lower compartments of 13
mice (a). The total intensity of one compartment is calculated by adding the pixel intensity values from all pixels making up
a compartment. The black dashed line represents the intensity threshold below which the total intensity signal clears. We
calculate the time to infection resolution for the upper and lower compartments (b). We use data from 13 mice, including

WT (N = 4) and Rag2−/−Il2rg−/− (N = 9) mice groups. We used the one-sided Wilcoxon signed rank test to compare the
infection clearance time difference between the upper and lower compartments (b).

Our finding of a systematic bottom-to-top transition pattern supported by multiple simulations prompted us to
examine spatial patterns of clearance within in vivo imaging data from phage treatment of P. aeruginosa infected mice.
We analyzed the bioluminescence infection signal from images (Fig. 6) generated in a previous phage therapy study13.
The dataset included images of 13 mice, comprising both WT (N = 4) and lymphocyte-deficient Rag2−/−Il2rg−/−

(N = 9) mice groups. Following P. aeruginosa infection (107 CFU), mice were treated with phages (108 PFU) 2 hr
later. We split individual mouse images into two compartments (dashed white line in Fig. 6). The top compartment
encompassed the nose and throat, while the bottom compartment included the lungs. To quantify infection intensity
within each compartment, we computed the total intensity signal by summing the pixel intensity values of all pixels
within a compartment (Fig. 7a). This total intensity served as a proxy for the bacterial infection status inside
the mouse, where higher values indicated higher bacterial density. To determine infection signal clearance in each
compartment, we established an intensity threshold of 3, below which we considered the total intensity signal cleared.
For additional details of the image analysis methodology, refer to Text S1G.

Using the time series of imaged mice, we tracked the progression of the infection in the two compartments (Fig. 7a).
We observed a more rapid decrease in intensity signal below the threshold in the bottom compartment (∼6-8 hr after
the onset of infection) compared to the top compartment (∼8-48 hr after the onset of infection). The observation
implies a faster clearance of infection in the lower respiratory tract than in the upper respiratory tract of mice. Upon
calculating the infection clearance time for both compartments, we found that the intensity signal cleared faster in
the bottom compartment than in the top compartment. Specifically, the median time to infection clearance was 7 hr
for the bottom compartment and 19 hr for the top compartment, yielding a statistically significant difference with a
p-value of 0.0133 (Fig. 7b). These spatial patterns of infection resolution align with the qualitative predictions made
by the metapopulation model, particularly under conditions involving active innate immunity and phage therapy.

IV. DISCUSSION

In this study, we developed a metapopulation model of phage therapy of a P. aeruginosa lung infection. We modeled
the ecological interactions between phage, two P. aeruginosa strains (phage-susceptible and phage-resistant), and the
host innate immune response at the airway level. The dynamics arising from the phage therapy of a P. aeruginosa

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.31.578251doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.31.578251
http://creativecommons.org/licenses/by-nc-nd/4.0/


16

infection in an immunocompetent host indicates that phage therapy successfully eliminates bacterial infections when
the host innate immune responses complement phage treatment. The therapeutic outcome was robust to heterogeneous
distributions of phage dose and bacterial inoculum in the network and to variations in mucin levels. However, limited
neutrophil availability and a low phage adsorption rate (e.g., < 10−7 (ml/PFU)σh−1) may negatively impact phage
treatment efficacy. Moreover, the metapopulation model required higher innate immune response levels to increase
the likelihood of therapeutic success, compared to a well-mixed model that achieved infection resolution at lower
innate immune levels, highlighting the role of spatial structure in shaping phage therapy outcomes. Throughout the
simulations, we note a spatial pattern of infection clearance, wherein infection resolved faster in the bottom compared
to the top nodes. The spatial clearance pattern results in part from dynamics crossing a critical threshold via a
volumetric effect associated with the smaller total number of bacterial cells in bottom vs. top nodes. Finally, by
analyzing in vivo data of mice infected with P. aeruginosa and treated with phage, we identified spatial transitions
in pathogen clearance that align with the metapopulation model outcomes.

