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Electric-field-induced 
interferometric resonance of a  
one-dimensional spin-orbit-coupled 
electron
Jingtao Fan1,2, Yuansen Chen2,3, Gang Chen1,2, Liantuan Xiao1,2, Suotang Jia1,2 & Franco Nori4,5

The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, 
and quantum information processing. We theoretically formulate an electric mechanism to probe the 
electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. 
Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states 
are shown to interfere with each other, generating intriguing interference-resonant patterns. We also 
reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, 
but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We 
find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-
dot-based interferometry. This interferometry has potential applications in precise measurements of 
relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, 
as well as the Landé factor.

Being an intrinsic property of condensed-matter materials, spin-orbit coupling (SOC) mixes the orbital and spin 
degrees of particles, and opens the possibility of electric control of the electron spin via its orbit, apart from 
the well-known magnetic responses1–17. A notable example exploiting SOC in semiconductor nanostructures 
is called the electric-dipole spin resonance technique6–9 (EDSR), in which a spin-orbit qubit is encoded into a 
SOC-hybridized spin doublet and an oscillating electric field is further applied to manipulate this qubit on its 
Bloch sphere. Recently, much theoretical9–11 and experimental12–15 attention have been paid to explore the EDSR 
in semiconductor quantum dot (QD). For example, utilizing this technique, the single spin-orbit qubit operation 
has been achieved13 and the spin-orbit effective field can also be determined15, which reflects its potential appli-
cation in quantum information processing and parameters measurement. In addition, the SOC-assisted spin 
control, such as the magnetic-free spin filtering16,17 where the SOC serves as a necessary ingredient to spatially 
and electrically separate electrons with different spins, has also been achieved. In contrast to the conventional 
fully-magnetic control, the introduction of electric passage via SOC paves a much more experimentally feasible 
way to locally address electron spin, which may impact spintronics18.

Matter-wave interference exquisitely exhibits the wave nature of particles, which offers microscopic informa-
tion of certain physical processes19–23. Various interferometries, for, e.g. electrons24–32, neutrons33,34, and atoms35–

37, have been widely applied to measure various physical quantities, by virtue of their wave nature. With its rapid 
improvement of relevant experiment and theory, SOC, which exists naturally in condensed-matter systems38–40 
and is also simulated in ultracold atomic systems41–43, is expected to be a new physical resource to demonstrate 
particle coherence in a spin-orbit-mixed way.

In this report, we theoretically formulate an electric mechanism to interfere electron orbits, by focusing on 
a one-dimensional (1D) spin-orbit-coupled nanowire QD. Owing to the existence of SOC and a pulsed electric 
field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant 
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patterns. Furthermore, an in-plane magnetic field, treated as a perturbation, is also introduced to probe the rele-
vant dynamics. We find that this magnetic field does not affect the interval of any neighboring resonant peaks, but 
contributes a weak shift of each peak, which is sensitive to the direction of the applied magnetic field. We find that 
this proposed external-field-controlled scheme, exhibiting all the basic ingredients of a quantum interferometer, 
should be regarded as multi-arm interferometry. We emphasize that the obtained interferometric signal origi-
nates from the out-of-phase interference of the dynamical phase factors of the infinite spin-orbit states, which 
is remarkably different from conventional optical/atomic interferometers36. This interferometry has potential 
applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus 
SOC strengths, as well as the Landé factor.

Results
The system we consider is a 1D nanowire QD with SOC, confined in a harmonic well and subjected to 
time-dependent external electric and magnetic fields. The total Hamiltonian can be divided into three parts9,4

= + + .H H H H (1)0 E Z

Here, the “free” Hamiltonian, without external fields, reads
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where p =​ −​iħ∂​/∂​x, m is the effective electron mass, αR(D) is the Rashba (Dresselhaus) SOC strength, and σx(y) is 
the Pauli spin operator. The Hamiltonian for the electric-dipole energy, induced by an external electric field t( ) , 
is written as

= .H e t x( ) (3)E

The Hamiltonian for the Zeeman energy of an electron, under an in-plane magnetic field B(t), is given by

µ σ= ⋅H g tB1
2

( ) , (4)e BZ

where ge is the Landé factor, μB is the Bohr magneton, and B(t) =​ B(t)n, with n =​ (cosθ, sinθ, 0) being the direc-
tion of the external magnetic field.

