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This study aimed to investigate whether the ordinal judgments of high math-anxious
(HMA) and low math-anxious (LMA) individuals differ. Two groups of 20 participants
with extreme scores on the Shortened Mathematics Anxiety Rating Scale (sMARS)
had to decide whether a triplet of numbers was presented in ascending order. Triplets
could contain one-digit or two-digit numbers and be formed by consecutive numbers
(counting condition), numbers with a constant distance of two or three (balanced) or
numbers with variable distances between them (neutral). All these triplets were also
presented unordered: sequence order in these trials could be broken at the second
(D2) or third (D3) number. A reverse distance effect (worse performance for ordered
balanced than for counting trials) of equal size was found in both anxiety groups.
However, HMA participants made more judgment errors than their LMA peers when they
judged one-digit counting ordered triplets. This effect was related to worse performance
of HMA individuals on a symmetry span test and might be related to group differences
on working memory. Importantly, HMAs were less accurate than LMA participants at
rejecting unordered D2 sequences. This result is interpreted in terms of worse cognitive
flexibility in HMA individuals.

Keywords: math anxiety, ordinality, reverse distance effect, attentional control, cognitive flexibility

INTRODUCTION

People who suffer from math anxiety have a feeling of tension and apprehension when they deal
with number-related tasks in academic contexts or in their daily life (Richardson and Suinn, 1972).
This emotional response is not unusual: according to the 2012 Program for International Student
Assessment (Organization for Economic Co-operation and Development [OECD], 2013), 60% of
15-year-old students from OECD countries who were tested reported feeling worried about the
difficulty of math tasks, and around 30% claimed they felt tense or nervous when they were solving
math problems. This high prevalence is particularly worrying because math anxiety is negatively
associated with mathematical learning and performance (Ashcraft and Faust, 1994; Organization
for Economic Co-operation and Development [OECD], 2013), and math is one of the foundations
of our highly technological societies. Therefore, in recent years, considerable effort has been devoted
to investigating the factors that might cause the appearance and maintenance of math anxiety as
well as its link with worse mathematical performance. An initial hypothesis was that highly math-
anxious individuals [hereafter high math-anxious (HMA)] might have fewer working memory
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resources available when they perform math tasks because math-
related ruminations would act as a secondary task, consuming
part of them (e.g., Ashcraft and Kirk, 2001). We will come back
to this hypothesis later in this introduction. A second hypothesis
stated that HMA individuals might have less precise magnitude
representation (Maloney et al., 2010, 2011), which would prevent
them from learning more advanced math skills that are based
on magnitude representation. Nevertheless, recent evidence has
shown that it is not always the case that HMA individuals have
worse numerical representations than their low math-anxiety
peers (Dietrich et al., 2015; Colomé, 2019; Núñez-Peña et al.,
2019). Concurrently, a change has taken place in the field of
numerical cognition. The focus has shifted from research that
was mainly on the cardinal meaning of numbers to a growing
interest in ordinality (Lyons et al., 2016). Ordinality is a second
property of numbers that refers to the relative position of an
item in a sequence (e.g., first, second,. . .). It has been found
that ordering abilities are related to mathematical performance,
and it has been suggested that they might mediate between
magnitude representation and arithmetic abilities (Lyons and
Beilock, 2011) or may independently account for a considerable
part of individual variance in arithmetic skills (Goffin and
Ansari, 2016). Interestingly, there seems to be a switch over
time in the relative contributions of cardinality and ordinality to
achievement in mathematics (Lyons et al., 2014; Sasanguie and
Vos, 2018). The increase in relevance of ordinality seems to be
linked to the formation of a network of associative connections
between numbers that are related through experience with either
arithmetic or counting routines.

Our aim in this study was to investigate whether ordinal
abilities in people with high math anxiety differ from their low
math-anxious (LMA) peers. Given that math anxiety is often
linked to worse arithmetic performance (e.g., Ashcraft and Kirk,
2001; Ashcraft and Moore, 2009) and considering the increasing
connection between ordinality and mathematics achievement in
a lifetime, we wondered whether one of the aspects in which
HMA individuals might differ from their LMA peers is their
ability to perform numerical order judgments. To the best
of our knowledge, only one previous study has assessed this
point: Douglas and Lefevre (2017), who explored the influence
of basic cognitive skills on the relation between math anxiety
and arithmetic performance, included order judgments between
the numerical skills they assessed. Participants performed a
timed paper-and-pencil task in which they had to decide
whether a series of three numbers was ordered (ascending or
descending) or not. Ordered series could contain consecutive
numbers (counting condition, e.g., 2 3 4) or non-consecutive
numbers (neutral condition, e.g., 2 5 7). Performance was
calculated as the number of correctly judged items per second.
Douglas and Lefevre (2017) reported a significant negative
correlation (r = −0.28, p < 0.01) between this measure and the
Abbreviated Math Anxiety Scale score (AMAS; Hopko et al.,
2003), although they also found that the relationship between
basic numerical skills and math anxiety was mediated by more
complex skills. Nevertheless, given that their ordinality measure
did not discriminate between conditions or between ordered and
unordered trials, it is not very informative about the kinds of

processes that HMA participants might perform differently from
their LMA peers.

