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A B S T R A C T   

The prediction of host human miRNA binding to the SARS-COV-2-CoV-2 RNA sequence is of particular interest. 
This biological process could lead to virus repression, serve as biomarkers for diagnosis, or as potential treat
ments for this disease. One source of concern is attempting to uncover the viral regions in which this binding 
could occur, as well as how these miRNAs binding could affect the SARS-COV-2 virus’s processes. Using extracted 
sequence features from this base pairing, we predicted the relationships between miRNAs that interact with 
genes involved in immune function and bind to the SARS-COV-2 genome in their 5′ UTR region. We compared 
two supervised models, SVM and Random Forest, with an unsupervised One-Class SVM. When the results of the 
confusion matrices were inspected, the results of the supervised models were misleading, resulting in a Type II 
error. However, with the latter model, we achieved an average accuracy of 92%, sensitivity of 96.18%, and 
specificity of 78%. We hypothesize that studying the bind of miRNAs that affect immunological genes and bind to 
the SARS-COV-2 virus will lead to potential genetic therapies for fighting the disease or understanding how the 
immune system is affected when this type of viral infection occurs.   

1. Introduction 

Micro-RNAs (miRNAs) are non-coding RNAs that bind to messenger 
RNA (mRNA) or specific genes, suppressing or even blocking their 
expression by up or down regulating their functions. Certain studies 
have found that miRNAs bind to human mRNA and that they can also 
attach to external or endogenous RNA, as in the case of viruses. MiRNAs 
may bind to viral RNA because they cannot distinguish it from host 
mRNA, according to Nersisyan et al. [1]. In this case, miRNAs could bind 
to the mRNA of a viral genome, repressing transcription or even pre
venting the virus from reproducing. For example, Wong et al. [2] 
discovered that the action of hosts’ miRNAs influenced Dengue Virus 
replication. This procedure occurred when a direct binding to the 
genome of this viral form happened. 

The one-class Support Vector Machine (SVM) model was developed 
by Schölkopf et al. [3], and it is based on the theory of hyperplane 
separation between classes, as is the two-class SVM model. The difficulty 
in using a two-class model is that on some occasions, samplings from one 
class are scarce, or we only have samples from one type; this is when 
models like One-class SVM appear adequate. Another issue is that it is 
difficult to obtain samples from the negative (positive) class [4,5]. 

In relation to miRNA targeting and binding to specific genes, we 
recognize that, while this process is more likely to occur in the 3′ UTR 
region, there is some intriguing evidence that it could also occur in the 5′

UTR region. For example, in the work of Zhou and Rigoutsus [6], the 
authors stated that they found two target sites of the miR-103a-3p with 
the GPRC5A, a tumor suppressor gene, in epithelial and pancreatic 
cancer cells, and that this bind occurred in the 5′UTR region. Interest
ingly, these interactions occurred in both the less conserved and 
conserved regions of the 5′UTR; additionally, Lee et al. [7] discovered 
that some miRNAs that bind to the 5′UTR part also contain 5′end 
interaction sections that they attach to the 3-UTRs. Lee et al. [7] also 
mentioned the presence of endogenous motifs in human 5′UTRs that 
bind to the 3′ ends of miRNAs. 

The particular findings of the review article by Ying et al. [8] 
demonstrated that miRNA binding occurs not only in the 3′UTR region 
but also in the 5′UTR region. Other authors, such as Bruscella et al. [9], 
support the hypothesis that host miRNAs have an affinity to bind to the 
viral 5′UTR region of viruses. This region binding is important because it 
may play a role in the viral replication of diseases like dengue [2]. 
Furthermore, Baldassarre et al. [10] cited several studies that demon
strate the importance of the 5′UTR in coronavirus replication and 

* Corresponding author. 
E-mail addresses: jmgutier@ulima.edu.pe (J. Gutiérrez-Cárdenas), wangzengh@gmail.com (Z. Wang).  

