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Abstract

Purpose—To evaluate the coverage and accuracy of whole exome sequencing (WES) across 

vendors.

Methods—Blood samples from three trios underwent WES at three vendors. Relative 

performance of the three WES services was measured for breadth and depth of coverage. The 

false-negative rates (FNR) were estimated using the segregation pattern within each trio.

Results—Mean depth of coverage for all genes was 189.0, 124.9 and 38.3 for the three vendor 

services. Fifty-five of the ACMG 56 genes, but only 56 of 63 pharmacogenes were 100% covered 

at 10x in at least one of the nine individuals for all vendors; however, there was substantial inter-

individual variability. For the two vendors with mean depth of coverage >120x, analytic positive 

predictive values (aPPV) exceeded 99.1% for SNVs and homozygous indels, and sensitivities were 

98.9 – 99.9%; however, heterozygous indels showed lower accuracy and sensitivity. Among the 

trios, FNRs in the offspring were 0.07 – 0.62% at well-covered variants concordantly called in 

both parents.

Conclusion—The current standard of 120x coverage for clinical WES may be insufficient for 

consistent breadth of coverage across the exome. Ordering clinicians and researchers would 

benefit from vendors’ reports that estimate sensitivity and aPPV, including depth of coverage 

across the exome.
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INTRODUCTION

Next generation sequencing, widely used by researchers is entering clinical care as a 

diagnostic test, but methods and quality vary across vendors. Customers should be fully 

informed of a test’s accuracy in detecting coding variants, both to drive selection of high 

quality vendors, and to be aware of the likelihood of false positives and negatives.1,2 The 

accuracy of variant detection in coding regions is lower for whole-exome sequencing (WES) 

than whole-genome sequencing (WGS), even at equivalent coverage.3,4 Nonetheless, WES 

is widely used due to lower cost and because most disease-associated genomic variants 

discovered thus are in coding regions and splice sites of protein coding genes.

WES is performed as a series of biochemical and computational analytic procedures, 

varying from vendor to vendor, that influence exome coverage and genotype accuracy. 

Factors contributing to variation include: (1) quality of gDNA,5,6 (2) DNA extraction 

methods,7,8 (3) sequence library preparation including exome capture9 and PCR 

amplification,10 (4) the sequencing platform,11,12 (5) short read-length and depth of 

coverage,12,13 (6) computational analytical pipeline,14 (7) sequence contexts such as GC-

contents and simple repetitive DNA sequences11,15 and (8) the type of variant (single 

nucleotide variant (SNV), insertion/deletion (indels), and more complex variants).16 Re-

analysis of raw sequence reads using a standardized software pipeline can improve 

comparability between WES results,17 but cannot overcome the differences in targeted 

intervals, capture efficiency and sequencing chemistry.18

We systematically compared the WES results from three vendors selected on the basis of 

varying exome capture methods with differing read-lengths and mean depths of coverage. 

We reprocessed raw reads using a single standard analytical pipeline to minimize variability 

due to bioinformatics pipelines among the vendors. For each gene, we focused on breadth of 

coverage at a minimum depth of ten high-quality aligned reads. For each individual, 

concordant and discordant calls among the vendors were analyzed for genotype quality 

(GQ), depth of coverage (DP) and presence of reported minor allele frequency (MAF) to 

prioritize likely true-positive variants using all variant calls from the three vendors. Finally, 

we calculated the analytical positive predictive value (aPPV) and sensitivity for each vendor 

using a likely true-positive set, and estimated a lower bound for the false-negative rate 

(FNR) in each offspring among the three trios.

MATERIALS AND METHODS

Samples and whole exome sequencing

Blood-derived DNA samples from three trios – hereafter referred to as trios A, B and C – 

were collected and aliquoted per each vendor’s specification. Exome sequencing and 

subsequent use for research was approved by the Boston Children’s Hospital Committee on 

Kong et al. Page 2

Genet Med. Author manuscript; available in PMC 2018 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clinical Investigation. We selected three regional vendors providing the Clinical Laboratory 

Improvement Amendments certified clinical sequencing service – denoted as V1, V2, and 

V3 – all using a four-channel sequencing by synthesis technology platform (Illumina HiSeq 

2500 for V1 and V2, and HiSeq 4000 for V3). Three different whole exome capture methods 

were used: the Illumina Nextera Rapid capture (Nextera, V1), Agilent SureSelectXT 

(SureSelectXT, V2), and NimbleGen SeqCapEZ-MedExome (MedExome, V3). Read-

lengths were 76, 150, and 101 bps for V1, V2 and V3, respectively.