The signature of ordinal processing is the reverse distance
effect (RDE). When cardinality is assessed through number
comparison, a canonical distance effect is found in symbolic
and non-symbolic magnitudes: the farther the numerosities are
from each other, the easier it is to decide which one is larger
(Moyer and Landauer, 1967). This effect has been attributed to
the fact that numerosities are not represented exactly and there
is a certain degree of overlap between close numerosities. In
contrast, it has been observed (Turconi et al., 2006; Franklin et al.,
2009) that participants who have to judge whether a triplet of
numbers is properly ordered respond faster and more accurately
to ordered series of consecutive numbers (e.g., 2 3 4) than to
series of non-adjacent numbers (e.g., 2 4 6). This RDE is only
found with symbolic materials, while non-symbolic ones exhibit
the canonical distance effect (Lyons and Beilock, 2013).

Some authors (e.g., Bourassa, 2014; Vos et al., 2017) claim
that the RDE might indicate the recognition of frequently
encountered numerical sequences, with more familiar triplets
being accessed faster and more accurately. Co-occurrence in daily
life would lead to strong associations between these numbers in
long-term memory networks, which would facilitate recognition
and access to their positional information. In support of this
hypothesis, Bourassa (2014) found, for instance, that ascending
ordered sequences were answered faster than descending ordered
ones. LeFevre and Bisanz (1986) also found that the recognition
of series improved with very familiar, non-adjacent triplets such
as 5 10 15. Familiarity would explain the RDE, since in general
people are more exposed to consecutive sequences (as in counting
routines) than to other sequences. Hence, it should be easier
to judge counting triplets (e.g., 2 3 4) than balanced sequences,
i.e., non-consecutive numbers with a constant distance between
them (2 4 6). Moreover, both types of items should be easier
than neutral trials, that is, triplets with non-consecutive numbers
with unequal distances between them (3 4 6). Familiarity might
account for individual differences, because individuals who deal
with numerical symbols more frequently might have stronger,
more sophisticated number associations stored. If familiarity is
relevant in ordinal judgments, HMA individuals might be at a
disadvantage because they tend to avoid math-related situations
(Ashcraft and Ridley, 2005). For instance, Hembree (1990)
showed that math anxiety was negatively related with measures
such as the number of math courses taken at high school or
the intention to enroll in college math. Given this avoidance,
HMA individuals should have less practice with numbers, and
fewer overlearned number sequences. Therefore, we expected
that deciding whether a triplet was ordered would be harder
for them in general, but particularly when sequences become
more sophisticated such as in the balanced condition described
above. However, the familiarity hypothesis has not always been
supported. For instance, Lyons and Ansari (2015) found that
RDE was stronger in triplets of two-digit numbers than in triplets
of one-digit numbers, although the former type of numbers is less
frequently encountered. This led them to conclude that ordinality
is not just a consequence of other symbolic processes, such as
familiarity with counting sequences, but a fundamental aspect
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of numerical processing. However, they acknowledged that the
processes underlying ordinality judgment are currently largely
unknown, and suggested some possibilities like verbal rehearsal,
visuo-spatial processing, or serial-order working memory.

Indeed, individual differences in working memory are known
to be relevant to the kind of associations between numbers that
individuals establish. Lyons and Beilock (2009) asked participants
to decide whether a triplet of numbers between 1 and 9 had
been presented in ascending order. Triplets could be sequential1,
when the triplet was a segment of the counting list (2 3 4),
balanced, when numbers were not consecutive but had a constant
distance between them (2 4 6), and skewed, if numbers had
unequal intervals between them (3 4 6). Lyons and Beilock
found that participants with high and low levels of working
memory (hereafter HWM and LWM, respectively) found it hard
to reject sequential triplets when they were unordered because
the numbers contained in them were part of the overlearned
counting sequence. Working memory groups did not differ in
the skewed condition either: latencies and error rates were similar
in the ordered and unordered trials of this condition, which
indicates that there is a limit to the kind of ordinal associations
that are made. Finally, balanced triplets behaved more like
sequential triplets in the HWM group, while they showed a
similar pattern to skewed triplets in the LWM group. Lyons and
Beilock (2009) concluded that people with a high level of working
memory build and retrieve deeper ordinal relationships than
their LWM peers.

As we mentioned previously, working memory has also been
invoked as one of the aspects that might be at the base of
HMA individuals’ difficulties with mathematics (Ashcraft and
Kirk, 2001). According to this hypothesis, HMA individuals
ruminate about their poor math performance and their lack of
abilities. This rumination acts as a secondary task that depletes
the cognitive resources required for the math task in course.
Therefore, lower WM capacity would not necessarily be a
permanent consequence of HMA, but it may temporarily affect
their resources available in mathematical situations. If this was
the case, one might expect that the kind of ordinal associations
they stored and retrieved were more superficial than those of
their LMA peers. Therefore, we would expect, following Lyons
and Beilock (2009), that anxiety groups did not differ in the
counting and neutral conditions, but HMAs performed worse in
the balanced trials.

In recent years, math anxiety has also been related to a
deficit in attentional control that would make HMA individuals
less efficient in numerical tasks (Suárez-Pellicioni et al., 2013,
2014, 2015). Attentional control refers to the human capacity
to respond flexibly and in a goal-oriented way. We wondered if
worse performance of HMA individuals in ordinality judgements
might be related to this decrease in their processing efficiency
and hypothesized that differences between math anxiety groups
due to this deficit might be particularly noticeable in unordered
triplets. As mentioned before, RDE is only found in ordered trials.
In unordered trials, a canonical distance effect is usually obtained.