Contents lists available at ScienceDirect 

Informatics in Medicine Unlocked 

journal homepage: www.elsevier.com/locate/imu 

https://doi.org/10.1016/j.imu.2022.100958 
Received 8 February 2022; Received in revised form 25 April 2022; Accepted 25 April 2022   

mailto:jmgutier@ulima.edu.pe
mailto:wangzengh@gmail.com
www.sciencedirect.com/science/journal/23529148
https://www.elsevier.com/locate/imu
https://doi.org/10.1016/j.imu.2022.100958
https://doi.org/10.1016/j.imu.2022.100958
https://doi.org/10.1016/j.imu.2022.100958
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imu.2022.100958&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Informatics in Medicine Unlocked 30 (2022) 100958

2

infection. When considering the SARS-CoV and SARS-CoV-2 sequences, 
the authors also mentioned conserved regions obtained through 
sequence alignment, noting that focusing on these areas could help 
inhibit virus replication [10]. Moreover, some authors, such as 
Mukhopadhyay et al. [11], demonstrate that this untranslated region 
contains many conserved regions of about 90 nucleotides. 

In the present research, our goal was to gather a subset of miRNAs 
involved in the expression of genes present in the immune system. 
Furthermore, we wanted to predict the probable binding with the SARS- 
COV-2 RNA. For this task, we compared two supervised models, SVM 
and Random Forest, with a One-class SVM to predict the binding of 
miRNAs to immune genes while considering the SARS-CoV-2 5-UTR 
region. We focused on sequence characteristics based on k-mers and 
thermodynamic features such as the Minimum Free Energy (MFE) of the 
RNA’s secondary structure when developing our Machine Learning 
models. These features were found in the binding of miRNA-immune 
genes to viral RNA. Because animal miRNA binding does not always 
exhibit perfect Watson-Crick complementarity, as it does in plants [12] 
relying solely on sequence alignment between miRNA and genes or the 
viral strand would be insufficient. Previous studies using this approach 
include the work of Gutiérrez-Cárdenas and Wang [13,14], who used 
sequence-based features to identify non-coding RNAs with genes 
involved in breast cancer scenarios. 

We divided our work into the following sections: Section 2 will 
define the One-Class SVM model as well as some useful bioinformatics 
concepts. The methodology and experiments with a set of miRNAs, the 
SARS-COV-2 genome sequence, and immune genes will be described in 
Section 3. This section will focus on the extracted features and the tuning 
of our Machine Learning models. Section 4 will present our findings 
from comparing our two-class supervised models to our One-class SVM 
model. Following this section, we will discuss our findings based on a 
review of the current literature and some conclusions drawn from the 
current work. 

2. Background 

2.1. Bioinformatics concepts 

2.1.1. Sequence alignment 
When comparing two different DNA or RNA strands, one method for 

determining similarities is to compare their nucleotide information 
using a scoring function. It is similar to compare two strings made up of 
the letters A, C, T, G, and U, each of which corresponds to a different 
nucleotide. The Needleman-Wunsch algorithm [15] is one method for 
obtaining this score. When a match occurs, this algorithm returns a 
positive score. When a gap in a position occurs, a negative score is 
assigned. These two strands can be used as the indexes of an array in the 
computational implementation, and the score can be obtained using 
dynamic programming (see Fig. 1). 

2.1.2. Minimum Free Energy and binding 
The RNA molecules present different forms or organizations of their 

material, one way to visualize an RNA strand is to consider it as a 
sequence of nucleotides with a 5′ and a 3′ ends in the following way: 

5′AAUUGCGGGAAA … UUCA3′

This initial conformation shown above is known as their primary 
structure. However, RNA can also form secondary and tertiary structures 
in which the formation of loops, known as hairpin loops, is fairly com
mon (see Fig. 2). 