Comparison of capture targets, variant calling and annotation

Comparison of exome capture target regions, calculation of coverage in target regions, and 

variant calling pipeline are described in Supplementary Methods. All VCF files were 

annotated using ENSEMBL Variant Effect Predictor (VEP) release 86.19 Rare and high 

impact variants (RHI) were defined in two ways. First as MAF <0.005 in any population 

from the 1000 Genomes Project20 or Exome Aggregation Consortium (ExAC).21 Second as 

predicted high impact by VEP resulting in frameshift, transcript-ablation, transcript-

amplification, splice-acceptor, splice-donor, start-lost, stop-lost and stop-gain.

We compiled a list of 6,367 putative disease-associated genes from the following databases: 

Human Gene Mutation Database (Professional 2016.02), Online Mendelian Inheritance in 

Men,22 ClinVar,23 Genetic Testing Registry,24 Cancer Gene Census,25 and OrphaNet.26 All 

online databases were accessed on Oct. 27th, 2016 (Table S1). The nuclear genes implicated 

in clinical drug response and metabolism were collected from the Pharmacogenomics 

Knowledge Base Very Important Pharmacogenes excluding one mitochondrial gene MT-
RNR1 (PGx-VIPs, N=63)27. Discordant variants in the American College of Medical 

Genetics (ACMG) 56 genes28 and PGx-VIPs were further inspected using Integrated 

Genome Viewer (version 2.3.79).

Analytical positive predictive value and sensitivity

To evaluate the performance of variant calls in detecting the true genotype for each vendor, 

we defined a ‘likely true-positive’ set of variants among all unique variants identified by V1 

and V2. In an individual, we compared variant calls between V1 and V2 in the genomic 

regions covered with ≥10x in all three vendors (3COV) and used V3 as a tiebreaker. First, a 

concordant variant between V1 and V2 was considered as ‘likely true-positive.’ Second, a 

discordant variant between V1 and V2 was labeled as ‘likely true-positive’ if V3 called the 

same variant. Finally, a discordant variant between V1 and V2 for which V3 failed to call 

was considered as ‘likely true-positive’ if GQ≥20 and MAF>0 was reported in ExAC. Then 

we calculated aPPV – the proportion of likely true-positive variants out of total variants 

identified by the vendor – and sensitivity – the proportion of likely true-positive variants 

identified by the vendor out of total likely true-positive variants. FNR was calculated as 1–
sensitivity per exome.

False positives and false negatives among trios

We analyzed the segregation pattern in autosomes in offspring for the loci where both 

parents had DP≥10x in each trio. We analyzed all variants in overlapping 3COV regions of 

both parents where one parent was consistently called as heterozygous and the other as 
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reference concordant homozygous in all three vendors. We then used the variant call in the 

offspring to estimate FNRs in these loci (see Supplementary Methods).

For all summary statistics, mean values across nine individuals are shown in the Results. 

Standard deviations and the other descriptive statistical scores are detailed in Tables and 

Supplementary Tables.

RESULTS

Depth and breadth of coverage for target regions

Compared to previous generation technologies, current hybridization capture based methods 

have superior coverage and probe design.29 However, none of the three capture methods was 

designed to cover 100% of coding exons in the current version of Consensus Coding 

Sequence (CCDS).30 Nonetheless, 99.97, 99.85 and 99.67% of CCDS overlapped the target 

regions of Nextera (V1), SureSelectXT (V2) and MedExome (V3), respectively. All three 

methods targeted ≥ 99.8% of coding exons of putative disease-associated genes (N=6,367)

(Table S2).

Mean depth of coverage across all CCDS genes was 189.0 (V1), 124.9 (V2), and 38.3 (V3), 

although there was a wide range of variation across genes (Figure S1). We analyzed 

coverage in more detail only for V1 and V2, because V3 did not meet the current standards 

typically used for WES. For each CCDS gene, we calculated the percent of exonic bases 

covered at ≥10x that provides 95% sensitivity for heterozygous SNVs (Table S3).4 The 

proportion of genes covered 100% at ≥10x was 80.1% (V1) and 79.1% (V2) on average 

(Table S4).