It is convenient to introduce two auxiliary parameters,
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to rotate the spin space, along the z axis, to a new frame. In this case, the Hamiltonians (2) and (4) become
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and
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where ∑​x =​ σx cosϕ +​ σy sinϕ and ∑​y =​ −​σx sinϕ +​ σy cosϕ are the redefined spin operators in the new frame, 
while the Hamiltonian (3) remains unchanged. Since SOC endows the quantum dot with the ability to respond to 
both the external electric and magnetic fields, our goal here is to build a new-type of quantum-dot-based interfer-
ometer by utilizing this natural response.

Before specifying the temporal shapes of the external fields, we first analyze the “unpertubed” Hamiltonian H0, 
under which the initial state is prepared. Taking into account the conservation of the redefined spin operator Σ​x, 
the eigenstates of the Hamiltonian H0 are represented as

φ σ αΣ φ σ=


− ⋅





σ i m xexp ,
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where the orbital part |φn〉​ is the nth eigenstate of a harmonic oscillator and the spin part |σ〉​ is the eigenstate of 
the redefined spin operator Σ​x, i.e., ∑​x|σ〉​ =​ σ|σ〉​, with σ =​ ±​1. Notice that for each electron orbit, the total eigen-
states are twofold degenerate. We assume that the “unpertubed” system is initially prepared in its ground state 
(n =​ 0), with a general superposition of two spin components, i.e., φ φΨ = + + −+

+
−

−c c(0) 0 0 , where 
|c+|2 +​ |c−|2 =​ 1.

To run the dynamics, we turn-on the external fields at a certain time t0. In our proposed interferometer, the 
external fields are utilized as “phase objects” to generate proper interferometric phases36, and their detailed field 
profiles should be well engineered. As an instructive example, the electric and magnetic signals are now taken as

= Θ −B t B t t( ) ( ), (9)0 0
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where Θ​(t −​ t0) is the Heaviside step function, and 0 and σt are the peak amplitude and temporal width of the 
Gaussian-type pulse, respectively. The above expressions of the external fields show that the magnetic field, char-
acterized by the constant field strength B0, looks like a simple quantum “quenching knob”. whose effect is quite 
different from the electric field. This different choice of the electric and magnetic fields relies on their individual 
roles in activating novel dynamics in the nanowire QD, as will be described below.

To further facilitate the theoretical description, we prefer to transform the Hamiltonian (1) to the frame of the 
“velocity” gauge by using a unitary operator = 


⋅ 


U eA t xexp ( )i
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, with the gauge potential
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where πσ=A t0 0 and erf(x) is the error function. After performing the transformation → + 

† †H UHU i UU , 
the Hamiltonian (1) becomes
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Despite of its simple form, the Hamiltonian (12) still governs a quite complicated dynamics; so much so that 
no exact solution can be found. To catch the basic idea of the proposed interferometric process, we simplify the 
analysis over two aspects. Firstly, we restrict the Zeeman energy, δ µ= g BZ e B

1
2 0, to a weak regime such that it is 

much less than the orbital splitting, i.e., δ ωZ  . Therefore, the Hamiltonian contributed by the magnetic field 
can be treated perturbatively. Secondly, from the expression of A(t), we find that in the limit σt →​ 0 and  → ∞0  
( πσ=A t0 0 still remains finite), the gauge potential tends to be A(t) =​ A0 Θ​ (t −​ t0), and the corresponding 
electric field becomes a delta-type pulse, i.e., δ= −t A t t( ) ( )0 0 . It follows that under such a condition, both the 
electric and magnetic manipulations become external quantum quenching knobs, and furthermore, this ultrafast 
limit of the electric-field pulse allows us to obtain a compact analytical solution, which captures the key aspects of 
this interferometer.