In Fig. 2a, for example, a hairpin loop can be seen forming in the 
lower part of the RNA molecule. Also. We can observe some comple
mentary sequences that have their nucleotides aligned in the middle. 
Prediction of secondary and tertiary structures is one task that bio
informaticians face [16]. For example, in secondary structures, one 
could predict it using the thermodynamics principle. These thermody
namic principles are simple. The theory is that when a molecule is more 

stable, it tends to has more energy, accordingly to the concept of Min
imum Free Energy (MFE). In Fig. 3, we can see an RNA secondary 
structure with matches and mismatches. The MFE is calculated based on 
the energy present in adjacent nucleotides, with lower energy present in 
those nucleotides close to each other. When the total summation is 
calculated, a more negative value indicates that the molecule is more 
stable [16]. 

2.1.3. K-mers 
A k-mer is just a subset or a substring obtained from a larger genetic 

molecule but with a fixed size. It is usually formed by using a sliding 
window of n-characters, for example, if we have the following DNA 
string: 

AAACCTGGACCTT 
And if we want to form a 2-mer, we could join each par of nucleotides 

and advance the string to the right by a sliding window of two characters 
giving us: 

AA, AA, AC, CC, CT. 
The use of k-mers has different applications in bioinformatics, such 

as the reconstruction of genetic material given their partial sequences 
and finding shared k-mers between sequences that could serve to find 
gene similarities. 

2.2. Unsupervised models: One-class SVM 

Schölkopf et al. [3] proposed the One-Class SVM, a model for novelty 
detection based on a SVM classifier with only one training class. This 
model generates a mapping by using kernels to separate the data from 
the origin by a maximum margin [3]. If the data is contained within a 
region, it returns a value of +1; otherwise, it returns a value of − 1. In 
addition, unlike traditional SVM models, which require at least two 
categories, this model allows for outlier detection using only one class. It 
is important to note that the data in a One-class SVM is not labeled. Still, 
a subset of the data could be extracted and labeled as positive or nega
tive for the application of metrics to measure the quality of our model. 

The notion of kernels as in SVM is also applied to One-class SVM to 
transform a set of data points to another dimension using the kernel 
function. The decision boundary in this model is based on: 

W.Φ(X) − b= 0 (1) 

In Eq. (1), Φ(X)) corresponds to the transformation of X into a higher- 

Fig. 1. Global alignment between a pair of sequences.  
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dimensional space, and b is a bias variable. We need to formulate this as 
an optimization problem in which the value of W.Φ(X) − b is positive for 
holding as many of the samples that belong to the N training set; this is 
because we believe that most of the samples will be enclosed in the 
positive class. Therefore, if we have the contrary case in which W.Φ(X)−
b is negative, we can have a slack penalty of max[b − W.Φ(X),0]. In this 
case, we are rewarding that the origin is farther away from the sepa
rating hyperplane. If we account that we also need a regularize term 
1
2||W||

2, we will end up with the following objective function, see Eq. (2): 

MinJ =
1
2
||W||

2
+

C
N

∑N

i=1
max{b − W.Φ(X), 0} − b (2) 

Furthermore, the C value acts like a regularization factor that deals 
with the misclassification of the samples considering a trade-off between 

the false positives and false negatives obtained from the model [17]. 

3. Materials and methods 

3.1. Methodology 

The goal of this study was to predict the possible binding of miRNAs 
to the SARS-COV-2 virus and the 5′ UTR region. For this purpose, we put 
together a list of miRNAs with information pertaining primarily to their 
ID and genomic sequence. The miRNAs from this list were paired with 
the viral 5′ UTR region. 

In addition, we obtained a list of genes involved in the immunology 
processes of the human body. Following that, we generated a new list of 
miRNAs that are known to bind to these genes. This obtained list served 
as our positive class, while those unrelated (or lacking a match in the 
dataset generated) served as our negative class. We hypothesize that 
when there is a viral infection, miRNAs are likely to bind to these im
mune genes, and therefore it would be relevant to predict if there is an 
affinity for binding to the SARS-COV-2 gene as well. To test our hy
pothesis, we used an SVM and a Random Forest (RF) as supervised 
models, and a One-class model SVM. Fig. 4 depicts a diagram of our 
methodology. 

