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Abstract
Traumatic spinal cord injury (SCI) provokes the onset of an intricate pathological process. Initial primary
injury ruptures local micro-neuro-vascularcomplex triggering the commencement of multi-factorial
secondary sequences which exert significant influence on neurological deterioration progress. Stimulating
by local ischemia, neovascularization pathways emerge to provide neuroprotection and improve functional
recovery. Although angiogenetic processes are prompted, newly formed vascular system is frequently
inadequate to distribute sufficient blood supply and improve axonal recovery. Several treatment
interventions have been endeavored to achieve the optimal conditions in SCI microenvironment, enhancing
angiogenesis and improve functional recovery. In this study we review the revascularization pathogenesis
and importance within the secondary processes and condense the proangiogenic influence of several
angiogenetic-targeted treatment interventions.
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Introduction And Background
Spinal cord injuries (SCI) account for a worldwide incidence estimated from 250,000 to 500,000 per year,
while they mostly occur during high energy injuries such as vehicle accidents, falls from height, gunshots,
etc. [1]. Frequently followed by significant lesions, including compressions, ruptures, and fractures, spinal
cord injuries result in a range of neurological symptoms depending on the level and severity of the injury.
The neurological deficit is generally determined within 72 h after SCI, while post-traumatic processes can be
divided into acute, subacute, intermediate, and chronic (Table 1) [2,3]. Almost half of the patients will not
regain their everyday functionality, whereas the majority of them experience chronic types of pain [2,4].

Stage of Spinal cord injury Time elapsed since precipitation

Acute < 48 hours

Sub-acute 2 days – 2 weeks

Intermediate 2 weeks – 3 months

Chronic >3 months

TABLE 1: Post-traumatic progress time distribution

Primary mechanical injury triggers the onset of a secondary multifactorial process [2]. Over the last decades,
extensive research has been performed regarding the progressive damage on the lesion site, including
vascular disorders, inflammatory process, demyelination, and cell apoptosis, resulting in glial scar and
cavity formation and having a significant impact on axon regeneration and functional recovery [5]. Vascular
integrity and adequacy are determining, providing a propitious regeneration microenvironment on the
lesion site.

Although endogenous angiogenesis is triggered by SCI and the ensuing ischemia, the local vascular response
is usually insufficient [6]. Hence, the meticulous comprehension of the SCI microenvironment is significant,
in achieving the optimal conditions for axonal and functional recovery. Several pieces of research and
various pre-clinical approaches have focused on regulating the vascular response following SCI, obstructing
secondary processes, and contributing to the development of an organized and properly functional vascular
system. Angiogenetic factors administration, gene modulation, and multiple treatment interventions
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stimulate revascularization on the injury site, providing promising results in SCI management [7].

In this study, a review of the literature determined the crucial role of the secondary vascular process within
SCI providing an overview of vascular impairment within SCI, angiogenetic response on the lesion site, and
conceivable proangiogenic interventions, promoting local angiogenesis and functional recovery.

Review
Injury classification
Several classification algorithms have been proposed to ensure the most optimal conditions and the proper
management of SCI, considering predominantly anatomical (skeletal level of injury) as well as functional-
neurological points of criteria [8,9]. In order to determine the accurate level of spinal cord lesion, regarding
the neurological level of SCI, the International Standards for Neurological Classification of Spinal Cord
Injury (ISNCSCI) developed the American Spinal Injuries Association (ASIA) score. Since 1982, ASIA defined
the “key muscles and dermatomes”, aiming to the particular assessment and documentation of SCI through
the ASIA motor-sensory-impairment scale. ASIA or AIS scale is able to provide an integrated evaluation
of the significance of the neurological distinction (complete to incomplete), providing essential
management documentation while often assembling crucial prognostic details [10].

Spinal cord injury pathophysiology
Primary Injury

Direct or persistent compression forces exerted among the canal seem to mostly insult spinal cord integrity.
The primary stage of SCI consists of mechanical forces, shrill damage, and strain to the spinal cord and the
surrounded neurovascular complex through fracture fragments, dislocations, strain, compression, and/or
torsion forces (Figure 1) [11]. Accompanied hematomas constitute a presumable compression threat of the
spinal cord, as bleeding erupts shortly after SCI, followed by local ischemic infraction and hypoxia [12].
Primary lesion harmfully affects gray matter, neurons, and oligodendrocytes, which essentially mediate
neuronal transmission, whereas vascular damage, including blood spinal cord barrier (BSCB), augments
inflammatory cell infiltration [13]. Furthermore, edema and macrophage accumulation on the lesion site
aggravates distortion in neuronal transmission. Initial injury triggers a consequent secondary "cascade"
contributing to further deterioration of the damaged spinal cord and consequent neurological impairment
[14].