1Sequential and skewed conditions correspond, respectively, to the counting and
neutral conditions in Douglas and Lefevre (2017) and the current work.

This dissociation has been interpreted in the sense that both
association-based and comparison strategies would be used when
ordinality is judged. When there is a strong association between
the numbers in the ordered triplet, direct retrieval of associations
is faster and easier than the comparison process and may overrule
it. However, decisions would be based by default on magnitude-
comparison mechanisms. This would explain the distance effect
found in unordered trials (Bourassa, 2014; Vos et al., 2017).

Unordered trials can consist of triplets in which the two initial
numbers are ordered and the third one breaks the sequence
(e.g., 3 4 2; hereafter the D3 sequence), and triplets in which
the second digit is not in order (D2 sequence, as in 4 3 5). If
participants must judge whether a sequence is in ascending order
and the comparison of number pairs takes place sequentially,
from left to right, D2 sequences should be discarded faster than
D3 ones. Bourassa (2014) tested this hypothesis and found that
her participants were faster in D2 than in D3 trials, so she
concluded that they could apply a rejection rule to terminate
the decision process quickly. Note that the third number was
not completely ignored, since counting D2 sequences (5 3 4)
were answered more slowly than neutral ones (5 4 7). Bourassa
suggested that this might indicate an extra-check by participants
or be caused by limitations in their strategic control. HMA
individuals might have particular difficulties in applying this
self-termination strategy: previous studies where an arithmetic
verification had to be performed (Faust et al., 1996; Suárez-
Pellicioni et al., 2013) found that HMA and LMA participants
did not differ when the correct solution or a close incorrect
alternative (e.g., 6 + 7 = 14) was proposed. Surprisingly, HMAs
only showed difficulties—both in terms of flawed scores and
electrophysiological response—when the proposed solution was
clearly implausible (a split of 14 from the correct solution, as
in 7 + 8 = 29). Suárez-Pellicioni et al. (2013) concluded that
large-split solutions were unexpected in this context and had
acted as distractors, making it harder for HMA participants to
inhibit their extended processing. Similarly, it might be that
HMA individuals who carry out an ordinal judgment cannot
avoid performing exhaustive processing of the triplet, even if the
first two numbers already indicate that the sequence is unordered.
Other studies (e.g., Lemaire, 2010) have shown that aging, which
is also characterized by weakened attentional control, leads to
lower cognitive flexibility for switching from one strategy to
another or inhibiting a given strategy.

To sum up, there are several reasons why HMA individuals
might show low performance when they deal with ordinality
tasks: (a) they often avoid mathematical situations and are less
familiar with numbers, (b) math anxiety has been related to fewer
available working memory resources in mathematical situations,
which can lead to the storage of only shallow numerical
associations, and (c) math anxiety is related to worse attentional
control, which might lead to the use of inefficient strategies in
ordinal judgements. However, ordinality has been little studied
in people with high math anxiety. We aimed to reduce this gap
with our study. In the experiment, we asked our participants to
judge whether a triplet of numbers was presented in ascending
order. Triplets of one- and two-digit numbers were used.
Although Lyons and Ansari (2015) reported stronger RDE in
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two-digit triplets, we predicted that if HMAs are worse at judging
ordinality because of their lack of familiarity with numbers, group
differences might be stronger in the largest numbers, given that
they are less frequent (Dehaene and Mehler, 1992).

We also manipulated the distance between numbers in the
triplets, which could be consecutive (counting sequence) or at a
constant distance of 2 or 3 (balanced). A third type of ordered
trials (neutral) had varying distances (1–3) between the first and
second numbers, and the second and third one: we expected that
nobody would have these sequences that do not follow a pattern
stored in their memories and hence, that no group differences
would be observed on them. In contrast, and according to the
literature, we predicted a main RDE in the ordered trials, that
is, shorter latencies and more accurate responses to the counting
sequence than to the balanced one. If HMA individuals are
less efficient when they judge ordinality, RDE should interact
with math anxiety and HMA participants might show a stronger
RDE. Alternatively, one could compare each group’s behavior in
every condition. If HMAs have a weaker or less sophisticated
network of number associations in their long-term memory than
their LMA peers, we would predict that only LMAs showed
evidence of having balanced sequences stored in their memories.
This was the pattern found in Lyons and Beilock (2009) when
they compared participants with low and high working memory.
Although lower WM resources related to math anxiety are
supposed to be transitory, linked to the presence of intrusive
thoughts in a mathematical situation, it was important to ensure
that the two math anxiety groups did not also differ in their
permanent working memory capacity. Therefore, as Lyons and
Beilock (2009), we measured working memory of our participants
through a span test and checked that any significant group effect
obtained in the experimental task could not be related to different
memory capacities. In the case of Lyons and Beilock (2009), a
listening and a computation span were used. In our case, we
opted for a symmetry span because the listening span was not
directly applicable to our sample, since they were not English
native speakers, and we thought that HMAs performance in the
computation span might be contaminated by their anxiety toward
numerical stimuli. In any case, authors such as Kane et al. (2004)
have shown that all span tests reflect a domain-general factor.

