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Despite its excellent efficacy in controlling T cell mediated acute rejection, lymphocyte

depletion may promote a humoral response. While T cell repopulation after depletion

has been evaluated in many aspects, the B cell response has not been fully elucidated.

We tested the hypothesis that the mechanisms also involve skewed T helper phenotype

after lymphocytic depletion. Post-transplant immune response was measured from

alemtuzumab treated hCD52Tg cardiac allograft recipients with or without anti-LFA-1

mAb. Alemtuzumab induction promoted serum DSA, allo-B cells, and CAV in humanized

CD52 transgenic (hCD52Tg) mice after heterotopic heart transplantation. Additional

anti-LFA-1 mAb treatment resulted in reduced DSA (Fold increase 4.75 ± 6.9 vs. 0.7

± 0.5; p < 0.01), allo-specific B cells (0.07 ± 0.06 vs. 0.006 ± 0.002 %; p < 0.01),

neo-intimal hyperplasia (56± 14% vs. 23± 13%; p< 0.05), arterial disease (77.8± 14.2

vs. 25.8 ± 20.1%; p < 0.05), and fibrosis (15 ± 23.3 vs. 4.3 ± 1.65%; p < 0.05) in this

alemtuzumab-induced chronic antibody-mediated rejection (CAMR) model. Surprisingly,

elevated serum IL-21 levels in alemtuzumab-treated mice was reduced with LFA-1

blockade. In accordance with the increased serum IL-21 level, alemtuzumab treated

mice showed hyperplastic germinal center (GC) development, while the supplemental

anti-LFA-1 mAb significantly reduced the GC frequency and size. We report that the

incomplete T cell depletion inside of the GC leads to a systemic IL-21 dominant milieu

with hyperplastic GC formation and CAMR. Conventional immunosuppression, such as

tacrolimus and rapamycin, failed to reverse AMR, while co-stimulation blockade with

LFA-1 corrected the GC hyperplastic response. The identification of IL-21 driven chronic

AMR elucidates a novel mechanism that suggests a therapeutic approach with cytolytic

induction.
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INTRODUCTION

Long-term success of heart transplantation is limited by
the development of coronary allograft vasculopathy (CAV),
a hallmark of chronic rejection (CR) (1). Conventional
immunosuppressive strategies, such as CNI inhibitors or
rapamycin, that inhibit T cell—mediated rejection do not
prevent CR; indeed, ∼50% of patients develop biopsy evidence
of CAV within 5 years after transplantation (2, 3). This
is a particularly devastating statistic for pediatric transplant
recipients because children with organ transplants have the
greatest need for long-term graft survival. The inability of current
T cell-directed immunosuppressive therapies to target humoral
responses might explain their inability to suppress chronic
rejection.

Recently, considerable progress has been made in
understanding the relationships between B cells, alloantibody,
and chronic rejection. Studies have demonstrated that levels
of donor-specific antibodies (DSA) correlate most closely
with chronic rejection (4–8). Yet, despite this demonstrated
association of DSA and later graft loss, exact mechanisms
underlying chronic antibody-mediated rejection (CAMR)
remain unknown. In addition, a lack of satisfactory animal
models further hampers progress toward understanding the
mechanisms of CAMR.

Lymphocytolytic induction has been widely used in
organ transplantation and autoimmune disease. Induction
initiated prior to or concurrent with transplantation has
been shown to be beneficial in reducing maintenance
immunosuppression requirements after transplantation (9, 10),
and in particular, alemtuzumab (Campath-1H) induction
has been shown to be highly effective in preventing acute
rejection (11). Following induction with alemtuzumab,
regulatory T cells (Tregs) expand disproportionately during
T cell repopulation (12). However, despite its excellent efficacy
controlling T cell-mediated acute rejection, alemtuzumab
may paradoxically promote alloantibody production
(13, 14).

Growing evidences now show that a possible contribution
of follicular helper T cells (Tfh) on B cell help under current
immunosuppression and antibody-mediated rejection. It is
also documented that agents targeting Tfh-B cell interaction
reduced post-transplant humoral response (15, 16). While
many aspects of T cell repopulation after cytolytic induction
are understood, the Tfh and B cell response has not yet
been fully elucidated. Here we report that incomplete T
cell depletion inside of the germinal center (GC) leads to a
systemic IL-21-dominant milieu and subsequent formation of
hyperplastic GC, which results in chronic antibody-mediated
rejection (CAMR). Conventional immunosuppression with
tacrolimus and rapamycin failed to reverse AMR, but
targeting LFA-1 corrected the GC hyperplasticity. The
identification of a possible GC response and IL-21—driven
CAMR elucidates a novel mechanism to understand a modern
problem that suggests a therapeutic approach with cytolytic
induction.