For the ACMG 56 genes and PGx-VIPs, we compared the list of finished genes – i.e., 100% 

covered at ≥10x – in at least one of nine individuals for each vendor. Except for RYR1, 

RYR2 and TGFBR1, 53 genes were finished in at least one of the nine individuals by V1. 

Likewise, V2 had incomplete coverage for PKP2, RB1 and SDHD (Figure 1A). From the 

PGx-VIPs (N=63), 61 and 60 genes were finished by V1 and V2 respectively (Figure 1B). 

The breadth of coverage for both the ACMG 56 genes and PGx-VIPs was higher than 

exome-wide averages at all thresholds (Wilcoxon signed-rank tests p-values < 0.01, Table 1). 

For CCDS genes, V1 had consistently higher breadth of coverage compared to V2. However, 

no differences were found for the ACMG 56 genes and PGx-VIPs, except for PGx-VIPs at 

≥10x (Wilcoxon signed-rank test p-value < 0.01). Of note, MYBPC3 and TNNI3 were not 

completely targeted by SureSelectXT, but showed 100% coverage in one or more 

individuals. SDHD was not well-covered by V2 (80.3% on average at ≥10x).

We observed a wide range in the breadth of coverage across the nine individuals. As such, 

only 47 (V1) and 41 (V2) of the ACMG 56 genes were finished in all nine individuals 

(Figure 1A). Twelve of the PGx-VIPs with the Clinical Pharmacogenetics Implementation 

Consortium (CPIC) guidelines (CPIC genes)31 were finished by both V1 and V2 in at least 

one of the nine individuals (Figure 1B). Percent coverage of the PGx-VIPs also varied across 

individuals; 9 (V1) and 8 (V2) of the 12 CPIC genes were finished in all nine individuals. 

For the ACMG 56 genes, V1 had significantly better breadths of coverage for PKP2, RB1, 
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and SDHD, and V2 had advantages for DSG2, RYR1, RYR2, SCN5A, and TGFBR1 (Mann-

Whitney-Wilcoxon tests, Bonferroni corrected p-values <0.05). Seven out of 63 PGx-VIPs 

showed significantly different breadth of coverage between V1 and V2 (Figure 1B).

We examined finished genes at ≥20x coverage that could provide 99% sensitivity for 

heterozygous SNVs.4 At this threshold, 40 (V1) and 26 (V2) of the ACMG 56, and 9 (V1) 

and 5 (V2) of the 12 CPIC genes were finished in all nine suggesting incomplete breadth of 

coverage even with higher mean depth of coverage of V1 and V2 (Figure S2). At ≥20x, 

variability in breadth of coverage across nine individuals was significantly higher than at 

≥10x (Figure S3). Breadth of coverage for four genes (ATP7B, BMPR1A, OTC and 

SMAD4) recently added to the ACMG gene list for reporting secondary findings32 are 

shown in Figure S4.

Concordant and discordant variant calls among the vendors in clinically implicated genes

For each variant type, we checked agreement of variant calls among the three vendors, 

restricting the analysis to genomic regions with ≥10x in all three vendors to minimize the 

effects of the lower coverage in V3 (Table 2). We also compared concordance rates between 

V1 and V2, to further minimize the effect of low coverage in V3. As expected, restricting 

the analysis to genomic regions with ≥10x coverage increased concordance rates for all 

types of variants (Tables 2 and S5). Of note, heterozygous indels showed the lowest 

concordance rates at any thresholds compared to the other types of variants.

Concordance rates for the variants in clinically implicated genes such as putative disease-

associated genes, the ACMG 56 and PGx-VIPs were consistently higher compared to those 

of exome-wide averages. When calculating the concordance rate, we excluded all variants in 

the major histocompatibility complex region (HMC, chr6:28,477,798–33,448,354). In 6,367 

putative disease-associated genes, concordance rates between V1 and V2 with ≥10x were 

consistently higher – 96.8 (heterozygous SNVs), 99.5 (homozygous SNVs), 63.3 

(heterozygous indels), and 85.2% (homozygous indels). Compared to the concordance rates 

calculated with VCF files generated using a single software pipeline in our study, 

concordance rates with vendor-provided VCF files were consistently lower (Table S5).