Finally, we made use of unordered trials to investigate whether
HMA participants are less flexible in the use of strategies and have
more difficulties in self-terminating procedures. To achieve this,
we created unordered trials in which the second item in the triplet
was already unordered (D2) and trials in which only the third
item broke the ascending sequence (D3). We predicted that if
participants with high math anxiety are worse at strategy control,
group differences would be particularly noticeable in D2.

MATERIALS AND METHODS

Participants
Forty graduate students took part in the experiment. They were
part of a larger sample tested for math and trait anxiety during
an introductory psychology course who are included in the
database of a longer project. Participants were divided into two
groups of 20 based on their math anxiety scores. The LMA

group consisted of 10 men and 10 women with a mean age
of 23 years (SD = 2.6; age range = 20–29) who scored below
the first quartile (score range = 30–54; mean = 42.6; SD = 6.9)
on the Shortened Mathematics Anxiety Rating Scale (sMARS)
(Alexander and Martray, 1989). The HMA group comprised 13
women and 7 men with ages ranging from 20 to 33 (mean
age = 23.6; SD = 3.3). They scored above the third quartile on
the sMARS (score range = 76–122; mean = 87.6; SD = 12.3). Both
groups differed in their sMARS scores, t(38) = 14.28, p < 0.001,
but not in age, t(38) < 1, or gender distribution, χ2(1) = 0.92,
p = 0.33. Given that math and trait anxiety have been found
to correlate (Hembree, 1990), we also ensured that the two
groups did not differ in trait anxiety [t(38) = 1.30, p = 0.20;
mean = 23; SD = 9.1, and mean = 27.3; SD = 11.8 for LMA
and HMA participants, respectively]. All subjects were paid for
their participation.

Materials
Screening Phase
Shortened mathematics anxiety rating scale
The Spanish version of sMARS was used (Alexander and Martray,
1989; Núñez-Peña et al., 2013). sMARS is the 25-item version of
the Math Anxiety Rating Scale (MARS) (Richardson and Suinn,
1972). Participants are presented with 25 situations that may
cause them math anxiety (e.g., preparing to study for a math
exam) and they use a five-point Likert scale to describe the level
of anxiety caused by each item. The scale ranges from 1 (no
anxiety) to 5 (high anxiety), so the sMARS total score can vary
from 25 to 125. The Spanish version used here has strong internal
consistency (Cronbach’s alpha = 0.94) and high 7-week test–retest
reliability (intra-class correlation coefficient = 0.72).

State-trait anxiety inventory (STAI)
This tool has two scales that measure state (STAI-S) and trait
anxiety (STAI-T) (Spielberger et al., 1983). Only the scale that
assesses participants’ trait anxiety, i.e., their general tendency
to respond with anxiety, was used here. It consists of 20 items
describing different emotions. Participants must answer how they
feel in “general” using a four-point Likert scale ranging from 0
(almost never) to 3 (practically always), so the scores range from
0 to 60. We used the Spanish version of the scale (Spielberger
et al., 2008), which has excellent internal consistency (Cronbach’s
alpha = 0.95), and adequate 20-day test–retest reliability with
college students (r = 0.86).

Experimental Session
Order judgment task
Twenty-one triplets of one-digit numbers and 21 of two-digit
numbers (range 18–53)2 were created and were distributed
equally between counting, balanced, and neutral conditions (see
Appendix A for a full list of the materials employed). All two-
digit triplets contained a decade crossing, since previous studies
(Franklin et al., 2009) had only reported RDEs in these kinds
of items. When ordered, counting stimuli consisted of three

2To ensure that the three conditions did not differ in other aspects such as the
absolute size of the numbers involved (Franklin et al., 2009), we calculated the
result of adding the three numbers in each triplet, and the mean of these additions
for each condition did not differ, F(2,18)< 1.
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numbers that were consecutive in the counting list (e.g., 3 4 5).
Balanced triplets had a constant distance of two (four triplets) or
three (three triplets) between the three numbers (2 4 6). Finally,
numbers in the neutral condition had a distance of one, two, or
three between each other, but the distance between the adjacent
numbers was never the same (4 5 7).

Participants saw each triplet twice in an ordered way, and
twice disordered: on one occasion (D2 sequence), the second
number was larger than the first one, so participants did not need
to identify the third number to decide that it was an unordered
sequence (4 3 5). In the other type of disordered sequence (D3),
participants needed to process the third number to provide a
correct response (4 5 3).

One-digit and two-digit triplets were presented in separated
blocks, and the order of presentation was counterbalanced across
subjects. In each case, four blocks were created in which the
whole 21 stimuli were randomly presented once and there was
a similar number of ordered and unordered trials (10 vs. 11 trials
of each). Each block was repeated twice for a total of 336 trials
(7 triplets × 3 conditions × 3 sequence orders [but ordered
sequences were presented twice] × 2 number of digits × 2
block repetitions).