The therapeutic outcome recapitulated in our model is consistent with in vivo phage therapy results, where phage
efficiently controlled respiratory bacterial infections in both humans33–35 and mice13,36–38. Notably, we found that the
therapeutic outcome was robust to different distributions of the phage dose across the bronchial network, including
heterogeneous and homogeneous dose distributions. This is consistent with outcomes from phage delivery strategies
using phage-loaded microparticles to distribute phages throughout the lung, effectively reducing infections caused by
P. aeruginosa39 and S. aureus40. Furthermore, Delattre et al. developed a computational model that recapitulated
phage-bacteria interactions in vivo and found that varying the route of administration of phage dose, i.e., intratra-
cheally or intravenously, did not impact the therapeutic outcome with both courses producing similar effects36. While
variations in bacterial inoculum allocation impacted colonization patterns within the network, they did not disrupt
the therapeutic outcome. These collective findings suggest that therapeutic success might be robust to initial phage
and bacterial distributions in the lungs, though quantitative differences can rise with mismatched distributions.

Immunophage synergy does have its limits, whether in vivo13, in mean field models19, or as shown here, in metapop-
ulation models. For example, a weak innate immune response may negatively impact phage treatment efficacy. Our
model predicted a minimum of 45% of neutrophil availability to start clearing bacteria from the lungs, although
higher innate immunity levels are needed to increase the likelihood of therapeutic success. This is consistent with in
vivo experiments showing that phage therapy failed to control a P. aeruginosa infection when mice had an impaired
innate immune system, e.g., when mice were either MyD88-deficient13 or neutropenic13,14. On the other hand, phage
therapy successfully eliminated the infection when mice were immunocompetent13,14,37. Future phage therapy studies
and clinical trials should examine the importance of the host immune status in determining treatment efficacy.

The metapopulation network model has some caveats. For example, the network structure of the model is based
on a symmetrical bronchial tree, while the mouse bronchial tree is asymmetric41. Hence, future model extensions
could consider modeling asymmetric branching structures and their effects on phage and bacteria propagation across
the bronchial tree. By doing so, we can evaluate if tree asymmetries facilitate spatial refuges for bacteria to protect
themselves from phage attacks. A critical defense mechanism of the respiratory system is mucociliary clearance42

(MCC), where motile cilia of the airway epithelium transport a mucus layer out of the lungs, carrying particles
trapped in the mucus layer. Currently, our model does not address the mechanism by which bacteria first infect the
lungs, the mucosal layer’s involvement in this process, or the potential translocation of bacteria between different
body sites43. In the future, we could extend the model to include MCC effects to assess how MCC impacts bacterial
colonization, infection clearance patterns, and neutrophil transport within the airways. Our model does not account
for the interactions between pathogenic P. aeruginosa and the lung microbiome44. Furthermore, we do not consider
the effects of other innate effector cells, such as macrophages, the predominant immune cells in the mice lungs
before infection begins32. Alveolar macrophage’s role in the activation of neutrophils, phagocytosis, and the possible
interactions these cells have with phage45,46 should be considered for future model extensions.
Phage therapy has emerged as an alternative to chemical antibiotics to treat infections by MDR bacteria. However,

spatial structure effects of in vivo environments where phage and bacteria interact have not been fully addressed
yet. We used a metapopulation network model to study the impact of spatial structure effects on phage therapy in
vivo. Synergistic interactions between phage and neutrophils lead to bacteria elimination within the lung environ-
ment. However, higher innate immune levels could be required to increase the likelihood of therapeutic success in a
spatially structured environment compared to a well-mixed system. Our modeling outcomes further demonstrated
the importance of the host immune status and phage life history traits, such as phage adsorption rate, in shaping the
therapeutic outcome. The emergence of lung infection spatiotemporal clearance patterns also suggests that extending
in vitro phage therapy models may help to guide therapeutic treatment development in other in vivo contexts.
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Supplementary Text S1: Model details

We determine the number of generations (N) that the metapopulation network must have, based on the volume
of the network (Vnetwork) and the total lung capacity (TLC) of mice27, which is approximately 1 ml. To do so, we
consider the volume of individual airways (Vairway,g) and the number of airways present at each generation, ∼ 2g−1.
Then, we find N by approximating Vnetwork to the TLC of the mouse.