For the ACMG 56 genes, 98.3% of heterozygous and 100% of homozygous SNVs were 

concordant between V1 and V2. Discordant variants in the ACMG 56 were found in APOB, 
KCNH2, PKP2, PMS2, SCN5A, and TSC2 (Table S6). No homozygous indel was found in 

the ACMG 56 genes across the nine individuals, and only three of eight heterozygous indels 

was concordant between V1 and V2. For the PGx-VIPs, all eight homozygous indels and 

eight of 21 heterozygous indels were concordant between V1 and V2. Concordance rates 

were 94.6 and 99.6% for heterozygous and homozygous SNVs, respectively. Overall, 

concordance rate among the ACMG 56 and PGx-VIPs was higher than the exome-wide 

average except for indels.

Rare genetic variants with deleterious impacts on protein function are often prioritized in 

WES for further evaluation and validation if such variants are found in putative disease-

associated genes. To minimize false-negatives for this class of variants, we used all RHI 

variants discovered by V1 and V2 without restricting to ≥10x covered regions, and selected 
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RHI variants in putative disease-associated genes. Concordance rate for heterozygous RHI 

SNVs was 90.4%, and all five homozygous RHI SNVs found were concordant. All RHI 

SNVs were concordant for genomic regions covered with ≥10x in both V1 and V2. There 

were no homozygous RHI indels, but only 11 of 46 heterozygous RHI indels from the nine 

individuals were concordant. We visually inspected read alignments in the regions 

surrounding discordant RHI variants in Integrated Genome Viewer. The discordant calls 

were associated with 1) low depth of coverage, 2) allelic imbalance, 3) strand bias, 4) read 

alignments suggesting structural variation and indels, and 5) homopolymers (Table S6). 

Next, we examined potential false-positives among concordant variant calls between V1 and 

V2. We restricted variant calls to heterozygous RHI variants discovered in putative disease-

genes (excluding MHC), which resulted in 30 SNVs and 3 indels in three probands. None of 

these were likely false-positives according to segregation pattern – i.e., they were all 

inherited from only one of the two parents. Therefore, the proportion of likely false-positives 

among concordant calls between V1 and V2 would be very low.

We found two discordant variants that were reported as pathogenic in ClinVar. Pathogenic 

heterozygous SNVs – one in FCGR1A and the other in VPS13B – were called by V1, but 

V2 failed to call the variants because of low coverage for both loci. (Table S6).

Analytical positive predictive value and sensitivity of variant calls

Discordant calls are due to either false-positive calls in one or more vendors, or a failure to 

detect a variant in one or more vendors. To further characterize discordant variant calls, we 

examined GQ, DP and reported MAFs > 0 in ExAC for these. Among the discordant SNVs 

between V1 and V2 (5.8% of total SNVs), 3.8% had low GQ (<20) in one of two vendors. 

For the discordant SNVs with good GQ (≥20), 0.1% had low DP (<10) in one of two 

vendors. Overall, 2.0% of SNVs that were discordant between V1 and V2 but had good 

genotype quality with ≥10x depth of coverage, of which 1.2% had reported MAFs>0 in the 

ExAC server (Figure 2A and Table S7).

We considered a minimal set of likely true-positive calls to be with a MAF reported in 

ExAC, GQ≥20 and DP≥10. GQ and DP are often used to filter out variants with erroneous 

variant calls33; however, applying these filtering criteria could result in false-negatives in 

WES. The proportion of retained variants among 3CON varied by variant type and among 

the vendors (Figure S5). In V1, 99.6% of heterozygous SNVs passed both DP≥10 and 

GQ≥20 thresholds. Using the same criteria, 99.3% of heterozygous SNVs retained for V2 

(Table S8).