MATERIALS AND METHODS

Animal Model
Male C57BL/6 (H-2b), 6–8 weeks of age, were purchased from
The Jackson laboratory (Bar Harbor, ME). Male hCD52Tg
mice (H-2k), 6–8 weeks of age, were originally created in the
Walldman lab and were a gift of Dr. Kirk, Duke University.
All mice were used and maintained in accordance with the
guidelines and compliance of the Emory or Duke Institutional
Animal Research Ethics Committee. All animals received 10 µg
alemtuzumab (Campath-1H) in 200ml PBS i.p., on day −2, −1,
+2, and +4 of transplantation to induce T cell depletion in vivo.
Additionally, animals were either untreated or treated with 200
µg of anti-LFA-1 mAb (mCD11a, M17/4; Bioexpress) i.p., on
days 0, 2, 4, and 6 (day 0 being the day of transplantation).
Heart transplantation was performed using a modification of
the methods described previously (17). Histopathologic analysis
was performed on paraffin-embedded sections of heart allografts
removed at necropsy. Sections were stained with either H and
E or Elastic trichrome and were scored blindly according to
the established clinical criteria for diagnosing heart transplant
rejection (18, 19).

Flow Cytometry
Cell suspensions from spleens and lymph nodes were prepared
bymechanical dissociation. Cell suspensions including blood was
subjected to hypotonic lysis of RBCs. Isolated cells were washed
in RPMI 1640 and 10% FBS and counted. The cells were then
resuspended in FACS buffer (2% FBS, 0.2% Sodium azide PBS)
and were stained with Biotin, PE, FITC, PerCp, Pac Orange, Pac
Blue, APC, APC-Cy7, or APC conjugated antibodies directed at
mouse CD3, CD4, CD8, CD19, CD25, CD38, CD4/CD8/F4/80
(Dump), FoxP3, IgD. For, allo-specific visualization, APC-Cy7-
conjugated allogeneic (H-2Kb/Db) MHC tetramer and APC-
conjugated syngeneic (H-2Kk/Dk) tetramer were applied as
previously described (20). MHCmonomers were generated from
NIH tetramer core and tetramerized with Streptavidin-APC-Cy7
and Streptavidin-APC, respectively. For T cell flow crossmatch,
recipient serum samples (1:32 dilution) were incubated with
C57BL/6 donor splenocytes (1 × 106). Later, FITC-conjugated
anti-mouse Ig was added after washing. The T cells were stained
with APC-conjugated anti-CD3. Flow cytometric analysis was
performed using a BD FACS LSRII or BD Forressa and analyzed
using FlowJo (Tree Star, San Carlos, CA) software.

Histology, Immunohistochemistry, and
Morphological Analysis
The explanted hearts underwent serial sectioning (5µm) from
the midventricular level to the base. H and E stains were
performed for routine examination and grading of rejection.
Elastic trichrome, B220, CD3, CD4, PNA, Ki67, and IL-21
staining was performed for morphometric analyses of arterial
intimal lesions as previously reported (20). Scanned images were
analyzed and measured with computer-based software (Aperio
Imagescope v11). The area of grafts was quantitated by tracing
the bisected explanted cardiac allografts and isografts. Luminal
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(L) and intimal and luminal area (I+ L) were traced and the areas
quantitated. Intimal thickening was calculated according to the
formula I/I+ L and expressed as a percentage.

Statistical Analysis
Experimental results were analyzed by a GraphPad Prism
(GraphPad Software 6.0a, San Diego, CA). The log-rank test for
differences in graft survival and Mann-Whitney nonparametric
test were used for other data. All the data are presented as mean
± SEM unless designated in figure legend. Values of pwhich were
< 0.05 were considered as statistically significant.