Vnetwork ≈
N∑

g=1

Vairway,g × 2g−1 ≈ 1ml. (S11)

We find that with N = 15, we do not exceed the TLC of the mouse, and we obtain a network volume of ∼0.9 ml. We
use 15 generations (nodes) for the metapopulation network model.

A. Model simulation

Model equations (Eqns. 1-4) are numerically integrated using ODE45 in MATLAB R2020b. By doing so, we obtain
the population dynamics of phage-susceptible and phage-resistant bacteria, phage, and the innate immune response.
We assume bacteria become extinct in a node when the number of bacteria drops below the extinction threshold of 1
CFU. This applies to both BS and BR. When bacterial counts drop below the extinction threshold in a node, we set
the bacterial density to 0 CFU/ml.

B. Parameter estimation

The parameter values used in the simulations of the metapopulation model are shown in Table S1. Most of the
parameter estimation was carried out in previous work (see “Parameter Estimation” section in reference13). Airway
anatomical information, including airway length and diameter, was obtained from28. Bacteria and phage diffusion
constants can be found in Table S2.
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Parameters of the metapopulation
model

Value Estimated from

rP , maximum growth rate of phage-
susceptible bacteria

0.75 h−1 P. aeruginosa murine pneumonia model47

rA, maximum growth rate of phage-resistant
bacteria

0.675 h−1 10% tradeoff between resistance against
phage and growth rate48

KC , carrying capacity of bacteria 1.49 × 109 CFU/ml Estimated from13 infection
β, burst size of phage 100 Estimated from13

ω, decay rate of phage 0.07 h−1 Estimated from13

ε, killing rate parameter of immune response 5.47×10−7 ml/(h cell) Set such that εKI gives the maximum
granulocyte killing rate47

α, maximum growth rate of immune response 0.97 h−1 Fitting of neutrophil recruitment data32

KI , maximum capacity of immune response 3.59 × 106 cell/ml Fitting of neutrophil recruitment data32

KD, bacteria concentration at which immune
response is half as effective

6.14 × 106 CFU/ml Corresponds to a lethal dose of about 5.5×
106 CFU/lungs

KN , bacteria concentration when the
immune response growth rate is half its
maximum

107 CFU/ml In vitro data of TLR5 response to PAK
strain49

B0, initial bacterial density (when inocu-
lum is uniformly distributed among network
nodes)

1.1106 × 106 CFU/ml Total inoculum of 106 CFU

P0, initial phage dose (when dose is uniform-
ly distributed among network nodes)

1.1106 × 107 PFU/ml Total phage dose of 107 PFU

I0, initial immune response 4.048 × 105 cell/ml Fitting of neutrophil recruitment data32

I0, initial immune response (neutropenic
mice)

0 cell/ml Assuming no primary innate immunity

NLung, total number of neutrophils in the
lungs

3.24 × 106 cells Fitting of neutrophil recruitment data32

µ1, probability of emergence of phage-
resistant mutants per cellular division

2.85 × 10−8 Estimated from experimental
measurements50

µ2, probability of emergence of reversible
mutant (i.e., from phage-resistant to phage-
susceptible) per cellular division