To calculate the sensitivity and aPPV of each vendor’s result, we selected likely true-positive 

calls from aggregated variant calls from V1 and V2. The blue rectangle in Figure 2B 

represents the likely true-positive set from V1 and V2, and all variant calls from a given 

vendor are represented by the red rectangle. For both vendors, aPPVs and sensitivities were 

99% or higher except for heterozygous indels. V1 showed higher sensitivities for 

heterozygous indels but lower aPPVs compared to V2 (Figure 2C). Of note, V2 had lower 

sensitivity for heterozygous indels compared to the other types of variant. V1 showed the 

lowest aPPV for heterozygous indels compared to the other types of variant and also 

compared to V2. Thus, accurate detection of heterozygous indels would be challenging for 
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both V1 and V2. Our estimation of sensitivity represents an upper bound since true-positive 

variants might have not been captured and/or called by any of two vendors, and variant calls 

that did not pass DP and GQ thresholds could also include true-positive variants.

False positives and false negatives among trios

We took an advantage of the family-based trio design to calculate FNRs in regions of high 

coverage (Figure 3), using the variant calls from all three vendors, but restricting the analysis 

to genomic regions covered with ≥10x by all three vendors. In trio A, a total of 58,458 

variants were found by the three vendors, of which 80.9% (47,281/58,458) were in 3COV 

regions for both parents (Table S9). From these, we focused on the 22,397 loci where both 

parents had completely concordant variant calls across all three vendors – hereafter referred 

to as 3CON – and where one parent was heterozygous and the other was homozygous for the 

reference allele. For these variants, the offspring should be heterozygous about 50% of the 

time. In the offspring of trio A, 11,042 (49.3% of 22,397) were called as heterozygous in at 

least one vendor, of which 10,907 were 3CON. For these loci, concordance rates in the 

offspring of trio A were higher for both SNVs and indels – 98.9 and 95.7%, respectively – 

compared with genome-wide concordance rates; these loci also showed higher concordance 

rates in the six unrelated individuals from trio B and C (98.7 and 92.4% for heterozygous 

SNVs and indels, respectively). We identified variants as likely false-negatives if there was a 

no-call or a homozygous reference call in the offspring for trio A for one vendor and a 

heterozygous call in the other two vendors. There were 8 (V1), 68 (V2) and 23 (V3) likely 

false-negatives, of which 0% (V1:0/8), 14.7% (V2:10/68) and 0% (V3:0/23) were due to low 

coverages (< 10x). Of 8 likely false-negatives from V1, 7 were called as homozygous for the 

reference allele and one was a no-call. Of 68 loci that V2 did not call heterozygous, six were 

no-calls and 62 were called as homozygous for the reference allele. For V3, all 23 were 

called as homozygous for the reference allele. We did not consider the variants that were 

called but had discordant numbers of variant alleles among the vendors – e.g., heterozygous 

in two vendors and homozygous for the variant allele in the other – since these are more 

likely ‘genotype errors’ rather than false-negatives.

We then used these false negative loci to estimate a lower bound for false negative rates for 

each trio. For the denominator of likely true positive variants, we used variants that were 

called as heterozygous in the offspring in at least two vendors; in trio A there were 11,006 

such variants. The lower bound of vendor-specific FNRs in these well-covered regions were 

0.07% for V1 (8/11,006), 0.62% for V2 (68/11,006) and 0.22% for V3 (23/11,006). FNRs 

estimated using the same analysis strategy were 0.16% (V1), 0.56% (V2) and 0.38% (V3) 

for trio B, and 0.13% (V1), 0.20% (V2) and 0.48% (V3) for trio C (Figure 3C) (we included 

analysis of V3, even with a lower sequencing depth, because we focused on genomic loci 

covered at a minimum of 10x in all three vendors). Our estimation of FNRs is comparable to 

the one reported by Li et al. in family samples.34 Variants in low coverage regions (<10x) – 

comprising, for instance, 10.0% of CCDS in trio A – were not used to calculate FNRs; 

however, the FNR in offspring was likely very low for high coverage regions in both parents, 

supporting the strength of trio sequencing for some clinical conditions,35 at least in regions 

of consistently high coverage.
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DISCUSSION

We performed comparative analysis of WES results from three vendors to measure the 

empirical coverage of medically implicated genes and concordance rate of variant calls 

among the vendors, using uniform variant calling methods to remove variability from 

software analytical pipelines. The mean percentage of CCDS coding regions covered with 

≥10x was above 95% for the nine individuals and all vendors. For the ACMG 56 and PGx-

VIPs, we found a wide range of difference in breadth of coverage with ≥10x across the nine 

individuals. The mean depth of coverage provided by V2 was typical for clinical WES36; 

however, KCNQ1, PKP2, RB1 and TGFBR1 had variable coverage across the nine 

individuals with < 95% coverage in some individuals. The depth of coverage provided by V3 

would be suboptimal for clinical use.