Concerning the datasets that we used, we extracted the SARS-COV-2 
Genome in FASTA format, which is available in NCBI under the acces
sion number GenBank: MN908947.3. To develop our proof-of-concept, 
we only worked with the binding in the 5′UTR region of this genome 
sequence. In the introduction to this paper, we provided a justification 
for our decision. 

Nucleotide 1 to nucleotide 265 are included in the FASTA sequence 
for the 5′UTR region. In terms of miRNA use, we obtained a list of 
miRNAs from miRBase [18], focusing only on those that correspond to 
human species. In addition, we obtained a list of genes involved in our 
organism’s immune process by accessing the InnateDB list at https: 
//www.innatedb.com/. This dataset contains information from 4723 
immune-related genes (see Table 1). 

3.2. Features extracted 

We extracted the frequency of 3-mers from the set of miRNA se
quences. Zhang et al. [19] also developed this method for extracting 
features from k-mer data. This number of 3-mers was selected as the 

Fig. 2. (a) Secondary structure and (b) Tertiary structure of an RNA molecule (generated with RNAFold Web Server and with RNA Composer respectively).  

Fig. 3. Prediction of the MFE from a RNA alignment.  
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upper limit for this feature [20]. Furthermore, other authors, such as 
Wen et al. [21], demonstrated that higher values, such as 4-mers or 
5-mers, produced results with negligible between both types of k-mers. 
In addition, we used a dataset that contained miRNAs associated with 
various genes involved in immunological processes (see Table 2). 

We obtained the MFE generated by a match between the miRNA 
sequence and this genomic region using the genomic sequence of the 
5′UTR from the SARS-COV-2 virus. We used the Vienna package [22] 
and their RNAduplex function to calculate the hybridization of two se
quences and to obtain potential bindings between mRNA and RNA [22]. 
Additionally, we performed a pairwise sequence alignment of the 5′UTR 
and the miRNA sequence. To accomplish this procedure, we first had to 
transcribe the miRNA sequence and then complement it, because we 
wanted to obtain a score based on nucleotide matching or using the 
canonical Watson-Crick base pairing (see Table 3). This table would be 
used as an input for the different machine learning models that were 
tested. 

3.3. Application of supervised models: SVM and RF 

In this section of our research, we wanted to see if there could be an 
interaction between those miRNAs that have an affinity for binding to 
genes involved in immunological processes. As a result, we extracted 
two classes from our entire dataset. The positive class corresponded to 
those miRNAs that bind to these immune genes, while the negative class 

corresponded to those that did not have a validated interaction with 
these genes. For both supervised methods, we used the GridSearch 
method with ten-fold cross-validation and a weighted scoring schema to 
tune their hyperparameters. We validated our results by testing the ac
curacy, sensitivity and specificity of our models with these values. 

3.4. One-class SVM comparison with supervised models 

With our one-class model, we needed to select the best hyper
parameters for this model’s application. We used a Grid Search CV with 
five folds for this purpose. To validate our results, we ran our model ten 
times, similar to a cross-validation procedure, and selected different 
random samples from the negative class; then, we used a set of metrics to 
assess its performance. It is worth noting that we used a subset of 
negative samples made up of miRNAs that bind to the mRNA virus but 
do not have a matching relationship with genes involved in immune 
processes when compared to the list provided by the Innate DB. 

The previous description can be briefly be summarized in the 
following pseudocode: 

Algorithm 1. Comparison of classifier for binding predictions between 
miRNAs and immune genes,   

Fig. 4. Schemata of the methodology followed.  

Table 1 
Sample of the genes obtained from the InnateDB.  