Since the control parameters A(t) and B(t) are switched on at time t0 and thereafter remain constant, the total 
dynamics can be conveniently simplified to two stationary problems of times t <​ t0 and t >​ t0, which are governed 
respectively by the Hamiltonians H(t <​ t0) and H(t >​ t0). We now employ perturbation theory to solve these. We 
first concentrate on the zeroth-order Hamiltonian HS =​ H0 +​ HE. Notice that without the perturbed magnetic 
field, the redefined spin operator Σ​x commutes with the Hamiltonian HS. In terms of this, the eigenstates of the 
Hamiltonian HS(t >​ t0) are obtained exactly by
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with eigenenergies
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Obviously, the electric field lifts the degeneracy of each orbital energy by 2eαA0. However, there exists a special 
case where the nth and (n +​ k)th orbits are degenerate or quasi-degenerate, say ω−+ + − n n k, ,ε ε �  (see the 
Methods Section). In such case, the non-degenerate perturbative formula breaks down and we must use a degen-
erate perturbation method. Therefore, the complete solutions should be divided into a nondegenerate case (NC) 
and a degenerate/quasi-degenerate case (DC). After a straightforward calculation, the eigenstates of the 
Hamiltonian H(t >​ t0), which are accurate up to first order in the Zeeman energy δZ, can be summarized as
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for the DC, where an,σ, bn,σ, and σF l n( , )i  (i =​ 1, 2) are given in the Methods Section. Furthermore, the correspond-
ing perturbative eigenenergies are given by (see also the Methods Section for details)
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with η ψ ψ= +
− +
n k n . Notice that, for simplicity, here we have neglected the dependence of f on n, since η is very 

small for any n and k. Equation (17) shows that the external electric and magnetic fields dominate the dynamics 
through different ways: the former (electric) appears as a weight factor of the SOC strength, whereas the effect of 
the magnetic field depends crucially on its specific direction. These features clearly signal their quite different 
roles in controlling the interference pattern.

Having obtained the complete eigenstates and eigenenergies of the quenched Hamiltonian H(t >​ t0), we 
are now able to discuss the total dynamics of the system. After the quantum quench, the whole information of 
the nanowire QD with SOC is encoded in its instantaneous wavefunction, which can be expanded using the 
spin-orbit basis |ψn,σ〉​, i.e.,
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where ψ= Ψ+A (0)N N ,  and ψ= Ψ−B (0)N N ,  are the projected coefficients for the “+​” and “−​” spin sectors of 
the Nth orbit, respectively. A crucial point we should notice is that being a direct consequence of the pulsed electric 
field, AN  and BN  may acquire non-zero values even for N ≠​ 0. In other words, it is the pulsed electric field at time t0 
that splits the original zeroth-orbit wavefunction into other different orbital states |ψn,σ〉​. Indeed, in the nanowire QD 
with SOC, we have built a multiple-polarization-interferometer, where the interferometric arms correspond to 
infinite different orbital states, and the beam splitter corresponds to the pulsed electric field (see Fig. 1 for a more 
intuitive description). However, to obtain a signature of interference, usually observed as a population difference of 
a physical quantity, a special operation to recombine the split orbital states is still needed. Motivated by the fact that 
any different spin-reversed orbital states are non-orthogonal ( ψ ψ ≠σ σ−

′ 0n n ) due to the existence of SOC, it is thus 
convenient to investigate the ensemble average of the spin polarization σz. The result is given by

Figure 1.  Schematic description of the proposed interferometer. Top panel: The initial spin-orbit state, 
staying in the zeroth orbit, is split into different orbital states at time t0. Each orbital state evolves independently 
in its individual passage, accumulating a relative phase shift. The interference pattern arises from a specific 
measurement, which also acts as a beam recombiner. Bottom panel: Timing of the pulsed electric field, which 
shifts the original orbit and plays the role of a beam splitter.
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where Mαβ(N, L) (α, β =​ ±​) are given in the Methods Section and c.c. denotes the complex conjugate.
As shown in Eq. (20), 〈​σz(t)〉​ exhibits the inner product between different spin-reversed orbital states, namely 

ψ ψσ σ−
′n n , which is of great importance to support the accumulated dynamical phase factors. Evidently, these 

phase factors will lead to periodic oscillations of 〈​σz(t)〉​ over time, which may be referred to as (time-domain) 
interference fringes. However, instead of focusing on the time-dependent interference signals, usually done in 
time-domain Ramsey-like atom interferometry44,45, we prefer to explore the long-time average of 〈​σz(t)〉​,

∫ σ=
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Q
T

t dt1 ( ) ,
(21)t

t T
z

0

0

where T is a long timespan, to extract a more prominent interference-resonant effect.
Figure 2 shows the evolution of Q versus 0, by numerical integration of the time-dependent Schrödinger 

equation, with φ φ|Ψ 〉 = | 〉|+〉 + | 〉|−〉+ −(0) ( )1
2 0 0  and T =​ 40π/ω (blue-solid curve). It is remarkable to see that 

the interference pattern appears, and more interestingly, some sharp interference-resonant peaks are formed 
periodically at