Symmetry span task
In this automated test, participants performed a memory and
symmetry judgment (Kane et al., 2004). Each trial began with the
presentation of an 8 × 8 grid with some squares filled in white
and others in black. Participants had to decide whether folding
the image vertically would lead to two symmetrical halves. After
responding, a 4 × 4 white grid appeared and one of the square
cells was then filled in red. Participants were asked to remember
the position of the colored square. The sequence symmetry
and location to remember was repeated between two and five
occasions. Finally, a new 4 × 4 white grid was presented and
participants were asked to recall the position of the red squares in
the same order in which they had appeared. There were 12 trials
in total. The partial storage score was used, i.e., the number of
correctly remembered items in the correct position, regardless of
whether the entire trial has been retrieved correctly. This measure
shows higher test–retest correlations, internal consistency, and
correlation with other complex span tasks than absolute scores
(Redick et al., 2012).

Procedure
Participants were tested individually. On arrival at the laboratory,
they were asked to sign a consent form and to fill in a
questionnaire on demographic data. Subsequently, they were
given the instructions: three numbers would appear on a screen
and their task would consist of deciding whether they were in
ascending order or not by pressing one of the two mouse buttons.
Response buttons were counterbalanced across subjects.

Each trial had the following structure. First, a white-on-black
fixation point appeared on the middle of the screen for 500 ms.
Then, the triplet was presented until the participant responded
or for a maximum of 2,500 ms. Finally, a blank of 500 ms was
left between trials.

At the beginning of the experiment, all participants completed
a practice block in which they received feedback on accuracy
and latencies. The initial practice consisted of 10 trials comprised
of triplets of two-digit numbers, other from those used in
the experiment and similarly distributed across the three
experimental conditions. Half of them were properly ordered
and half were not.

Before the experimental session was concluded, participants’
working memory was measured using the Symmetry Span task
(Kane et al., 2004).

Data Analysis
We had three predictions, based on previous literature, on
how ordinality judgments in HMA and LMA individuals might
differ. First, we hypothesized that HMA might show a larger
RDE than their LMA peers. Second, we raised the possibility
that group differences were particularly strong in two-digit
triplets, given that they are less familiar for everybody and in
particular for HMA individuals, who try to avoid mathematical
contents. In order to test these two predictions, we focused
on the ordered trials: these items are the only ones in which
the positions of the numbers in the triplets are respected and
hence, the initial conditions (counting, balanced, and neutral)
make sense. We first calculated the RDE for each participant
by subtracting their accuracy rates and RTs in the balanced
condition from the counting condition ones. To do so, we
used the median latencies of the correct responses and accuracy
rates. Medians were used instead of means because they are
estimators more resistant to change with outliers (Maxwell
and Delaney, 2004). Then, we ran two ANOVAs, one for
accuracy and the other for latencies, with RDE as the dependent
variable, number of digits (one and two) as within-subject
factor, and math anxiety (LMA and HMA) as the between-
subjects factor.

Even if similar sized RDEs were to be found in the HMA
and LMA participants, we could not discard the possibility
that there existed group effects in some or all the conditions.
As we hypothesized in Section “Introduction,” HMAs might
have weaker or less sophisticated number associations in their
memory than their peers, either because of their tendency
to avoid mathematical situations or because their worse
memory resources when dealing with mathematical content.
Therefore, we ran further analyses in which we compared group
performance in each of the conditions. Given that two-digit
numbers are less frequently encountered than one-digit ones and
this could influence the kind of connection between numbers
established, we also took this variable into consideration. Hence,
we performed further ANOVAs on the accuracy rates and on
the latencies of each condition (counting, balanced, and neutral),
with number of digits (one and two) as within-subject variables
and math anxiety as the between-subjects factor.

Last, our third prediction regarded the comparison of HMA
and LMA behavior in the D2 condition, that is, the unordered
sequences in which the second number in the triplet broke
the order. Therefore, we ran an ANOVA for correct response
latencies and accuracy rates on all the initial conditions together,
with digits (one and two) as within-subject factor and math
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anxiety as a between-subjects variable. Subsequently, as a control
and in order to ensure that group differences were exclusively
found in the unordered sequences where the self-termination
strategy could be applied, we also ran the same analysis on
the D3 sequences.

RESULTS

Symmetry Span Task
Participants in the LMA group had higher partial storage scores
than their HMA peers [means of 34.4 and 29.8, respectively,
t(38) = 2.12, p = 0.04]. Given that working memory and
math anxiety scores were not independent, we were not able
to introduce symmetry span as a covariate in subsequent
analyses (Field, 2009) and provided a difference between math
anxiety groups was found, we studied the effect of working
memory separately.

Ordinal Judgment Task
Ordered Trials: Latencies
There was a main effect of number of digits, F(1,38) = 57.24,
p < 0.001, η2

p = 0.66. Subsequently, we used one-sample t-tests
to look at one and two-digit sequences separately: an RDE was
found in both of them [t(39) = 3.74, p = 0.001 and t(39) = 12.74,
p < 0.001, for one and two-digit triplets, respectively], although
it was more than three times as large in the two-digit triplets
(−53 vs. −172 ms), replicating the findings by Lyons and Ansari
(2015). There was no main effect of math anxiety, F(1,38) = 1.11,
p = 0.29, η2

p = 0.02, and math anxiety did not interact with
number of digits, F(1,38) < 1. In a second step, we compared
performance of both groups in each condition: HMA and LMA
participants did not differ in any of them and math anxiety did
not interact with number of digits either (all ps> 0.13).