RESULTS

Chronic Antibody-Mediated Rejection After
Alemtuzumab Induction
We previously reported that alemtuzumab induction prevents
acute rejection in humanized CD52 transgenic (hCD52Tg) mice
after heterotopic heart transplantation but promotes serum
DSA, allo-B cells and CAV, making this an applicable model
for studying CAMR post cytolytic induction (20). Interestingly,
and as is seen clinically, this heightened humoral response
was not controlled by adding either tacrolimus (Data not

shown) or rapamycin (21). We treated humanized CD52
transgenic mice with alemtuzumab with or without anti-
LFA-1 mAb and monitored DSA, allospecific B (allo-B) cells
and CAV development (Figure 1A). We made the surprising
observation that anti-LFA-1 mAb suppressed the humoral
response seen in animals treated with alemtuzumab. Anti-LFA-
1 mAb treatment did not change graft survival or beating quality,
which remained unpurturbed compared to alemtuzumab-alone
treatment (Figure 1B). However, DSA production was greatly
reduced at post-transplantation day (POD) 100 with LFA-
1 blockade (Figure 1C). In addition, we tracked allo-B cells
using MHC/Peptide tetramers (20). LFA-1 blockade resulted
in significantly reduced allo-B cells in the spleen at POD 100
(Figure 1D). These data indicate that LFA-1 blockade prevents
DSA production and suppresses allo-B cell formation, possibly
by suppressing clonal B cell expansion.

LFA-1 Blockade Significantly Diminished
Chronic Antibody-Mediated Rejection
Having observed a reduction in allo-B cells and DSA following
anti-LFA-1 mAb treatment, we assessed the effect on CAV
development. Cardiac coronary artery thickness was measured
with Aperio scanscope program with elastic trichrome or
Verhoeff staining. Even with significantly reduced DSA and
allo-B cells after anti-LFA-1 mAb treatment, a noticeable amount
of neo-intimal hyperplasia persisted, distinct from syngeneic
controls (Figure 2A). We also noted some collapsed major
coronary arteries in the anti-LFA-1 mAb–treated animals. This
may represent non-DSA related CAV development. Overall,
however, LFA-1 blockade significantly reduced neo-intimal
hyperplasia (Figure 2B), diseased vessel number (Figure 2C),
and fibrosis (Figure 2D) in the alemtuzumab-induced CAMR
model. Over time, the non-functional heterotopic syngeneic
cardiac allograft atrophied, likely due to the off-loaded left

ventricle (22) and a limited immunologic reaction. The
hypotrophic condition of allografts treated with LFA-1
blockade may represent a decreased immunologic burden
when compared to allografts treated with alemtuzumab alone
(Supplemental Figure 1). Collectively, we conclude that LFA-1
blockade might prevent CAV via suppression of allo-B cells in a
T cell depletion—induced CAMRmodel.

Systemic Cytokine Milieu During
Homeostatic T Cell Repopulation
Vascular remodeling is also affected by patterns of cytokine
expression. IFN-g and other Th1 cytokines are causally
implicated in stenosing vascular lesions, while Th2 cytokine
expression results in abdominal aortic aneurysms (23). Many
cytokines also play an important role in the control of B
cell responses. IL-4 and IL-21, especially, have been shown to
be important for B cell help (24, 25), and are required for
an optimal humoral response (26). To address whether the
decreased CAV seen during LFA-1 blockade was due to the
modulation of the cytokine environment, serum IL-4, IL-21,
BAFF, and IL-2 were evaluated in the absence or presence of
anti-LFA-1 mAb treatment. Strikingly, IL-21 serum levels were
drastically increased in alemtuzumab-treated cardiac allograft
CD52Tg mouse recipients over time (Figure 3A). IL-4 levels
were less impressively increased at POD 100 (Figure 3B).
Serum BAFF levels were also elevated upon T cell depletion
post-transplantation, similarly to what has been reported in
alemtuzumab-treated human patients (27, 28). However, the
serum BAFF level returned to baseline at POD 100, which
might represent a transient fluctuation at an early time point,
possibly due to T cell depletion—induced B cell loss (Figure 3C).
Serum IL-2 levels were not changed over time after alemtuzumab
treatment (Figure 3D) and suggests that only a small amount
is released in the tissue. In this sense, elevated serum levels
of IL-2 in CD4/CD8 mAb-treated cardiac allograft recipients
might represent Th-1—driven AMR (Supplemental Figure 2). It
is possible that the intensity of the Th1 response immediately
following T cell depletion dictates later humoral responses.
Interestingly, early and late IL-21 serum levels were significantly
reduced to near-background levels following LFA-1 blockade
at both time points (Figures 3E,F; p < 0.01). LFA-1 blockade
also reduced serum IL-4 levels significantly at POD 100
(Figure 3F; p < 0.05). It is notable that IL-21 was not
elevated in untreated (non-depleted) CD52Tg recipients at any
time points, even with high levels of DSA and allo-B cells
throughout the study course (data not shown), suggesting that
in the face of an unopposed Th1 response in the absence of
alemtuzumab treatment both IL-21 levels and the GC response
is completely suppressed (29). Meanwhile, IL-4 was elevated
in both untreated and alemtuzumab-treated recipients at POD
100. It is also notable that serum IL-21 and IL-4 levels were
not completely suppressed by the addition of tacrolimus or
rapamycin (Supplemental Figure 3). Based on the redundant yet
synergistic roles of IL-4 and IL-21 in the GC response (26),
insufficient suppression of either results in a robust humoral
response. The segregation of IgG2a and IgG1 immunoglobulin
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FIGURE 1 | Pre-emptive anti-LFA-1 mAb treatment reduced post-transplant DSA and allo-specific B cells in alemtuzumab treated hCD52Tg cardiac allograft