2.85 × 10−8 Approximated to the estimates from50

Heterogeneous mixing (HM) model
parameters

ϕ̃, nonlinear phage adsorption rate 1.686 × 10−7

(ml/PFU)σ h−1
Estimated from13

σ, power law exponent in phage infection rate 0.6 Estimated from13

Anatomical information of airways Range
Vg, airway volume 4.8×10−3 - 2.2×10−5

ml
Calculated as the volume of a cylinder
(πr2h), using anatomical information of
mice airways from28

lg, airway length 0.76 - 0.061 cm Anatomical information of mice airways
from28

airway diameter 0.089 - 0.02 cm Anatomical information of mice airways
from28

TABLE S1: Parameter values of the metapopulation network model.
Concentrations are calculated based on mice lung volume of 0.9 ml.

C. Calculating bacteria and phage diffusion constants as a function of mucin level

The hopping rate is calculated as the reciprocal of the time it would take for bacteria and phage to cross half of the
airway via diffusion, D. Hence, we need to determine the diffusion constants of phage and bacteria to calculate their
hopping rate. The evidence shows that the diffusion constant of phage30,31 and the speed of bacteria29 are shaped
by the concentration of the mucus lining the airways. For example, highly concentrated mucus can reduce bacteria
motility and slow phage diffusion. Our model focuses on mucin levels that are physiologically relevant in acute lung
infections (e.g., 0-4% mucin concentration). Below, we explain how we calculate the diffusion coefficients of phage
and bacteria across different mucin levels.
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We collected speed values of P. aeruginosa for two different mucin levels29 (2.5% and 8%). We use the speed values
to calculate the diffusion coefficient of bacteria using the run-and-tumble model as a proxy,

DB =
v2t

3(1− αB)
=

v2t

2
. (S12)

Where v is the bacterial speed in µm/s, t = 1 s, is the duration of the bacterial runs, and θ ∼ 60 degrees, is the
average change in direction between runs, such that αB = ⟨cos(> θ)⟩ ≈ 1/3.
To find additional bacteria speed values within our target range of mucin concentrations (0-4%), we fit a line

between the data points we collected (Fig. S1a). By calculating the parameters of the linear function, we can find the
speed of bacteria for different mucin levels relevant to our biological system. Then, we calculate the bacteria diffusion
coefficient from the speed value using the run-and-tumble model (Eqn. S12).

We calculate the phage diffusion constant across different mucin levels by using the Stokes-Einstein equation (Eqn.
S13). To do so, we use the predicted values of mucus viscosity (ηM ) across different mucin levels using the formula,
ηM = a · [mucin]b + ηW , obtained from31. In that study, they fitted the mucus viscosity to empirical data using two
power functions for two different regions of mucin levels, low [0-1% mucin] and high [1-4% mucin] concentrations. The
parameter a has values of 0.326 and 0.323 in the low and high mucin regions, respectively. The exponent b has values
of 0.65 and 1.59 for the low and high mucin regions, respectively. Parameters a and b can also be found in Tables 3
and 4 of the study31.

DP =
kT

6πηMRP
. (S13)

For the phage diffusion constant calculations, thermal energy was assumed at 37°C such that kT = 4.28 pN · nm and
water viscosity was ηW = 0.69mPa · s. The phage radius (RP ) was calculated to be 90 nm, half the length of a
typical T4 phage31. Using the Stokes-Einstein equation (Eqn. S13) and the predicted values of mucus viscosity across
different mucin levels, we can calculate the phage diffusion constant for different mucin levels (Fig. S1b).

Using the relationship between mucin levels and phage and bacteria diffusion coefficients, we can explore how lung
physiological conditions impact mucus concentration and affect the infection dynamics. For example, variations in
the concentration of mucin could impact the time it takes for bacteria to colonize different nodes at various depths of
the bronchial tree, phage dispersion times, the establishment of phage resistance, and the clearance of the infection
by the combined effects of phage and neutrophils at different depths of the bronchial tree.