Table 1 shows the mean response times (RTs) and the
proportion of hits for each number of digits, condition (counting,
balanced, and neutral), and math anxiety group, as well
as the mean RDE.

Ordered Trials: Accuracy
A main effect of number of digits was again observed,
F(1,38) = 14.31, p = 0.001, η2

p = 0.27. An RDE (see Figure 1)
was found both in one-digit t(39) = 5.36, p = 0.026 and two-digit
triplets t(39) = 46.01, p < 0.001, although its size was bigger for
the second type of trials (2 vs. 7%). The size of the RDE did not
depend on the math anxiety group, F(1,38)< 1, and math anxiety
did not interact with number of digits, F(1,38) = 2.88, p = 0.098,
η2

p = 0.07.
Regarding performance in each particular condition, HMA

and LMA participants performed similarly in the neutral one
(p = 0.37). In contrast, LMA participants were more accurate
than their HMA peers in the counting trials F(1,38) = 4.22,
p = 0.047, η2

p = 0.10. The main effect of number of digits and
the digits × math anxiety interaction was also significant [both
Fs(1,38) = 6.11, p = 0.018, η2

p = 0.13]. Subsequent t-tests showed
that HMA participants were significantly less accurate than their
LMA peers in the counting one-digit trials only [t(38) = 2.65,

p = 0.011; t < 1 for two digits]. As for the balanced trials,
group effect was marginally significant, F(1,38) = 4.07, p = 0.051,
η2

p = 0.09 and math anxiety did not interact with number of
digits (p = 0.75).

Therefore, and in contrast with what we predicted, the HMA
group performed worse than the LMA one not in the balanced
condition, where more sophisticated relationships were tested,
but in the counting sequences. Our initial prediction was based
on the findings of Lyons and Beilock (2009) on two groups
differing in their working memory capacity. One of the most
popular explanations of math anxiety (Ashcraft and Kirk, 2001)
claims that it temporarily depletes part of the working memory
resources necessary for performing the numerical task; therefore,
we expected to replicate their results and find that our math
anxiety groups differed mainly in the balanced condition. In
contrast, we have found that group differences emerged even
at the level of counting sequences. The fact that the difference
between HMA and LMA accuracy in the balanced condition was
only marginal could be due to the fact that even participants in
our LMA group had developed weaker numerical connections
than those on the LWM group of Lyons and Beilock (2009),
because lower exposure to numerical situations or because
they had lower working memory skills than their participants.
Unfortunately, we did not use the same working memory test
nor have any way to compare the exposure to numbers of both
studies’ samples and these explanations remain speculative. In
any case, given that our two math anxiety groups differed in
their memory spans as measured by the symmetry test, we
decided to verify whether the math anxiety effect was actually
due to general differences in the working memory resources of
the two groups. First, we correlated the mean accuracy rate in
the one-digit counting condition with the symmetry span score
and confirmed the existence of a significant positive correlation
(r = 0.37, p = 0.02). Subsequently, a hierarchical stepwise
regression was applied by taking accuracy in the counting
sequences as the dependent variable and by entering into the
model symmetry span and math anxiety scores (r = −0.29,
p = 0.06) as predictors in step 1 and 2, respectively. The first
model, including the WM score, accounted for 13% of the
variance (p = 0.02). Adding math anxiety supposed an R change
of 5%, which was not significant (p = 0.13). Subsequently, we
also conducted a second hierarchical regression in which math
anxiety score was entered in step 1 and WM span in step 2.
On this occasion, the first model accounted for 8.7% of the
variance (p = 0.06) and the second one, in which memory span
was added as predictor, supposed a significant R change of
9.8%, p = 0.04. Although the second model including sMARS
and WM span was significant (p = 0.02), WM span was the
only significant predictor (β = 0.31, p = 0.04; β = −0.23,
p = 0.14 for sMARS).

D2 Trials: Latencies and Accuracy
Concerning RTs, a main effect of number of digits was found
F(1,38) = 90.85, p < 0.001, η2

p = 0.70, with longer latencies
for two-digit trials. The effect of math anxiety narrowly failed
to reach significance, F(1,38) = 3.87, p = 0.056, η2

p = 0.09,
showing a trend for HMA being slower than their peers.
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TABLE 1 | Ordered triplets: mean reaction times (RT; standard error in brackets) and accuracy (ACC) for each number of digits, condition, and math anxiety group as
well as size of the reverse distance effect (RDE).

LMA HMA

Counting Balanced Neutral RDE Counting Balanced Neutral RDE

One-digit triplets

RT 814 (43) 860 (50) 921 (54) −46 902 (50) 963 (52) 1029 (64) −61

ACC 0.96 (0.007) 0.94 (0.010) 0.93 (0.015) 0.02 0.92 (0.012) 0.90 (0.017) 0.92 (0.012) 0.02

Two-digit triplets

RT 986 (48) 1141 (51) 1086 (49) −155 1065 (48) 1253 (50) 1181 (53) −188

ACC 0.96 (0.007) 0.91 (0.013) 0.93 (0.008) 0.05 0.96 (0.008) 0.87 (0.016) 0.91 (0.015) 0.09

FIGURE 1 | Means and standard errors (in bars) for the proportion of hits of
each math-anxiety group in the one-digit counting (white) and balanced
(striped) ordered conditions.