recipients. (A) Dosing scheme and experimental design. (B) Graft survival of human CD52Tg mice received B6 cardiac allografts. Alemtuzumab treatment (IP, 10 µg

per dose at POD −2, −1, 2, 4,) with or without anti-LFA-1 mAb (KBA-1; 200 µg per dose at POD 0, 2, 4, 6) significantly prolonged graft survival (MST >100 d) vs.

untreated (MST = 9 d). (C) Donor-specific antibody measured by T cell flow crossmatch was significantly decreased in anti-LFA-1 treatment in Alemtuzumab induced

CAMR model. (D) Allo-specific B cells visualized by MHC (H-2Kb/Db) tetramer were significantly reduced with anti-LFA-1 mAb treatment from the spleen at POD100.

isotypes is often used as a marker for Th1 and Th2 responses,
respectively. Concordant with the response suggested by the
cytokine profile, serum from untreated animals showed both
IgG1 and IgG2a dominant isotypes (possibly Th1-biased), while
serum from alemtuzumab treated animals showed suppression
of IgG2a isotypes (Supplemental Figure 4). Reduction of IL-21
at early and late time points with LFA-1 blockade recapitulates
the reduction of DSA and allo-B cell formation shown in
Figure 1. These data suggest that alemtuzumab-induced T cell
depletion does not induce a Th1 response, but rather promotes
an IL-21—driven humoral response, thus promoting CAMR.
Furthermore, our data suggests that this response might be
blocked by treatment with anti-LFA-1 mAb.

Incomplete T and GC Abrogation After
Alemtuzumab Treatment
It is surprising to see rapid IL-21 production as early as 2
weeks post–T cell depletion because GC-Tfh (germinal center
resident follicular helper T cells) are, theoretically, a major

source of IL-21 and IL-4 production (30). Profound T cell
depletion was shown in peripheral blood and spleen, but a higher
number of T cells were found in lymph nodes even 24 h after
T cell depletion. We accessed GC-Tfh cells in situ and found
evidence of an intact germinal center at 2 weeks post-transplant
(Supplemental Figure 5). GC structures were also found in both
lymph nodes and spleen at 24 h after full alemtuzumab doses
(at POD 5; Figure 4). These data are consistent with prior
human data demonstrating that even when induction results
in profound peripheral T cell depletion, it does not necessarily
induce complete central depletion, especially for T cells inside of
GC (31). It is easily speculated that GC structure (vasculature,
cell components, etc.) provides some physical protection for T
cells from the T cell—depleting agent. Taken together, LFA-1
blockade suppresses an IL-21 dominant/germinal center-driven,
anti-donor humoral response. IL-21 production is not unique
to Tfh cells; it is also produced by other T cell lineages such as
Th17, Th2, and Th1 cells (32, 33). LFA-1 is expressed on both T
and B cells (34), and the initial T-B cognate interaction or later
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FIGURE 2 | Alemtuzumab induced CAMR in human CD52 Tg cardiac allograft recipient was diminished by short-term anti-LFA-1 mAb treatment. (A) Representative

images of H and E, Elastic trichrome, and CD4 staining in paraffin section of heart allograft from recipient showing neo-intimal hyperplasia. (B–D) Morphometric

quantitation of lumina occlusion, occluded vessel number (over 20%), fibrosis of explanted graft from B6 heart allografts revealed reduction of CAMR with additional

LFA-1 blockade. *p < 0.05, **p < 0.01.

interaction in the B cell follicle may be altered by anti-LFA-1
mAb. This may result in reduced development of follicular helper
T cells and consequent lack of allo-B cell clonal expansion.