E
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The underlying physics of such resonant effect should be traced back to the out-of-phase interference, contrib-
uted by the continuous dynamical phase factors. To see this clearly, we first note that in Eq. (20) there exists two 
kinds of phase factors, 


− − 

+ +E E texp ( )i
N L, ,

 and 

− − 

+ −E E texp ( )i
N L, ,

, of which the latter involves essen-
tial information of the external fields, whereas the former does not. In fact, for general values of 0 and B0, the 
oscillating frequencies of the latter, (EN,+ −​ EL,−)/ħ, are nonzero and usually significantly large. Thus, both the first 
and second terms in Eq. (20) vanish after long-time averaging, due to the out-of-phase interference. However, 
when 0  is tuned to some specific values, such that

E �
πσ α

ω δ θ ϕ= − −
e

k1
2

[ cos( )],
(23)

k

t
Z0

with k =​ L −​ N, the system reaches its level (avoided) crossing point, i.e., EN,+ −​ EL =​ 2δZ|η|sin(θ −​ϕ) ≈​ 0, which 
can be calculated from the second line of Eq. (17). At this point, the out-of-phase interference is maximally sup-
pressed [the out-of-phase part vanishes if EN,+ −​ EL,− =​ 0], giving rise to a considerable non-zero contribution to 
Q, and the interference-resonant peaks thus emerge.

The tunability of the widths of the resonant peaks, which favors its experimental observability, can be achieved 
by varying T. As shown in Fig. 2 by the red-dashed curve, a shorter averaging timespan, T =​ 5π/ω, results in 
broader resonant peaks but does not change their peak positions. We emphasize that the above analysis is general 

Figure 2.  The long-time averaged spin polarization Q versus the peak amplitude 0 . Here, the SOC strength, 
the temporal width, and the initial state are given by α ω= . m0 08 / , σt =​ 0.05/ω, and 

φ φ|Ψ 〉 = | 〉|+〉 + | 〉|−〉+ −(0) ( )1
2 0 0 , respectively. The timespans for the red-dashed and blue-solid curves are 

chosen as T =​ 5π/ω and 40π/ω, respectively.
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and independent of the specific values of AN  and BN . That is to say, different choices of the values of c+ and c− of 
the initial state, except for a special case c+ · c− =​ 0, only lead to different amplitudes of the resonant peaks rather 
than their specific positions, which has also been confirmed by direct numerical simulations (see Fig. 3). Our 
main results, therefore, are robust and will not be affected.

From Eq. (23), we find that the interval of any neighboring resonant peaks,

E E E �ω
πσ α

∆ = − =+
+

e2
,

(24)k k
k k

t
, 1 0

1
0

remains a constant irrespective of the magnetic field, but depends crucially on the SOC. However, the position of 
each individual resonant peak is shifted by a small value via the Zeeman interaction, which is sensitive to the direc-
tion of the magnetic field. The above two features of the proposed interferometer provide a meaningful method to 
precisely measure relevant experimental parameters. A typical example is the determination of the Rashba and 
Dresselhaus SOC strengths, which is of critical importance in current condensed-matter experiments46–49. To this 
end, we first note that the total SOC strength is obtained explicitly through � Eα ω πσ= ∆ +e/(2 )t k k, 1  by measuring 
∆ +k k, 1. Moreover, using the relation between the resonant-peak position and the magnetic-field direction, we can 

further determine the strengths of the Rashba and Dresselhaus SOCs. In Fig. 4, we numerically monitor the response 
of the position of the second resonant-peak  0

1 on the magnetic-field direction θ, by using δZ =​ 0.06ħω. Bearing in 
mind the existence of a finite time to turn on the magnetic field in a realistic situation, in our numerical simulation 
we have intentionally replaced the Heaviside temporal shape of B(t) by an exponential-ramped timing, namely,