Id Species Taxonomy ID Ensembl Id Gene name Fullname 

21 Homo sapiens 9606 ENSG00000099715 PCDH11Y protocadherin 11 Y-linked 
67 Homo sapiens 9606 ENSG00000092377 TBL1Y transducin (beta)-like 1, Y-linked 
191 Homo sapiens 9606 ENSG00000114374 USP9Y ubiquitin specific peptidase 9, Y-linked 
238 Homo sapiens 9606 ENSG00000165246 NLGN4Y neuroligin 4, Y-linked 
259 Homo sapiens 9606 ENSG00000101557 USP14 ubiquitin specific peptidase 14 (tRNA-guanine transglycosylase) 
282 Homo sapiens 9606 ENSG00000079134 THOC1 THO complex 1 
285 Homo sapiens 9606 ENSG00000158270 COLEC12 collectin sub-family member 12 
368 Homo sapiens 9606 ENSG00000141433 ADCYAP1 adenylate cyclase activating polypeptide 1 (pituitary) 
410 Homo sapiens 9606 ENSG00000132205 EMILIN2 elastin microfibril interfacer 2  
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4. Results 

4.1. Supervised models and misleading results: SVM and RF 

4.1.1. SVM 
We divided our entire subset into two classes for this section and then 

used a GridSearch with a weighted score to determine the best param
eters to use with this supervised model. Using the data from the 
InnateDB database, we created a list of 818 miRNAs that interact with 
genes involved in immunological processes, and other 1730 miRNAs 

that act as their counterparts. Our SVM model was initially tested with 
both complete subsets, but the results were inconclusive. With no 
defined values for sensitivity and specificity, we obtained an accuracy of 
67.84% with the entire dataset. The true-positive value was zero, and 
the false-negative value was also zero. 

With a ten-fold Grid Search cross-validation we tried the following 
parameters, kernel values: RBF and polynomial; penalization value (C) 
as a list with values ranging from 10− 2 to 102; degrees for the poly
nomial kernel ranging from 2 to 5, gamma as a list with values ranging 
from 10− 6 to 30. The parameters selected were kernel = rbf, C = 0.01, 
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and gamma = 10–5. With these parameters, we found using 10-fold 
cross-validation a training accuracy of 82.54%, a standard deviation 
of 0.0008, and test accuracy of 82.54%, with a standard deviation of 
0.003. Despite the fact that these results appeared promising, we 
discovered a miss classification for the true-negative class, a type-II 
error. The significance of this type of error analysis stems from the 
fact that it could classify a miRNA with their respective connection with 
an immune gene because it would not bind the SARS-COV-2 viral 
sequence; however, this binding may exist in reality. We validated these 
results by generating a ROC curve from our data. The results from the 
ROC curve can be observed in Fig. 5, and the confusion matrix can be 
seen in Table 4a, indicating that there is a problem classifying the 
negative samples. 

According to the SVM model results our classifier was having diffi
culty discriminating samples from the negative category. These samples 
corresponded to miRNAs that were known to bind to viral mRNA, but 

they did not have validated interactions with genes involved in immu
nological processes. 

4.1.2. Random Forest 
We proceeded to select the best hyperparameters that could be 

suitable for our model after dividing our data into positive and negative 
samples, as the SVM model previously mentioned. We used the Grid 
Search algorithm with the following parameters: number of estimators 
with values ranging from 10 to 300, with a 50-point interval between 
numbers; number of maximum features was tested using the square root 
of these values and the log of 2 number of features. In terms of maximum 
depth, the tested values ranged from 4 to 16 on four by four value in
tervals; finally, the tested splitting criteria were Gini and Entropy. We 
discovered that the best hyperparameters were: splitting criteria = en
tropy, maximum depth of the trees = 12, number of maximum features 
= square root, and number of trees or estimators = 10. We obtained an 
accuracy of approximately 82.88% in the test set with these hyper
parameters, promising similar results as before; however, we discovered 
a type-II error with no values for the true-negative class again, see 
Table 4b. Therefore, w e decided to use a One-class model to see how it 
behaves with our data based on these results, which typically occur in 
imbalanced scenarios. 