D. Calculating the hopping rate of bacteria and phage

Bacteria and phage diffusion constants and their hopping rates

Species Diffusion in µm2s−1

(feasible range)
Diffusion in cm2h−1

(feasible range)
Example: time
(τ) to cross half
of the trachea of
length, l = 0.76
cm

Hopping rate (h−1) Ref

Bacteria (DB) 144 (295-80) 0.0052 (0.01 - 0.003) τB = 13.88 h 1
13.88h

= 0.072h−1 29,51–53

Phage (DP ) 1.21 (3.7 - 0.7) 4.35 × 10−5 (1.33 ×
10−4 − 2.52 × 10−5)

τP = 1659 h 1
1659

= 6.02 ×
10−4 h−1

30,31,54

TABLE S2: Examples of phage and bacteria diffusion coefficients under normal mucus concentration (2.5%). In parentheses,
we show a feasible range of diffusion values when mucin levels vary from 0 to 4%.

We calculate the hopping rate of bacteria and phage using the airway length information28 and the diffusion
constants of phage and bacteria (Table S2). The hopping rate is calculated as the reciprocal of the time, τ , it would
take for each species to cross half of the airway, l/2, via diffusion, D. We leverage the relationship between the mean

squared displacement (MSD) and 1D Brownian motion, ⟨(x− x0)
2⟩ = 2Dt, to calculate τB and τP .

τB =

(
l

2

)2
1

2DB
=

l2

4

1

2DB
=

l2

8DB
, (S14)

τP =

(
l

2

)2
1

2DP
=

l2

4

1

2DP
=

l2

8DP
. (S15)
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Then, we take the reciprocal of τB and τP to calculate the hopping rates of bacteria and phage, respectively. The
hopping rate determines how fast bacteria and phage leave a local airway and hop to a neighboring airway. We use
the hopping rates to calculate the influx and outflux terms of equations 1-3.

1

τB
=

8DB

l2
, (S16)

1

τP
=

8DP

l2
. (S17)

E. Spatial pattern of infection elimination, innate immunity effects

The synergistic clearance of P. aeruginosa infection by phage and host innate immunity yielded a recurring feature:
a spatial pattern of clearance of pathogens from bottom-to-top of the bronchial network. This pattern is compatible
with a situation in which phage initially help decrease bacterial density to the point where the immune system alone
can control and drive bacteria to extinction. Once bacteria fall below a critical level (KD), the immune system removes
bacteria at a fixed rate until complete elimination within each node. We hypothesize that the observed difference
in clearance times between the bottom and top nodes is influenced, in part, by node volume differences. Our model
associates the bacterial extinction threshold with the number of bacterial cells crossing the 1 CFU threshold at the
node level, suggesting that the spatial pattern in pathogen clearance could be a result of dynamics crossing a critical
threshold via a volumetric effect associated with the smaller total number of bacterial cells in bottom vs. top nodes.
If this were the case, the clearance time at the node level could be predicted using the immune killing rate (εKI),
providing insights into the spatial variations observed in the metapopulation model simulations.

When calculating clearance time, we make several assumptions, including that BS is the predominant bacterial
type throughout the simulation, that bacterial density levels are below a critical threshold (BS << KD) at final
simulation times, and that host innate immunity reached its maximum level (KI) by the end of the simulation. These
conditions have been met in prior simulations (Fig. 2) depicting phage therapy for a P. aeruginosa infection in an
immunocompetent host. Moreover, it is important to note that low bacterial density levels (BS << KC) enable
positive exponential growth (rPBS), and such growth should be considered when calculating the infection clearance
time.