FIGURE 1: Sagittal views of the cervical spine fracture
A) Sagittal T1 view of cervical spine fracture B) Sagittal T2 view of the cervical spine fracture. The red arrow is
showing the C6 vertebrae fracture. The green arrow reveals the concomitant compression of the spinal cord.

Secondary Injury

The secondary injury was firstly described by Allen in 1911 while studying SCI in dogs [15]. Secondary injury
onsets shorty after SCI and is able to last for a week to months, concerning a multifaceted pathological self-
destruction process of the spinal cord at cellular, biochemical and molecular levels [5]. Divided into acute,
sub-acute, and chronic secondary mechanisms of injury, encompass a handful of perturbations containing
vascular damage, ionic imbalance, excitotoxicity (neurotransmitter accumulation), free radical
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development, calcium inundation, inflammatory processes, edema, and necrotic cell death [16].
Progressively, apoptosis, axial demyelination, Wallerian deterioration/degeneration, matrix remodeling, and
glial scar formation on the injury site consist of the sub-acute stage, until the lastly developed axonal
dieback, cystic cavity accretion, and glial scar maturation on the chronic phase [17,18].

Vascular Response After SCI

The vascular system consists of a well-architectured and organized structure providing a supportive
environment to the nervous system [19]. Initial spinal cord injury results in local vascular impairment and
BSCB deterioration, intensifying vascular permeability, while the secondary injury progress demonstrates
deterrent conditions for regeneration and functional recovery [20]. Mechanical trauma consequences on
disruption of perivascular basement membrane (BM) and detachment of extracellular matrix (ECM), leading
to a huge loss of endothelial cells (EC) and EC apoptosis, instigated by the ensuing ischemia [21,22].
Disorders in BM structure intensify the inflammatory response outspread, impairing cell death in the
subacute stage, while the accompanied hemorrhage aggravates axonal breakdown [23]. In addition,
mechanical shear induces disruption of BSCB, occurring in the very first hours of the injury. Pro-
inflammatory cytokines (interleukin{IL}-1β, tumor necrosis factor {TNF}a), metalloproteinase (MMPS), and
vasoactive agents exacerbate vascular permeability, contributing to inflammatory infiltrate and secondary
injury process on the injury site [6,24,25]. 

Endogenous Angiogenesis

Angiogenesis consists of the fundamental form of vessel evolvement in the injury site after SCI, prompted by
local hypoxia and proangiogenic substances, and includes chiefly three formation mechanisms:
vasculogenesis, splitting angiogenesis, and sprouting angiogenesis [26,27]. Vasculogenesis concerns the “de
novo” vessel formation from precursor endothelial cells or angioblasts, generating predominantly among
embryogenesis [28]. Regarding SCI, new vessels proceed through the pre-existing vascular system
(angiogenesis), separated into two main processes: firstly, sprouting angiogenesis where ECM restructures
and reorganizes providing a propitious microenvironment for EC migration, escalation, tube formation, and
lastly configuration of new sprouts and intussusception (or splitting angiogenesis), accomplished by old-
vessel splitting [27,29].

Angiogenesis and EC remodeling and regeneration are stimulated by local ischemia and augmented by
miscellaneous molecules through various signaling pathways [30,31]. Endothelial cell augmentation is
provided by several transcription agents including Sox17, Foxo1, FoxM1, Atf3, and HIF-1a, exerting influence
on the sprouting angiogenesis process, which is additionally affected by Mef2 factors/agents [32,33].
Vascular endothelial growth factor (VEGF), one of the most identified angiogenic components in blood
vessel formation and regeneration, engages angiogenic pathways in both regular and pathological
circumstances [34]. Expression of HIF-1a is increased through PI3K-Akt signaling set-off and induces VEFG
production, contributing to the angiogenetic process, whereas prevention of the PI3K-Akt and mTOR
signaling pathways prompt Foxo1 expression and instigate EC curvature [35,36]. Notch signaling conduces
to sprouting and splitting procedure management through Dll4 expression in tip cells [37].