4.2. Unsupervised One-class SVM comparison with supervised models 

We started by using a Grid Search algorithm to select the best 
hyperparameters. Considering this technique, we discovered that the 
best hyperparameters for this technique were kernel = rbf, nu value =
0.01, and gamma = 0.03449. With these data, we executed our model 
ten times with different subsets of samples containing 5% of the negative 
class chosen without replacement, and we averaged the results of the 
metrics obtained. This method of data selection is similar to using a 
cross-validation model. After reviewing our results, we discovered more 
stable and promising values than those obtained with the supervised 
models. We achieved an average accuracy of 90.90% with a standard 
deviation of 0.02, sensitivity of 96.18% with a standard deviation of 
0.01, and specificity of 76.39% with a standard deviation of 0.1, see 
Table 5. 

Table 5 shows that the specificity values for the supervised models 
are not overly significant. It is important to remember that the speci
ficity in this case refers to those miRNA that do not interact with immune 
genes or have a true negative value. In the case of the SVM, we can see 
that this value is undetermined because there are no true negative 
values, according to Table 4(a). Furthermore, the Random Forest model 
has a specificity value of only 50%, implying that this model has the 
same precision in this metric as a random process, resulting in a limiting 
prediction power for this type of problem. These drawbacks were solved 
by using the one-class model, which was able identify miRNAs that were 
likely to interact with immune genes and bind to SARS-COV-2. 

5. Discussion 

In this paper, we attempted to predict the binding of miRNAs that 
have a relationship with immune genes and may be prone to bind to the 
SARS-COV-2 virus’s 5-UTR region. The significance of selecting this 5- 
UTR has been described in various studies, highlighting its importance 
in viral replication [6–8,10]. We used a few datasets related to miRNAs 
and genes involved in immune processes to determine which were 
relevant to our research goals. 

We downloaded a list of predicted miRNAs that could target viral 
mRNA according to the study of Saçar and Adan [23] for verification 
purposes, based on the list of miRNAs that we used for our classification 
models. From a list of 107 miRNAs obtained by these authors, we found 
that 80 of them were present in the list of miRNAs that we extracted as 
target genes involved in immunological processes, and we hypothesized 
that they could bind to the SARS-CoV-2 viral. Future research should 

Table 2 
List of miRNas that have a relationship with genes from immune processes.  

miRNA miRTarBase 
ID 

Species 
(miRNA) 

Gene 
Target 

Experiments 

hsa-let- 
7a-2- 
3p 

MIRT058253 Homo 
sapiens 

CADM1 PAR-CLIP 

hsa-let- 
7a- 
3p 

MIRT038998 Homo 
sapiens 

ARMC8 CLASH 

hsa-let- 
7a- 
5p 

MIRT000415 Homo 
sapiens 

CDK6 CLASH 

hsa-let- 
7b- 
3p 

MIRT038996 Homo 
sapiens 

SYT4 CLASH 

hsa-let- 
7b- 
5p 

MIRT001229 Homo 
sapiens 

CDC34 Luciferase reporter assay// 
Western blot 

hsa-let- 
7c-3p 

MIRT060727 Homo 
sapiens 

RPS3 PAR-CLIP 

hsa-let- 
7c-5p 

MIRT000408 Homo 
sapiens 

CDC25A Immunohistochemistry// 
Luciferase reporter assay// 
qRT-PCR//Western blot 