Rare and high impact (RHI) variants in putative disease-associated genes were less 

concordant than exome-wide averages except for homozygous SNVs, suggesting that these 

variants were enriched for substantial numbers of false-positives, false-negatives, or variant 

calling errors. Among these, low coverage in a vendor usually was the source of discordant 

calls, and the variant was likely a true positive in the other vendor(s). Moreover, structural 

variation, homopolymer or simple repeats were frequently found in the flanking regions of 

discordant RHI variants. Therefore, further evaluation and validation including visual 

inspection of aligned reads and validation using an orthogonal method will be particularly 

important for RHI variants. Of note, some rare variants have low coverage in population-

scale databases such as ExAC. For instance, only two out of 14 discordant RHI variants had 

good coverage in ExAC. Conversely, estimating accuracy mostly with common variants can 

bias the results for well-covered genomic regions in population databases where it would be 

easier to call variants using NGS. Analyzing aPPV and sensitivity of rare variants with or 

without good coverage in population scale databases for research and clinical applications 

would be an interesting research topic but is beyond the scope of our current study.

For the sites where both parents were highly covered by the three vendors, vendor-specific 

FNRs in offspring were low for all vendors and three trios (0.07–0.62%). This estimation of 

FNR cannot be extrapolated to the rest of the genome, since false-negatives are more 

prevalent outside of the genomic regions covered with ≥10x in all three vendors (3COV) 

regions (which comprise 10.0, 5.5 and 7.3% of CCDS in trios A, B and C, respectively). 

Similarly, variants that are harder to call may have higher FNRs, as illustrated by loci in 

3COV regions with discordant calls in parents (i.e., 19.1, 12.1 and 15.1% of all variants 

found in trio A, B and C, respectively). Even so, our results support the strength of trio WES 

sequencing for molecular genetic diagnosis for most SNVs in regions of high coverage.35

Our study has some limitations. First of all, although the vendors covered a range of read-

lengths – 76 (V1), 150 (V2) and 101 bps (V3) – and mean coverage from 38.3 (V3) to 189.0 

(V1), we only sampled a small number of vendors, so our results may not generalize to other 

vendors or sequencing platforms. To minimize additional sources of variability, we used the 

same DNA stocks and analytical pipeline, but it is possible that different pipelines or 

different quality DNA samples could have yielded different results.37 Notably, we did not 

validate discordant genetic variants among the vendors – therefore the performance 
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measures were relative between vendors, nor did we use reference genetic material for 

which several gold standard variant call sets are available, making it difficult to definitively 

classify discordant genotypes into false-positives, false-negatives, or genotype errors. 

However, our study used trio samples and multiple vendors to overcome some of these 

limitations. Furthermore, the utility of a gold standard set of variants from NA12878 may 

itself be somewhat limited because it is widely used to ensure quality (and hence may be 

used to optimize platforms for calling this particular set of variants) but does not cover all 

known disease-associated genes. Estimation of sensitivity and aPPV from an individual 

genome may also be difficult to generalize to a range of samples38; we observed substantial 

inter-individual variation of the breadth of coverage for clinically implicated genes across 

the nine individuals in the current study.

Mean depth of coverage was a general indicator of overall sensitivity, but did not capture 

variability in coverage across potentially clinically important genes.37 For example, V2 

provided a standard mean depth of coverage (125x) for clinical research WES, but showed 

large variability across individuals in the breadth of coverage for the ACMG 56 and CPIC 

genes, and had consistently higher FNRs in three trios compared with V1. It appears that a 

depth of coverage for clinical WES may need to be more even, or to be closer to what V1 

provided (190x) to achieve consistent coverage across actionable genes across many 

individuals. Higher depths of coverage (e.g., ≥20x and 30x) were required to improve 

concordance rates between V1 and V2 for indels. Nonetheless, exonic regions with high 