The secondary injury process accelerates rapidly following SCI, hence endogenous angiogenesis is
frequently inadequate to confront the progressive local ischemia and cell death. New vessels ephemeral
enhance within two weeks after SCI providing an early-novel scaffold for axonal renascence and remodeling,
however, accompanied BSCB disruption often lays in peril vessel vulnerability [37]. Additionally, the
development of the recently formed vessels into a well-structured and functional vascular system usually
fails due to their anatomic features and lack of connections with local neurons, vascular mural, and glial
cells, resulting in poor branching germination [6,23].

Several studies have proved the beneficial role of sufficient capillary blood flow, angiogenesis, and BSCB
probity to ensure the distinguished conditions for tissue survival and functional regeneration [38,39].
Significant interaction among vessel regrowth and nerve recondition has been demonstrated concerning
both salutary and repellent evidence, including Slits, Nogo, Semaphorins, Ephrins, VEGF, neurotrophins
(NGF, NT-3), vascular cell types (vSMCs), astrocytes, microglia, and oligodendrocytes [19,40-42]. By and
large, revascularization is crucial in SCI rehabilitation. Interventions targeting the harmed vascular system
by providing blood supply adequacy, triggering angiogenesis, and ensuring BSCB integrity and vascular
decency, are capable of potentially diminishing secondary progression and promoting axonal guidance and
functional recovery following SCI.

Revascularization treatment interventions following SCI
Development of vascular response and augmentation of the angiogenetic process within SCI conducts the
delivery of proangiogenic factors, gene regulation, and several vascular interventions. However, modulation
of adjustable and controlled angiogenesis prevails the vast research confrontation. Increased microvascular
permeability carries the risk of spreading the lesion through leukocyte infiltration, while immoderate VEGF
expression has been implicated in tumor formation [43].
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(i) Proangiogenic factor administration: Blood vessel formation, as well as, ECs migration and proliferation
is significantly affected by vascular endothelial growth factor (VEGF) [34]. Isolated or combined VEGF
administration and its isoform (VEGF-A165, 121, 189) provided significant post-traumatic enhancing
recovery and neuroprotection in numerous studies [44,45]. Delivery of modified zinc protein transcription
factor (ZFP) activates all isoforms of VEGF-A, whereas a combination of VEGF with platelet-derived growth
factor (PDGF)/fibroblast growth factor-2 (FGF2)/Angiopoietin (ANG1) improved blood vessel density, abated
BSCB permeability and enhance blood supply [46-48].

Several hormones, enzymes, or substances such as melatonin and estrogen, have been shown to detect an
angiogenetic influence in SCI management [49]. Chondroitinase ABC (ChABC) provides axonal remodeling
and regeneration by triggering revascularization. Studies have presented the shrinking of extracellular
chondroitin sulfate proteoglycans (CSPG) by ChABC, stimulating neoangiogenesis and protecting vessel BM
[50,51]. Additionally, MMPs, flufenamic acid (FFA) or MMP-8 inhibitor (MMP-81), and granulocyte colony-
stimulating factor (G-CSF), provide a permissive environment for local revascularization and BSCB
disruption deterrence [52,53].

(ii) Gene modulation: Neuroprotection and functional recovery through several genetic pathways has been
observed in assorted experimental studies, concerning the reciprocation of genetic perturbation in
proangiogenic factors expression [54]. Kumar et al. assessed the transient potential channel protein (TRPV4)
fluctuation and increase following SCI, providing the statement of the detrimental repercussion of TRPV4
activation in endothelial cell damage, inflammation progress, and rehabilitation/functional recovery [55].
Diminution of UTX (Ubiquitously Transcribed tetratricopeptide repeat on chromosome X), a histone H3K27
demethylase, which is significantly increased after SCI, augments EC migration and tubule/tube
formation/genesis and enhances epigenetically the vascular remodeling and functional retrieval through
miR-24pathway [56]. Blocking in proangiogenic microRNAs expression outcomes in inflammatory
impediment and proceeds vascular growth. Knockdown of PTP1B and EFNA3 through miR-210 delivery, as
well as SPRED1 AND PIK3R2 crush prompted by Agomir-126/miR-126 administration, operated in
revascularization and functional recovery [57,58].