hsa-let- 
7d- 
3p 

MIRT038993 Homo 
sapiens 

CAPN15 CLASH 

hsa-let- 
7d- 
5p 

MIRT002005 Homo 
sapiens 

HMGA2 Luciferase reporter assay 

hsa-let- 
7e- 
3p 

MIRT032094 Homo 
sapiens 

COPS8 Western blot 

hsa-let- 
7e- 
5p 

MIRT002081 Homo 
sapiens 

HMGA2 Luciferase reporter assay// 
qRT-PCR 

hsa-let- 
7f-1- 
3p 

MIRT038990 Homo 
sapiens 

MECR CLASH 

hsa-let- 
7f-2- 
3p 

MIRT038988 Homo 
sapiens 

PBDC1 CLASH 

hsa-let- 
7f-5p 

MIRT000455 Homo 
sapiens 

KLK10 qRT-PCR//Luciferase 
reporter assay 

hsa-let- 
7g- 
3p 

MIRT038660 Homo 
sapiens 

MAGED1 CLASH 

hsa-let- 
7g- 
5p 

MIRT000399 Homo 
sapiens 

KRAS Luciferase reporter assay 

hsa-let- 
7i-3p 

MIRT175933 Homo 
sapiens 

KLHL15 PAR-CLIP 

hsa-let- 
7i-5p 

MIRT003050 Homo 
sapiens 

TLR4 Luciferase reporter assay// 
qRT-PCR//Western blot 

hsa- 
miR- 
1-3p 

MIRT000385 Homo 
sapiens 

MYEF2 PAR-CLIP  
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look into which miRNAs can bind to other parts of the SARS mRNA and 
take a glance for more in-vitro and in-silico validation of the miRNAs 
that could bind to these immunological genes. 

We could mention the study of Maghsoudnia et al. [24] regarding the 
miRNA let-7b in relation to some of the miRNAs that have some 
connection with immune genes and that we considered to be prone to 
bind to the SARS-COV-2. This miRNA was discovered to target specific 
respiratory chain genes by this author, and it has been used in drug 
targeting in apoptotic cells. The SARS-CoV-2 virus has a relationship 
with this respiratory chain in that ACE2-positive individuals are a target 
of this virus, causing cardiac and respiratory issues [25]. Gasparello 
et al. [26] discovered that hsa-miR-450a-5p may bind to the IL-8 gene, 
which is involved in cytokine storms, and that this biomarker is one of 
the predictors of patient survival when they are hospitalized. Another 
example is how miRNA hsa-miR-192–3p binds to NR1H4 and contrib
utes to SARS-COV-2 progression [27]. According to Alshabi et al. [19], 
miRNA hsa-miR-6809–5p binds to the S-region or spike gene from the 
SARS-COV-2 genome; however, we discovered that it could also bind to 
the 5′UTR region. 

Despite the fact that the genome of the SARS-COV-2 virus differs 
from that of influenza cases, some miRNAs are present in them as well, 
which are also prone to bind to the 5 UTR region of the SARS-COV-2 
mRNA sequence. These interactions were discovered with the hsa- 
miR-6873–5p [28] and the hsa-miR-4276 [27]. Other types of miRNAs, 
such as the hsa-miR-7111–5p, which binds the HOXC8 gene and 

up-regulates it, are also found in diseases that could result in 
co-morbidity in SARS-COV virus scenarios [29]. 

Using a pair of supervised machine learning models and one unsu
pervised model, we used features extracted from the sequences of these 
miRNAs to the 5′UTR region of the SARS-COV-2 virus to find some 
match between these miRNAs and this viral form. The use of features 
extracted from sequence analysis instead of gene expression in miRNA 
studies has also been mentioned in the works of Gutiérrez-Cárdenas and 
Wang [13,14]. 

We discovered that the results of using two-class supervised models 
were a little misleading. This was due to the fact that, despite having an 
acceptable level of accuracy of around 82% for both models, we 
concluded that no true-negative samples were correctly classified when 
we validated our confusion matrices. We came to the conclusion that we 
were dealing with a pseudo imbalanced class. We coined the term 
“pseudo imbalanced class” because, despite partitioning our data into 
positive and negative categories using the golden rule of 70/30 for the 
train (positive) and test (negative) classes, the models were having dif
ficulty correctly classifying the negative classes. This did not happen 
when we used our One-class SVM model, which produced more stable 
results, as discussed in the Results section of this article. 

According to Li et al. [30], among the genes studied, CADM1 pro
moted immune surveillance and was linked to COVID-19. In terms of 
potential treatments, Klinger et al. [31] found that drugs targeting the 
cyclin-dependent kinase 6 (CDK6) are important for treating patients 
with this disease. Müller et al. [32] discovered that SYT4 was 
down-regulated after a SARS-CoV-2 infection; however, while the au
thors establish a link between this gene and beta-cell physiology or 
diabetes, other authors, such as Jiang et al. [33], discovered a link be
tween this gene and immune cells. 