As for accuracy, only the effect of math anxiety reached
significance, with HMAs making more errors than their LMA
peers F(1,38) = 4.72, p = 0.036, η2

p = 0.11. Even if we
had not a priori reasons to expect a relationship between
performance in D2 trials and memory span3, we wanted to
ensure that memory group differences were not playing a

3Three functions of working memory have been postulated (Miyake et al., 2000):
shifting, inhibition, and updating. Miyake et al. (2000) conducted a latent variable
analysis on multiple tasks that are believed to tap working memory functions
and concluded that operation span (and other analogous span tasks such as
the symmetry one) only involved the ability to update and monitor incoming
information. However, we considered performance on the D2 sequences as an
indicator of participants’ attentional control, and therefore linked to the functions
of inhibition and shifting, which are the two functions most affected by anxiety
(Eysenck et al., 2007: see general discussion for further details).

role in the D2 effects. As expected, the correlations between
the symmetry span scores and the latencies and accuracy in
D2 were not significant (r = −0.16, p = 0.30 and r = 0.28,
p = 0.08, respectively).

Figure 2 shows the mean latencies (RTs) and the proportion
of hits for each unordered sequence (D2 and D3) and
math anxiety group.

D3 Trials: Latencies and Accuracy
In order to ensure that group differences were exclusive to
unordered trials that might benefit from self-termination, two
new ANOVAs were conducted for D3 latencies and hit rates.
In both cases, a number of digits effect was found, with better
performance in the one-digit triplets [F(1,38) = 304.09, p< 0.001,
η2

p = 0.88, and F(1,38) = 16.79, p< 0.001, η2
p = 0.30 for RTs and

accuracy, respectively]. Math anxiety groups did not differ (all
ps ≥ 0.15). Bayesian analysis performed with the JASP software
(JASP Team, 2017) confirmed that the likelihood of a group effect
was anecdotic: BF10 = 1.30 and BF10 = 0.47 for the latencies and
accuracy analyses, respectively.

DISCUSSION

Ordinality has received increasing interest in recent years,
especially since the finding that performance in ordinal
judgments is a significant predictor of mathematical performance
(Lyons and Beilock, 2011; Goffin and Ansari, 2016). However,
to our knowledge, only one previous study (Douglas and
Lefevre, 2017) had investigated ordinal performance in HMA
individuals, albeit in the context of more general research on
the influence of basic cognitive skills on arithmetic performance.
Our study aimed to remedy this lack of knowledge by assessing
ordinal judgment in two groups of participants with low and
high math anxiety, in a variety of conditions. Participants
had to judge whether triplets of numbers were presented
in ascending order. The triplets were formed of one- or
two-digit numbers, and the distance between the numbers
in the triplet was manipulated. The break in order of the
unordered triplets was in either the middle number (D2) or
the last one (D3).

We replicated previous findings in the ordinality literature
with a standard population. First, we observed an RDE with
a decrease in performance, measured as reaction time and
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FIGURE 2 | Means and standard errors (in bars) for reaction times (in ms and upper row) and the proportion of hits (lower row) for each unordered sequence (D2 and
D3) and math anxiety group.

accuracy, as the distance between adjacent numbers in the
triplet increased (Turconi et al., 2006; Franklin et al., 2009).
Hence, it was easier for participants to judge triplets that
constituted a segment of the counting sequence than triplets
formed by numbers with a constant distance of 2 or 3 (balanced
condition). Interestingly, we also replicated Lyons and Ansari
(2015) finding of an interaction between number of digits and
condition: although the RDE happened in both the one- and
two-digit triplets, its size was three times as large in the two-
digit items. As Lyons and Ansari (2015) claimed, this is hard
to reconcile with ordinal judgments being largely driven by
familiarity, since larger numbers are less frequent than smaller
ones (Dehaene and Mehler, 1992).

We also investigated differences in order judgment associated
with math anxiety. Math anxiety was related in previous
studies to lower exposure to numerical stimuli (Hembree,
1990) and to fewer available working memory resources when
dealing with number processing (Ashcraft and Kirk, 2001).
We hypothesized that any or both of these factors might
lead HMA individuals to have shallow associations between
numbers. This might make it hard to recognize patterns
such as fragments of the counting sequence, or other less

familiar sequences such as those containing numbers with
a regular distance between them. These difficulties might
be particularly blatant in the less frequently encountered
two-digit triplets. A third prediction, based on previous
results by Suárez-Pellicioni et al. (2013), was that HMA
participants would be less flexible and less prone to terminate
the use of a given procedure when it was no longer
necessary (D2 sequences).

Our data did not support the first two predictions. The
RDE had an equivalent size in HMA and LMA participants in
the one- and two-digit triplets. Nevertheless, we found some
interesting group differences in the one-digit ordered triplets:
HMA individuals were less accurate than their LMA peers
even in the counting conditions. When we introduced the
WM span as well as the sMARS score as possible predictors
of our participants’ accuracy in the counting condition, we
found that only the WM score was a predictor of their
performance. Hence, it seems that the group differences
found in this condition should be mainly attributed to
variation in their general working memory resources. In
any case, we cannot discard that other factors such as
differences in familiarity with integers and the routinized
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rehearsal of certain sequences were also at the base of
the math anxiety effects obtained here. It is a well-known
fact (e.g., Hembree, 1990) that HMA individuals tend to
avoid math-related situations and, although participants in
the two groups were undergraduate psychology students with
similar academic trajectories, their past and current contact
with numeric content was not controlled. As the HMA
group did not differ from their peers in the less familiar
two-digit triplets, a relevant effect of familiarity alone is
unlikely. However, considering our current data, this possibility
cannot be rejected.