τ
=




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
−


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−
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(25)
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with τ being the timespan to turn on the magnetic field [the factor 2.3 in Eq. (25) ensures that B(t0 +​ τ)/B0 =​ 0.9]. 
Obviously, in the limit τ →​ 0, we recover the condition B(t) =​ B0 Θ​ (t −​ t0). As shown in Fig. 4, for τ =​ 4.3/ω, the 
direct numerical simulations agree well with the analytical expression in Eq. (23), implying that the Heaviside 
function Θ​(t −​ t0) is a good approximation of a realistic situation. Being similar to the previous results9, the posi-
tion of the resonant peak reaches its extreme value at θm =​ nπ +​ ϕ (n =​ 0, ±​1, ± 2, ), and ϕ is thus determined 
from the obtained θm. Having obtained the auxiliary parameters α and ϕ, the Rashba and Dresselhaus SOC 
strengths are expressed directly as αR =​ tanϕ and αD =​ cotϕ, respectively. Obviously, a similar method can also be 
employed to determine the Landé factor, since Eq. (23) also contains this basic information.

Note that in the case of θ =​ θm, the Hamiltonian (12) is exactly solvable due to the cancelation of the redefined 
spin operator Σ​y. Further calculations accordingly prove the validity of Eqs (17) and (23), without any limitation 
on B0. In this case, using Eq. (23), it seems that similar magnetic-field-driven resonant peaks would arise at 

ω πσ α µ=B k eg/( )
k

t e B0   without introducing the pulsed electric field. However, this straightforward derivation 
is not valid. Unlike the pulsed electric field, which serves as a beam splitter in the proposed interferometer, the 
magnetic field does not shift the original orbit (see the expression of |ψn,σ〉​), and thus = =A B 0N N  for any N ≠​ 0 

Figure 3.  The long-time averaged spin polarization Q versus the peak amplitude 0 for four different initial 
states. In these plots, c+/c− is given by (a) 2/1, (b) 3/1, (c) 2/3, and (d) 3/4, respectively. The timespan is chosen 
as T =​ 10π/ω. Other parameters are the same as those in Fig. 2.
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in Eq. (20). This implies that all the dynamical phase factors in Eq. (20) cancel out, and the interference-resonant 
peaks vanish. Therefore, it can be seen that the pulsed electric field plays a unique role in inducing transitions 
between the external orbital states, which is the key to switching on the interferometric process.

Based on current experimental conditions of nanowire QDs, we now estimate various relevant parameters to 
show the experimental feasibility of our proposal. Consider the material parameters of GaAs50, namely, ge =​  
−​0.44, α =​ 1.83 ×​ 10−11 eV · cm/ħ, m =​ 0.067m0, where m0 is the electron mass, and assume a weak trap potential 
ħω =​ 9.1 μeV, which can be controlled by gate voltages13. Therefore, the width of the electric-field pulse and the 
timespan to turn on the magnetic field is estimated respectively as σt =​ 0.05/ω ≈​ 4 ps and τ =​ 4.3/ω ≈​ 300 ps, 
which is experimentally reasonable in view of the fact that ultrafast field pulses about the order of picosecond 
have been reported51. Accordingly, a viable averaging timespan can be chosen as T =​ 10π/ω =​ 2.2 ns, which is 
shorter than the spin dephasing time ⁎T2  in GaAs QD, which typically is ~10 ns52. This confirms the observation of 
the predicted interferometric resonance within the spin coherence time. In terms of the above parameters, the 
interval of the resonant peaks plotted in Fig. 2 is also given by E �ω πσ α∆ = = .+ e/(2 ) 22 6k k t, 1  V/cm. Since the 
Landé factor of GaAs is very small (ge =​ −​0.44), a weak Zeeman energy, δZ =​ 0.06ħω, still supports a 
considerably-strong magnetic field B =​ 42 mT, which in turn shifts the resonant peaks by, as large as, 
δ δ πσ α= = .e/(2 ) 1 35Z t  V/cm. Moreover, considering the fact that the electric field in current experiments 

can easily reach ~105 V/cm, our interferometric method can thus be applied to precisely measure materials with 
even much weaker SOC strengths. The relevant parameters of some other semiconductor materials, namely 
GaAs, InSb, InAs, ZnO, and GaN, can be found in Table 1.