To determine the time to bacterial extinction, we solve the dBS

dt equation describing how BS population changes
over time due to the innate immune response and exponential growth. After solving the equation, we isolate t to
determine the clearance time.

dBS

dt
= rPBS − εKIBS , (S18)∫

dBS

BS
= (rP − εKI)

∫
dt, (S19)

ln(BS) = rP t− εKIt+ ln(BS0), (S110)

t =
ln(BS0)− ln(BS)

εKI − rP
. (S111)

Bacteria become extinct in node i once their levels fall below the 1/Vi density threshold, where Vi is the volume of
node i. So, the time to bacterial extinction, denoted as ti, for node i is

ti =
ln(BS0)− ln( 1

Vi
)

εKI − rP
, (S112)

ti =
ln(BS0) + ln(Vi)

εKI − rP
. (S113)

We note that time to infection resolution in node i is proportional to the natural logarithm of the node volume (Vi)
and scales with the inverse of the immune killing rate adjusted by the per capita bacterial growth rate (rP ).

To further characterize the infection clearance time (ICT) difference between nodes, we calculate the ICT difference
between node i and the last network node (which is the node with the smallest volume), i.e., ti − tbottom. To do so,
we use the clearance time calculated in Eqn. S113. The ICT difference between nodes due to the immune killing rate
is,

ti − tbottom =
1

εKI − rP
× ln

(
Vi

Vbottom

)
. (S114)
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We observe that the clearance time difference is proportional to the natural logarithm of the volume ratio, Vi/Vbottom,
where Vbottom is the volume of the last network node. We conclude that a larger volume difference between nodes
corresponds to a longer clearance time difference. The largest volume difference in the network occurs between
node one (trachea) and node fifteen (terminal airway), resulting in the longest ICT difference between any pair of
nodes. Comparing the theoretical ICT difference to that obtained from simulations, we note that the theoretical ICT
difference aligns with the simulation results (Fig. S3, purple line). This result highlights that, as phage drive bacteria
below a critical level, the immune system takes charge, effectively controlling and driving bacteria to extinction.

F. Evaluating the impact of variations in realistic mucin levels and intermediate innate immune states on
the phage therapeutic outcome

As an additional model analysis, we explore how variations in mucin and innate immune levels impact phage therapy
outcomes. To model intermediate immune states, we vary the percentage of neutrophil availability in the lungs from
1% to 100%, where 100% availability corresponds to ∼ 3.24 × 106 lung neutrophils in immunocompetent mice32.
Then, we vary mucin levels across a physiologically relevant range for acute lung infections, ranging from 0% to 4%.

Moreover, we use the phage adsorption rate, ϕ̃ = 1.686×10−7 (ml/PFU)σh−1, for our model simulations. To simulate
the phage treatment of a P. aeruginosa infection, a host is inoculated with 106 bacterial cells, and after 2 hr, the
host is treated with 107 phage. To assess the robustness of model predictions, we randomize the initial conditions
and try 84 different ways of allocating the bacterial inoculum and the phage dose in the network. Then, we calculate
the probability of clearing the infection by simulating the different initial conditions, given a specific mucin level and
innate immune state.

When neutrophil availability is >45%, the metapopulation model predicted a ∼43% probability of clearing the
infection regardless of mucin level (Fig. S4). The result contrasts with the prediction of the well-mixed model, where
infection always clears when ≥45% of lung neutrophils are available (Fig. S5). Increasing neutrophil availability to 80%
increases the chances of therapeutic success to 66%, especially for low mucin levels ranging from 0% to 2% (Fig. S4).
The higher probability of clearing the infection in low mucin levels suggests that when metapopulation dynamics are
more homogeneous, the elimination of bacteria by phage and neutrophils is facilitated. Phage and bacteria spread
faster in low mucin levels, so their population dynamics homogenize among network nodes. Consequently, neutrophil
resources are homogeneously distributed in the network, easing infection control. On the other hand, high mucin
levels limit the diffusion of both phage and bacteria, causing them to predominantly occupy nodes proximal to their
inoculation sites. This results in heterogeneous population dynamics and uneven distribution of neutrophil resources
across network nodes. We hypothesize that limited neutrophil resources and high mucin levels may negatively impact
the phage therapeutic outcome.