(iii) Cell-based therapeutic strategies: Stem cell transplantation erupted as a persuasive path in both
degenerative and traumatic disorders owing to their immanent differentiation diversity and providing
auspicious treatment options [59]. Mesenchymal stem cells (MSCs) originating from the umbilical cord,
adipose tissue, amnion, and bone marrow have been observed to promote BSCB restoration and enhance
revascularization on the lesion site [60,61]. Exosomes or extracellular vesicles originating from MSC include
secreted or paracrine-secreted proangiogenic factors, emulating MSCs' endeavor in revascularization [40].

Neural stem/progenitor cells (NS/PCs) or neural stem cells' potential differentiation into neurons,
astrocytes, and oligodendrocytes provided an augmented angiogenetic impact on the damaged spinal cord
[62,63]. Stimulated by VEGF secretion, NSCs transplantation or co-implantation with ECs offers a prosperous
microenvironment for ministrant vascular regrowth and BSCB maintenance/conservation, whereas the
astrocytic module of NCS can also merge with endogenous astrocytes through migration providing further
BSCB integrity [64-66]. Additionally, numerous cells including HUVECs, pericytes, and CD133+ blood cells
have been assessed due to their proangiogenic effect on SCI [67,68].

(iv) Other angiogenetic administrators: Natural or synthetic biomaterials, including hyaluronic acid (HA),
collagen, fibrin, Poly-L-lactic acid (PLL), poly-lactic-co-glycolic (PLGA) have been observed to enhance
revascularization following SCI [7]. Furthermore, physically stimulated treatments in mice models provided
an intrinsic angiogenic effect and promoted EC proliferation and BSCB maintenance on the lesion site,
comprising hypoxia-induced angiogenesis (chronic mild hypoxia) and water treadmill training [69,70].

An abundance of treatment interventions has been endeavored, utilizing their angiogenetic influence on
lesion sites as illustrated in Table 2.

Author Method Results

Kitamura et al. 2007 Delivery of HGF gene Increased neuron survival, promoted angiogenesis and functional recovery

Kumagai et al. 2009 Transplantation of NS/PCs Stimulated angiogenesis, axonal volume and remyelination, promoted locomotor recovery 

Rauch et el. 2009 Administration of a co culture of ECs and NPCs Induced angiogenesis

Sasaki et al. 2009 Administration of CD133+ cells Increased VEGF expression, promoted angiogenesis, axonal regeneration, functional recovery

Kang et al. 2010 Delivery of FGF2 Increased spinal cord blood flow, improved vessel density

Herrera et al. 2010 Co-delivery of VEGF and Ang-1 Vascular stabilization, improved locomotor function

Wei et al. 2010 Administration of HA-based hydrogels modified with PLL and antiNgR Increased angiogenesis and prevented glial scar formation
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Kawabe et al. 2011 Delivery of G-CSF Increased angiogenic cytokines, improved locomotor function

Nori et al. 2011 Transplantation of hiPSCs Stimulated angiogenesis, axonal volume and remyelination, promoted locomotor recovery 

Fujioka et al. 2012 Transplantation of CD133+ cells+ application of a magnetic field Improved neurological recovery

Zhou et al. 2013 Transplantation of hADSCs[comparison with hAMSCs] hADSCs led to higher levels of VEGF and HGF and improved functional recovery

Milbreta et al. 2014 Delivery of ChABC Increased revascularization

Ujigo et al. 2014 Delivery of miR-210  Increased angiogenesis, and improved locomotor function, decreased cell apoptosis

Wu et al. 2014 Delivery of melatonin Decreased BSCB permeability,cell apoptosis, consolidation of the microcirculation

Hu at el. 2015 Delivery of miR-126 Promoted angiogenesis, reduced vascular inflammation, improved vascularity

Badner et al. 2016 Delivery of Human Brain Stromal Cells Diminished BSCB permeability, and hemorrhage, improved neurological outcome

Samantaray et al. 2016 , Ni et al.