Post-transplant Germinal Center
Suppression via Blocking LFA-1
Based on a reduction of allo-B cells and IL-21/IL-4 production
following anti-LFA-1 mAb treatment, we hypothesized that LFA-
1 blockade suppresses GC-Tfh cell development, B cell clonal
expansion, and GC development. We evaluated GC Tfh cell
responses in situ from lymph nodes on POD 100. Lymph nodes
from naïve, alemtuzumab-alone—treated, and additional anti-
LFA-1 mAb-treated recipients were stained with H and E, CD3,
B220, Ki67, PNA, and IL-21. T and B cell zones were equally
reconstituted in both treated groups at POD 100. Multiple
hyperplastic GCs were found in samples from mice treated with
alemtuzumab-alone (n = 7), but LFA-1 blockade reduced GC
frequency and size to baseline (naïve) levels (n = 9). We also
found that IL-21 staining was greatly reduced in the anti-LFA-1
mAb-treated group (Figure 5).

DISCUSSION

In transplantation, the relationship of DSA with AMR and
graft outcome is a subject of much clinical study. In the
clinical setting, DSA are generally detrimental to transplant
outcomes via complement activation, induction of endothelial
cell proliferation, and ADCC resulting in allograft dysfunction
(AMR). Despite this, little is known about the mechanism
by which the humoral response is induced under current
clinical immunosuppression. We published a series of studies
showing a possible involvement of Tfh and GC response in
the secondary lymphoid organ in transplantation and antibody-
mediated rejection in small and large animal models (15, 21).
However, the biology of Tfh cell mediated B cell activation has not
been fully elucidated in transplantation. In autoimmune diseases,
unwanted Tfh dysregulation is associated with autoimmunity,
and increased frequencies of peripheral Tfh cells have been
reported in several autoimmune diseases, such as lupus, Sjögren
syndrome, autoimmune thyroiditis, myasthenia gravis and
rheumatoid arthritis (35–39). On the other hand, the expansion
of Tfh cells are associated with efficacious vaccine strategies
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FIGURE 3 | Systemic cytokine expression in human CD52Tg cardiac allograft recipients after alemtuzmab treatment. Pre- and Post-transplant level of (A) IL-21, (B)

IL-4, (C) BAFF, and (D) IL-2 were measured from serum. IL-4 and IL-21 levels were significantly reduced by anti-LFA-1 mAb treatment at (E) Post-transplant 2 weeks

and (F) post-transplant 14 weeks. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

(40, 41). Autoimmune diseases are also often characterized by
decreased subset of Tregs called follicular regulatory T cells (Tfr
cells). Tfr cells express CXCR5 and FOXP3, and suppress B cell
antibody production (42).

The hallmark cytokine produced by Tfh cells is IL-21.
IL-21 is a gamma-chain cytokine with broad effects on both
innate and adaptive immune responses (43). Significantly,
IL-21 is required for the generation of Tfh cells (44, 45).
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FIGURE 4 | Incomplete germinal center disruption after alemtuzumab treatment in the lymph node and spleen. (A) Significantly higher frequency of CD3T cells were

found in the lymph nodes compared to other immune compartments at POD 5 and POD 14 (Gray area = non-depleted control, Red line = alemtuzumab treated). (B)

Immunohistochemistry demonstrated cell components of germinal center. T, B, Ki67 and PNA staining confirmed germinal center (GC) response at 24 h after

alemtuzumab treatment.

Interestingly, IL-21 can overcome Tfr suppression to induce B
cell activation, thereby demonstrating a critical role for IL-21
in dictating the germinal center response. In transplantation,
it has been shown that transplant recipients with preformed
DSA showed higher post-transplant circulating Tfh cell (46).
Furthermore, alloantigen stimulated Tfh cell population
promoted B cell differentiation to plasmablast in an IL-21
dependent manner in vitro (47). It is also shown the intact
GC response from isolated lymphoid follicles under an
immunosuppressive regimen with tacrolimus in intestinal
transplant recipinet (48). Tfh and GC response were also
required for chronic GvHD and inhibition of GC response
greatly reduced chronic GvHD (49, 50). Collectively, the
presence of IL-21 in secondary lymphoid organs or in local
tertiary lymphoid structures can be detrimental to transplant
tolerance due to its impact on the generation of Tfh cells, its
autocrine production, and on B cell maturation and antibody
production.