In contrast, our last prediction about the unordered
series was fulfilled. When judging D2 triplets, individuals
with HMA were significantly less accurate and tended to be
slower than their LMA peers. A plausible explanation would
be that they needed to terminate the exhaustive processing
of the triplet even when it was no longer necessary. As
mentioned previously, this behavior recalls that reported in
Suárez-Pellicioni et al. (2013), in which HMAs had more
difficulties than their LMA peers only when arithmetic
verification of clearly implausible results was performed
(i.e., additions with large-split solutions), which a priori
should have been rejected very easily. This previous finding
was interpreted within Attentional Control Theory (ACT,
Eysenck et al., 2007), which claims that anxiety reduces
attentional control by causing an imbalance in favor of the
stimulus-driven attentional system and against the goal-directed
one. This disparity has negative consequences on inhibition
and shifting functions. Suárez-Pellicioni et al. (2013) took
their results as an indicator that large-split solutions, which
were unexpected, had acted as distractors and captured the
attention of HMA participants, leading them to devote more
resources to processing the solution. In the current study,
D2 sequences cannot be considered as distractors, since they
were formed by the same numbers as the other stimuli in the
experiment. In contrast, what could explain the results in both
studies within the framework of attentional control would
be an incapacity for HMA individuals to flexibly implement
the strategy required for a given stimuli and terminate its
application when no longer necessary. Although it has been
traditionally considered that anxiety would mainly reflect a
tendency to distract and abandon the optimal procedures
for reaching a goal, we consider that the opposite, that is,
difficulty in disengaging from what initially was the proper
strategy, might also be relevant. This cognitive rigidity has
been observed in other populations. In Meiran et al. (2011),
for instance, patients with obsessive compulsive disorders
or unipolar depression showed slower disengagement from
switching mode in subsequent single-task blocks than healthy
controls. Interestingly, rumination scores in the Meiran
et al. (2011) study correlated with poorer working memory
updating, but they did not correlate with impaired fadeout
from the switching mode, which replicates the dissociation
between working memory functions obtained here, in which
symmetry span scores were uncorrelated with performance
on D2 sequences.

To sum up, the performance of HMA individuals in order
judgment tasks was thoroughly explored for the first time.
Although math anxiety effects were milder than predicted, two
interesting differences with their LMA peers emerged. First,
HMA participants were less accurate when they judged ordered
counting one-digit triplets, although they performed similarly
in the balanced, neutral, and all two-digit stimuli. This finding
was related to differences in the updating memory function
of the two anxiety groups. Second, HMA individuals found
it harder to interrupt the processing of clearly unordered
sequences. These data add to previous results that indicated
that HMA people might have difficulties in terminating
processing that is no longer relevant. It might be interesting
to explore in further studies whether this lack of cognitive
flexibility in HMA individuals is domain-general or specific to
mathematical contexts.
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APPENDIX A | TRIPLETS USED IN THE EXPERIMENT

One-digit triplets Two-digit triplets

Counting Balanced Neutral Counting Balanced Neutral

Ordered 1 2 3 1 3 5 4 5 7 19 20 21 18 21 24 18 20 21
2 3 4 3 5 7 2 3 6 18 19 20 19 21 23 18 19 22
3 4 5 2 4 6 3 4 7 29 30 31 29 32 35 29 30 32
4 5 6 4 6 8 4 6 7 28 29 30 28 30 32 28 29 32
5 6 7 1 4 7 3 5 6 39 40 41 38 41 44 38 40 41
6 7 8 2 5 8 2 5 6 38 39 40 39 41 43 39 42 43
7 8 9 3 6 9 3 6 7 49 50 51 49 51 53 49 51 52

Unordered D2 2 1 3 3 1 5 5 4 7 20 19 21 21 18 24 20 18 21
3 2 4 5 3 7 3 2 6 19 18 20 21 19 23 19 18 22
4 3 5 4 2 6 4 3 7 30 29 31 32 29 35 30 29 32
5 4 6 6 4 8 6 4 7 29 28 30 30 28 32 29 28 32
6 5 7 4 1 7 5 3 6 40 39 41 41 38 44 40 38 41
7 6 8 5 2 8 5 2 6 39 38 40 41 39 43 42 39 43
8 7 9 6 3 9 6 3 7 50 49 51 51 49 53 51 49 52

Unordered D3 1 3 2 1 5 3 4 7 5 19 21 20 18 24 21 18 21 20
2 4 3 3 7 5 2 6 3 18 20 19 19 23 21 18 22 19
3 5 4 2 6 4 3 7 4 29 31 30 29 35 32 29 32 30
4 6 5 4 8 6 4 7 6 28 30 29 28 32 30 28 32 29
5 7 6 1 7 4 3 6 5 39 41 40 38 44 41 38 41 40
6 8 7 2 8 5 2 6 5 38 40 39 39 43 41 39 43 42
7 9 8 3 9 6 3 7 6 49 51 50 49 53 51 49 52 51
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