The model predicted a 100% chance of eliminating the infection when the host is fully immunocompetent (i.e.,
100% neutrophil availability) and mucin levels vary between 0-3% (Fig. S4). This outcome is consistent with previous
simulations, where we tested different distributions of phage dose and bacterial inoculum in a fully immunocompetent
host (Fig. 4). Overall, outcomes suggest that the metapopulation spatial structure influences the dynamics of the
infection and the phage therapeutic outcome.

G. Analysis of in vivo imaging of P. aeruginosa infected mice

We use images of mice generated previously in an in vivo phage therapy study13 to extract the luminescence signal
indicating the presence of a bacterial infection. In that study, authors used a P. aeruginosa PAKlumi strain to infect
several groups of mice and the P. aeruginosa phage PAK P1 to treat the infected animals. They track the evolution
of the infection for 72 hours, taking pictures at 2, 4, 6, 8, 24, 48, and 72 hours post-infection using the IVIS imaging
system. We focus on a group of 14 mice, including immunocompetent wild-type (N=4) and lymphocyte deficient
Rag2−/−Il2rg−/− (N=10) mice, as they tend to survive the bacterial infection when treated with phage. Both WT
and Rag2−/−Il2rg−/− mice groups produce neutrophils during the bacterial infection.

The IVIS imaging system acquires a photographic image of the animal and overlays the bioluminescent infection
signal on the image55 to create a composite picture of the infected animal. We use MATLAB R2020b and its image-
processing capabilities to read and extract data from the time series of imaged mice. Using the images of mice,
we select a region of interest (24 pixels width x 35 pixels height) that covers the animal’s lungs, throat, and nose.
Then, we select a border that separates the upper and the lower compartments of the mouse respiratory system. For
instance, the upper compartment includes the nose and throat, while the mouse lungs are in the lower compartment.
After splitting the region of interest into two compartments, we can analyze the progression of bacterial infection in
each compartment.
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We pre-process the images containing bioluminescence signals and normalize the pixel intensity values of all images
to a 0-1 scale. Pixel intensity 1 represents a high bacterial density, while 0 represents no signal of detected bacterial
infection. We extract the infection signal from a particular compartment by adding the pixel intensity values of all
the pixels that make up that compartment. We called this value the total intensity signal. We evaluate the progress
of the bacterial infection in both the upper and lower compartments by examining the changes in the total intensity
signal over time.

H. Calculating infection clearance time from in vivo mice infection data

We are interested in calculating the time to infection resolution using the images of infected mice and comparing
it with the clearance time predicted by the metapopulation model. To do so, we define an intensity threshold below
which the total intensity signal is cleared (and so is the infection). By looking at the images of infected mice and
calculating the total intensity of both upper and lower compartments, we set an intensity threshold of 3. When the
total intensity of one compartment is above 3, we consider the infection active in that compartment.

We define some filters to consider which mice to use in the infection clearance analysis. For example, when a mouse
dies before 72 hr, i.e., before the completion of the experiment, we discard that mouse for our analysis. After filtering
out our dataset, we kept four immunocompetent wild-type and nine lymphocytes deficient Rag2−/−Il2rg−/− mice
for a total N = 13 mice.

We calculate the time to infection resolution as the time it takes for the total intensity signal to fall below the
intensity threshold (conditional on the signal never exceeding the intensity threshold again after the signal falls below
the threshold). When the total intensity signal of one compartment does not exceed the intensity threshold during
the experiment (72 hr), we set the time to infection resolution to 0 hr for that compartment. We calculate the time
to infection resolution for both upper and lower compartments. Finally, we compare the clearance time difference
between the compartments.

I. Statistical analysis

Statistical analyses were conducted in MATLAB R2020b. The one-sided Wilcoxon signed-rank test was used to
compare the time to infection resolution between the upper and lower compartments of the mouse. p < 0.05 was
considered statistically significant.