Unfortunately, there are no animal models demonstrating
a correlation between Tfh/GC/IL-21 to the development of
chronic rejection, even though, CAMR is more dependent on
GC response, with critical help provided by Tfh cells. We have
reported the de novo AMR model using alemtuzumab meditated
T cell depletion with heterotopic heart transplantation (20).
As follow-up studies, we tried additional immunosuppression
in the model to suppress post-transplant humoral response.
Counterintuitively, the addition of short-term tacrolimus (data
not shown) or rapamycin (21) did not alleviate post-transplant
humoral response but rather made it worse (increased DSA and
AMR). As previously reported, costimulation blockade in the
mouse CAMR model reversed this by reducing Tfh cells (21). In
the present study, we targeted LFA-1, which is well known for
their important role for T-B conjugation. We investigated the
possible mechanism of CAMR by using anti-LFA-1 mAb in an
Ab-dependent rejection model, independent of T cell mediated
rejection.
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FIGURE 5 | Reduction of post-transplant GC response with anti-LFA-1 mAb treatment. (A) post-transplant GC response was visualized by B220, CD3, PNA, and

IL-21 staining in situ. (B) GC frequency was quantified by calculating the PNA+ follicle number by total B220+ follicle number. (C) GC response or hyperplasticity was

measured by calculating PNA+ area by total B220 area. *p < 0.05, **p < 0.01.

As shown in Figure 1, additional anti-LFA-1 mAb treatment
completely abolished post-transplant DSA and donor-specific
B cells were strongly correlative with alleviation of AMR
development. Similar to acute NHP AMR model using T
cell depletion (15), CD52Tg mice with alemtuzumab showed
profound circulating T cell depletion while T cells remained
in the lymph nodes and spleen. We thoroughly access the
location of T cells in the lymph node and spleen after T
cell depletion (24 h and 7 days). It is quite surprising that
the germinal centers including T cells in the B cell follicle
are preferentially identified after T cell depletion (Figure 4).

In accordance with this, Kirk et al. reported presence of T
cells in the lymph node after alemtuzumab treatment (31).
Interestingly, we also identified hyperplastic germinal center
at POD100 with elevated level of DSA and AMR (Figure 5).
As previously reported, T cells are fully reconstructed after
alemtuzumab yet show donor-specific hyporesponsiveness (20).
Based on this, the elevated level of DSA can directly cause
graft injury (Figure 1). On the contrary, anti-LFA-1 mAb treated
recipients showed baseline level of serum DSA, allo-specific B

cells and germinal center response at POD 100 (Figures 1, 5). It
is conjectured that these left over Tfh cell in the germinal center
could deviate the systematic cytokine milieu that alemtuzumab
treated recipients showed significantly elevated level of IL-21
in their serum (Figure 3). Taken together, the present study
demonstrates that GC-dependent CAMR development after
alemtuzumab treatment and anti-LFA-1 mAb treatment can
prevent the development of post-transplant humoral response
and CAMR.

Here, we assumed that anti-LFA-1 mAb is dissociating T-
B cell conjugation during T cell repopulation, however, the
impact of LFA-1 blockade cannot be limited to this since LFA-
1 is not solely expressed on T and B cells (51). It is known
that anti-LFA-1 mAb prevents allo-specific T cell expansion (52)
and promote transplant tolerance (53–55) by destablizing T-
APC conjugation as well as blocking transmigration to the graft.
Therefore, anti-LFA-1 mAb can reduce Tfh cell population by
suppressing general T cell activation and expansion. Nevertheless
(Regardless of off target effect of anti-LFA-1 mAb), this mode of
action can block the T cell help to the B cells.
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Unfortunately, clinical use of anti-LFA-1 mAb is not available
in clinic for organ transplantation. However, the present
study showing reduction of DSA and CAMR with anti-LFA-
1 mAb recapitulate the impact of costimulation blockade in
large animal model and clinic (15, 16, 56). Costimulation
blockade such as belatacept often show great superiority in
suppressing DSA production. It is highly likely that Tfh cells
are more sensitive on belatacept than other conventional
immunosuppressive drugs. However, it is still not clear
that anti-LFA-1 mAb and other costimulation blockades are
working on pre-GC vs. post-GC status. Overall, Tfh cells are
very attractive target for controlling post-transplant humoral
response.

In this study, we identify a possible mechanistic pathway that
regulates a de novo DSA response after cytolytic induction and
provide a strategy for modulating the post-transplant humoral
response. In particular, the ability to suppress the functional
qualities of follicular helper T cells by costimulation blockade
provides a new approach to induce humoral unresponsiveness in
organ transplantation.
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