One limitation of the current study is that potential pathways be
tween the discovered miRNAs and other cellular components or func
tions must be validated using genome-wide association studies. 

It is worth noting that, at the time of writing the present study, we 
were unable to find literature on the use of One-class models to study 

Table 3 
Features extracted of the miRNAs sequences.  

miRNA miRTarBase 
ID 

Species 
(miRNA) 

Target 
Gene 

Species 
(Target Gene) 

Experiments seqMirna alignS duplex AAUm 

hsa-let-7a- 
2-3p 

MIRT058253 Homo 
sapiens 

CADM1 Homo sapiens PAR-CLIP CUGUAC 16.9 − 13.7 0 

hsa-let-7a- 
3p 

MIRT038998 Homo 
sapiens 

ARMC8 Homo sapiens CLASH CUAUAC 14.8 − 9.5 0.047619 

hsa-let-7a- 
5p 

MIRT000415 Homo 
sapiens 

CDK6 Homo sapiens CLASH UGAGGU 16.1 − 15.5 0 

hsa-let-7b- 
3p 

MIRT038996 Homo 
sapiens 

SYT4 Homo sapiens CLASH CUAUAC 16.5 − 9 0 

hsa-let-7b- 
5p 

MIRT001229 Homo 
sapiens 

CDC34 Homo sapiens Luciferase reporter assay//Western blot UGAGGU 16.1 − 19.2 0 

hsa-let-7c- 
3p 

MIRT060727 Homo 
sapiens 

RPS3 Homo sapiens PAR-CLIP CUGUAC 16.9 − 9.4 0 

hsa-let-7c- 
5p 

MIRT000408 Homo 
sapiens 

CDC25A Homo sapiens Immunohistochemistry//Luciferase reporter 
assay//qRT-PCR//Western blot 

UGAGGU 16.1 − 16.8 0 

hsa-let-7d- 
3p 

MIRT038993 Homo 
sapiens 

CAPN15 Homo sapiens CLASH CUAUAC 16.5 − 11.7 0 

hsa-let-7d- 
5p 

MIRT002005 Homo 
sapiens 

HMGA2 Homo sapiens Luciferase reporter assay AGAGGU 16.1 − 16.8 0  

Fig. 5. ROC curve obtained from the SVM model.  

Table 4 
Confusion matrix from the SVM Model (a) and Random Forest model (b).  

(a) (b) 

Actual Class Actual Class 

Predicted Class  Yes No Predicted Class  Yes No  
Yes 248 0 Yes 237 3  
No 50 0 No 55 3   
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interactions between miRNAs, immune genes, and the SARS-COV-2. 
Furthermore, we believe that studying miRNAs that bind to these viral 
strands and are involved in immune system regulation could fill a 
research gap in our efforts to understand how our immune system re
sponds in the presence of this viral infection. 

6. Conclusions 

The interaction between host miRNAs and SARS-COV-2 mRNA could 
lead to a potential field of research in order to find new therapeutics to 
alleviate the current pandemic situation. We were able to identify a 
subset of human miRNAs that are likely to bind to the 5′UTR region of 
the SARS-COV-2 mRNA genome by applying a One-class SVM model to a 
set of human miRNAs. The validated literature results also showed that 
the miRNAs discovered were linked to other types of diseases, such as 
obesity, lung damage, and others. Furthermore, we found promising 
results in the study of miRNAs associated with genes involved in the 
body’s immune response. Because these miRNAs are present in the 
human body’s immunological response and serve to counter-attack this 
type of viral infection, they may bind to the SARS-COV-2 viral mRNA, 
paving the way for future research in this field. Future research will look 
into other regions where miRNA binding could occur, such as the 3′UTR 
or the role of the seed site in this process. 
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