2018
Delivery of estrogens Increased angiogenic factors, improved microvessel growth and locomotor function

Yu et al. 2016b Co-delivery of VEGF,    ang-1 and bFGF
Increased expression of angiogenic factors, promoted angiogenesis and neurogenesis, improved neurological

function.

Zhou et al. 2016 Transplantation of hAMSCs Increased levels of VEGF, promoted axonal regeneration, improved functional recovery

Jing et al. 2017 Delivery of melatonin Increased circulation in the spinal cord, improved  neurological outcome

Halder et al. 2018 Chronic mild hypoxia Promoted angiogenesis and endothelial multiplication

Kumar et al. 2018 Delivery of MMP-8 inhibitor  Decreased inflammation, BSCB damage  and cell impairment 

Yao et al. 2018a Administration of AFG Supported angiogenesis and axonal regeneration

Wang et al. 2018 Implantation of CS targeted with CBD-VEGF Promoted angiogenesis, axonal regeneration, enhanced the microenvironment

Yao et al. 2018b Delivery of FFA Prevented capillary fragmentation, induced angiogenesis, reduced hemorrhage and BSCB disruption

Ni et al. 2019 Knockdown of UTX Increased vascular regeneration and promoted neurological recovery

Kumar et al. 2020 Delivery of TRPV4 antagonist Decreased inflammation, preserved BSCB, reduced scarring, improved functional outcome

Zhong et al. 2020
Administration of cocultured FPSS with ADAMTS13-overexpressing

HUVECs
Promoted neovascularization, microvascular formation and functional recovery

TABLE 2: Angiogenesis enhance administrators.
bFGF = basic fibroblast growth factor, Ang-1 = angiopoietin, FGF2 = fibroblast growth factor 2, ChABC = chondroitinase ABC, FFA = flufenamic acid,
MMP-8 = Matrix, Metalloproteinase-8, G-CSF = Granulocyte colony-stimulating factor, HGF = hepatocyte growth factor, TRPV4 = transient receptor
potential vanilloid type 4, UTX = Ubiquitously Transcribed tetratricopeptide repeat on chromosome X, miR-210 = micro-RNA 210, miR-126 = MicroRNA-
126, hAMSCs = Human Amniotic Mesenchymal Stem Cells, hADSCs = human adipose tissue-derived mesenchymal stromal cells, NS/PCs = neural
stem/progenitor cells, hiPSCs = human-induced pluripotent stem cells, ECs = endothelial cells, NPCs = neural progenitor cells, FPSS = fibrous porous
silk scaffold, HUVECs = human umbilical vein endothelial cells, ADAMTS13 = ADAM metallopeptidase with thrombospondin type 1 motif 13, AFG =
aligned fibrin hydrogel, HA = hyaluronic acid, PLL= poly-L-lysine, antiNgR = nogo-66 receptor antibody, CS = collagen scaffold, CBD-VEGF = constructed
protein, collagen-binding VEGF

Kitamura et al. [54]; Kumagai et al. [64]; Rauch et el. [65]; Sasaki et al. [71]; Kang et al. [72]; Herrera et al. [46]; Wei et al. [73]; Kawabe et al. [52]; Nori et
al. [63]; Fujioka et al. [68]; Zhou et al. [62]; Milbreta el al. [51]; Ujigo et al. [58]; Wu et al. [49]; Hu at el. [57]; Badner et al. [67]; Samantaray et al. [74]; Yu et
al. [75]; Zhou et al. [61]; Jing et al. [76]; Halder et al. [70]; Kumar et al. [53]; Yao et al. [77]; Wang et al. [78]; Yao et al. [79]; Ni et al. [56]; Kumar et al. [55];
Zhong et al. [80]

Conclusions
Spinal cord injuries signify the onset of inherent pathological complex process. There is peremptory
necessity for an extensive knowledge of all the intrinsic procedure occurring within the initial injury, so that
the optimal conditions for the proper treatment and recovery will be ensured. Vascular disruption, following
SCI, comes up with a dominant consistency, regarding the progression of the injury. Improved technological
methods and multiple studies have been developed to ensure an adequate blood supply at the site of injury
and develop well-functioned vascular system providing promising outcomes, however many aspects of both
pathophysiological and angiogenetic processes remain unspecified. Presumably, integration of
proangiogenic strategies could provide braced outcomes, although further research is essential.

Additional Information
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