J. Data availability

The code and data used to simulate the metapopulation model, perform the image analysis, and generate the
main figures, as well as the supplementary figures, can be found in the GitHub repository at https://github.com/
RogerRln/metapop_lung.
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(a) (b)

FIG. S1: Relationship between mucin concentration and bacterial speed and phage diffusion. Bacteria speed values
were collected from29 for two mucin levels, 2.5 and 8% (a). We fit a line (red dashed line) between the data points to find
additional speed values for intermediate mucin levels (e.g., 0-4% mucin). In (b), we depict the relationship between mucin level
and bacteria and phage diffusion. The gray boxes show high mucin levels not used in our model simulations.
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(a) (b)

(c)

FIG. S2: Population dynamics at the node level under different phage and immune treatments. We show the
dynamics of phage (solid yellow line), phage-susceptible bacteria (solid blue line), phage-resistant bacteria (solid orange line),
and the host innate immune response (purple solid line) as a result of no treatment (a), innate immune treatment (b), and
phage therapy (c). We infect a host with 106 bacterial cells. When used, phage (107 PFU) are administered 2 hr after the
bacterial infection. When the host is immunocompetent (b), we set the initial immune density to I0 = 4.05 × 105 cells/ml in
all the network nodes. We uniformly distribute the phage dose (c) and the bacterial inoculum (a-c) in the network such that
each node had the same initial bacterial density (1.11× 106 CFU/ml) and phage density (1.11× 107 PFU/ml). The simulation
runs for 100 hr. Here, Node 1 = Generation 1 = trachea, and Node 15 = Generation 15 = terminal airway.
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FIG. S3: Infection clearance time difference across the network, theory vs simulations. We show the infection
clearance time difference between node i and the last node of the network due to the immune killing rate. We compare the
theoretical (dashed purple line) vs simulated (open circles) clearance time difference due to immune killing. We used the
metapopulation model simulations of Fig. 2, simulating the phage therapy of a P. aeruginosa infection in an immunocompetent
host. There, the phage dose and the bacterial inoculum were uniformly distributed such that each node had the same initial
bacterial density (1.11 × 106 CFU/ml) and phage density (1.11 × 107 PFU/ml). The initial immune density was set to
I0 = 4.05 × 105 cells/ml in all the nodes.

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

4

3

2

1

0
0

0.2

0.4

0.6

0.8

1

FIG. S4: Probability of therapeutic success given intermediate mucin levels and innate immune states. To
explore intermediate innate immune responses, we vary the percentage of neutrophils available in the lungs (1-100%). Further,
we vary the mucin levels within a range (0-4%) that is physiologically relevant for acute lung infections. To simulate the phage
treatment of a P. aeruginosa infection, we inoculate a host with 106 bacterial cells and introduce 107 phage 2 hr after the
bacterial inoculation. We calculate the probability of clearing the infection by simulating 84 different initial conditions given
a specific innate immune state and mucin concentration. The heatmap shows the probability of clearing the infection. The
colored regions represent a p > 0 of clearing the infection, while black regions represent a p = 0 of therapeutic success. The
simulation runs for 250 hr. A 100% neutrophil availability represents ∼ 3.24 × 106 lung neutrophils in an immunocompetent

mouse32. For the simulations, we use a phage adsorption rate value of ϕ̃ = 1.686 × 10−7 (ml/PFU)σh−1.
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FIG. S5: Bacterial dynamics of the well-mixed model for intermediate innate immune states. We show total
bacterial dynamics (Btot = BS +BR) that result from infecting a host with 106 P. aeruginosa cells. Phage therapy (107 PFU)
is administered 2 hr after the bacterial inoculation. To model intermediate immune response levels, we vary the percentage of
neutrophils available in the lungs from 10 to 100%. We consider a total lung volume of 0.9 ml. The simulation runs for 115 hr.
A 100% neutrophil availability represents ∼ 3.24 × 106 lung neutrophils in an immunocompetent mouse32.
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