Discussion
Taking into account the fact that the anharmonicity is unavoidable in an actual experiment, we add a higher order 
anharmonic factor, βx4, in the Hamiltonian (12), i.e.,

ω β α

µ θ ϕ θ ϕ

= + + + Σ −

+ 
Σ − + Σ − 



H p
m

m x x p e
m

A t p

g B t

2
1
2

( )

1
2

( ) cos( ) sin( ) ,
(26)

x

e B x y

2
2 2 4

to numerically analyze its impact on the interference peaks. To be clarity, a dimensionless parameter, λ =​ 2βħ/
(m2ω3), is introduced. Figure 5 shows the interference patterns with respect to different λ. It can be seen that (i) 
the first few peaks are stable if λ is relatively small and with the increasing of λ, the peaks tend to deviate from 
their standard values of the harmonic case; (ii) the higher resonant peaks are more sensitive to the anharmonic 
perturbation than the lower ones. These behaviors can be qualitatively explained as follows. The effect of the 

Figure 4.  The position of the second resonant-peak 0
1 versus the magnetic-field direction θ. Here, the 

timespan and the timespan to turn on the magnetic field are given by T =​ 10π/ω and τ =​ 4.3/ω, respectively. The 
SOC strength α, the temporal width σt, and the initial state |Ψ​(0)〉​ are the same as those in Fig. 2. The black open 
circles correspond to direct numerical simulations, while the curves show our analytical results in Eq. (23).

Semiconductor ħαR (eV · cm) ħαD (eV · cm) γ (eV · Å 3) ħα (eV · cm) ∆ +k k 1,  (V/cm)

GaAs 0.68 ×​ 10−11a −​1.7 ×​ 10−11 −​11a 1.83 ×​ 10−11 22.6

InSb 3 ×​ 10−10b 7.7 ×​ 10−10 490b 8.3 ×​ 10−10 0.5

InAs 5.71 ×​ 10−9c 9.0 ×​ 10−10 571.8c 5.78 ×​ 10−9 0.07

ZnO 1.1 ×​ 10−11d 5.2 ×​ 10−13 0.33e 1.1 ×​ 10−11 37.6

CaN 9.0 ×​ 10−11f 5.0 ×​ 10−13 0.32e 9.0 ×​ 10−11 4.6

Table 1.   Some quantum dot parameters. The Dresselhaus SOC strength is estimated by ħαD ≈​ γ(π/z0)2, where 
γ is the material-specific constant and z0 is the quantum well vertical width. In these estimations, we assume 
z0 =​ 25 nm, ħω =​ 9.1 μeV and σt =​ 4 Ps. aref. 50. bref. 53. cref. 54. dref. 55. eref. 56. fref. 57.
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anharmonicity can be neglected only if the quartic term 〈​βx4〉​ is effectively small enough than 〈​mω2x2/2〉​ (〈​…​〉​ 
means expectation value). With the increasing of 0 , the wave function is more likely to be excited to the higher 
orbit states (see the expressions of AN  and BN) and therefore becomes more extended, which consequently high-
lights the impact of the quartic term 〈​βx4〉​. On the other hand, when the orders of λ is no more than 10−3, the first 
two resonant peaks are definitely stable, reflecting their robustness under the anharmonicity. As we elucidated in 
the previous section, the knowledge of the first two peaks is sufficient to extract information of the considered 
SOC electron.

Note that various techniques have been employed to determine the Rashba and Dresselhaus SOC 
strengths13,46–49. We emphasize here, however, that our proposal is much different from previous schemes in 
principle. Firstly, unlike previous works, in which the spin precession responding to external magnetic fields is 
mainly investigated47–49, the physics we exploited in this report essentially originates from the interference of the 
dynamical phase factors of different orbital states. The electric field here serves as a basic building block, say, the 
beam splitter, of a multiple-polarization-interferometer. Secondly, the existing schemes mostly extract informa-
tion from the instantaneous spin evolution, while the novel spin dynamics prediceted in this work reflects in its 
long-time mean value.

Finally, we emphasize that the proposed idea of the SOC-induced multiple-polarization quantum interferom-
eter is general and the 1D nanowire QD just offers a platform to demonstrate the relevant physics. Actually, the 
model Hamiltonian (1) should, by no means, be limited to only a single specific system. Resent advances in ultra-
cold atoms, with artificial gauge fields, make it another alternative candidate to exhibit the same physics. For 
example, the harmonic-trapped two-component Bose-Einstein Condensation (BEC), with synthetic 1D SOC, can 
be well simulated by the free Hamiltonian (6)42,43, and furthermore, a rapid shake of the harmonic trapping poten-
tial of the BEC ideally corresponds to the pulsed electric field t( )  employed in the nanowire QD. Thus, following 
similar procedures we discussed above, a BEC-based interferometric resonance, with respect to the strength of 
the shake, can also be expected.