sequence homology are challenging to analyze using WES.30

Establishing the clinical utility of WES therefore requires ongoing measurement of the 

breadth and depth of coverage and accuracy – both across vendors and within individual 

vendors over time.39,40 We observed substantial inter-individual variation in coverage of 

medically implicated genes. Because aPPV and sensitivity are imperfectly captured by mean 

coverage, we suggest that clinical WES service providers should inform users as to the range 

of sensitivity and aPPV for different classes of variants across the sets of genes that are 

relevant to the particular clinical scenario, estimated across a large cohort of clinical 

samples. This sort of information will help clinicians both select services and also to 

interpret clinical reports and distinguish truly negative findings from false-negatives due to 

low coverage.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Variability in breadth of coverage for the American College of Medical Genetics 
(ACMG) 56 genes and 63 pharmacogenes among the nine individuals
The percentages of coding sequence bases covered with per-site read depth ≥10x are shown 

for each of ACMG 56 genes (A) and 63 genes from the Pharmacogenomics Knowledge 

Base Very Important Pharmacogenes (PGx-VIPs) (B). Of 63 pharmacogenes, the 12 

clinically actionable genes per the Clinical Pharmacogenetics Implementation Consortium 

guidelines are highlighted with blue background and bold in their symbols. Each row 

represents a gene and columns are grouped by the nine individuals across the three vendors. 

Green squares represent finished genes (i.e., 100% covered at ≥10x), and yellow (95 – 99%) 

and red (<95%) squares represent lower breadths of coverage at ≥10x. Genes with 
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significantly different breadths of coverage between V1 and V2 are marked with * and † 

(Wilcoxon signed-rank tests, Bonferroni corrected p-values < 0.05). * represents better 

breadth of coverage in V1 and † shows better ones in V2.
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Figure 2. Analytical positive predictive value and sensitivity of variant calls from each vendor
As shown in (A), bi-allelic SNVs concordant and discordant between V1 and V2 were 

sequentially checked for genotype quality (GQ) score, per-site depth of coverage (DP) and 

reported minor allele frequency (MAF) in the Exome Aggregation Consortium (ExAC) 

server. The number of concordant and discordant SNVs is shown, as is the average number 

and standard deviation of variants meeting each criterion across nine individuals. In 

parentheses, the same statistics are expressed as a percentage of the total number of variants 

seen in either vendor. The scheme for calculating analytical positive predictive value (aPPV) 

and sensitivity is shown in (B). In each individual, a likely true-positive set of variants is 

compiled by aggregating all unique variants seen in both V1 and V2 (blue rectangle) that 

had GQ ≥20, DP≥10 and (for vendor-specific variants only) MAF >0 in ExAC. All variants 

discovered by a vendor are used to calculate aPPV (the green shaded squares divided by the 

red rectangle) and sensitivity (the proportion of the green shaded squares divided by the blue 

rectangle). The mean and standard deviation across nine individuals for aPPV and sensitivity 

are shown in (C), for each variant type and vendor.

TP: true positive, FP: false positive, and FN: false negative.
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Figure 3. Vendor-specific false negative rates in trio
For each trio, we calculate number of vendor-specific false negatives in offspring by 

focusing on the 3CON autosomal loci where one parent is heterozygous (i.e., 0/1-0/1-0/1 for 

V1, V2, and V3, respectively) and the other is reference concordant homozygous (A). We 

restrict the analysis to genomic regions covered with ≥10x by all three vendors. Venn 

diagram (B) shows each subgroup of concordant and discordant variants, and our 

interpretation of each group is shown in (C). The black solid line in (B) represents the total 

number of variants discovered by two or more vendors, which we use as a denominator to 

calculate vendor-specific false negative rates (FNRs) in each trio. FNRs and the numbers of 

3CON, 2CONs and vendor-specific heterozygous variants found in offspring are shown in 

(C). For instance, in trio A, the FNR for V1 (0.07%) is calculated as the number of loci 

where V1 did not detect the heterozygous variant (8 variants, corresponding to “f”) divided 

by the total number of likely true set of heterozygous variants (i.e., 2CONs and 3CON) in 

the proband (23 + 68 + 8 + 10,907 = 11,006, corresponding to “d + e + f + g”).
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