In summary, we have theoretically formulated an electron-orbital interferometry, by focusing on a 1D nano-
wire QD with SOC. By properly adjusting the external fields’ timing, different spin-orbit states are shown to 
interfere with each other, generating intriguing interference-resonant patterns. We have also shown that this 
interferometry has potential applications in precise measuring relevant experimental parameters, such as the 
Rashba and Dresselhaus SOC strengths, as well as the Landé factor.

Methods
Derivation of the perturbed eigenstates in the degenerate/quasi-degenerate case.  By varying 
the parameters in Eq. (14), it is possible to achieve a regime where the nth and (n +​ k)th orbits are degenerate/
quasi-degenerate, say ω−+ + − n n k, ,ε ε � ; see Fig. 6. In such case, we must recombine the unperturbed eigen-
states ψ σσ

n  to obtain proper zeroth-order eigenstates.
We assume that the nth perturbed eigenstate can be expressed as

ψ ψ ψ= + + − .+
+
−a b (27)n n n k

(0)

Substituting the assumed eigenstate in Eq. (27) into the Schrödinger equation ψ ψ+ =H H E( ) n n nS Z
(0) (0)  

and making use of ψ σ ψ σ=σ
σ

σH n n nS , , we obtain the following two equations:

δ θ ϕ η δ θ ϕ+ − − + − =+
⁎E a b[ cos( ) ] sin( ) 0, (28)n Z n Z,

 δ θ ϕ ηδ θ ϕ− − − + − = .+ − E b a[ cos( ) ] sin( ) 0 (29)n k Z n Z,

The appearance of nonzero solutions in Eqs (28) and (29) requires

Figure 5.  The long-time averaged spin polarization Q versus the peak amplitude 0 with respect to different 
anharmonic factors, λ = 10−3 (red dashed curve), λ = 10−4 (blue dotted-dashed curve) and λ = 10−5 (black 
solid curve). The timespan is chosen as T =​ 10π/ω. Other parameters are the same as those in Fig. 2.
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
ε δ θ ϕ η δ θ ϕ
ηδ θ ϕ δ θ ϕ

+ − − −
− − − −

=+

+ −

⁎E
E

cos( ) , sin( )
sin( ), cos( )

0,
(30)
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Z n k Z n

,

,

which results in

 ω ω= ± −±E n k f1
2

( ), (31)n,

where

η δ θ ϕ ω α δ θ ϕ= | | − + + + − .f k e A{4 sin ( ) [ 2 2 cos( )] } (32)Z Z
2 2 2

0
2 1

2

The corresponding eigenstates are given by

ψ ψ ψ= + + −± ±
+

± +
−a b , (33)n n n n n k,

(0)
, ,

where

η δ θ ϕ

η δ θ ϕ δ θ ϕ
= ±

−

− + −
±



⁎
a

f

2 sin( )

4 sin ( ) [ 2 cos( )]
,
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n
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, 2 2 2 2
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.±


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n

Z
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, 2 2 2 2

Based on the rearranged zeroth-order eigenstates ψ ±n,
(0)  in Eq. (33), the first-order eigenstates are derived 

straightforwardly from perturbation theory. The results are given by

∑ ∑ψ ψ ψ ψ= + + + −± ±
≠ +

∞
± +

≠ +

∞
±

+
−F l n F l n( , ) ( , ) ,

(36)n n
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,
1

,
2

where

 

 

ψ ψ ψ ψ

ψ ψ ψ ψ
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−
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± +
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+
−
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− +
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,
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and

Figure 6.  Schematic energy levels of the nth and (n + k)th orbits in the nondegenerate case (NC) and 
degenerate/quasi-degenerate case (DC). 
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Complete expression of Eq. (20) in the Results Section.  The detailed expressions of Mαβ(N, L) (α, 
β =​ ±​) in Eq. (20) should be divided into the following two cases: (i) non-degenerate case, where each orbital 
energy σn,  is well separated from others, and (ii) degenerate/quasi-degenerate case, where ω−+ + − n n k, ,ε ε � . 
Specially, in the non-degenerate case we have
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and in the degenerate/quasi-degenerate case we obtain
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