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Abstract. Quantification of the retinal nerve fiber layer 
(RNFL) by optical coherence tomography (OCT) has been 
proposed to provide an indirect measure for retinal axonal 
loss. The aim of the present study was to determine whether 
interferon beta (IFNβ) treatment impedes retinal axonal loss 
in multiple sclerosis (MS) patients. A total of 48 patients 
with MS (24 IFNβ‑1b‑treated and 24 untreated subjects) and 
12 healthy controls were enrolled in a prospective longitudinal 
OCT study. OCT measurements were performed for both 
eyes of each subject at baseline, and at 3‑, 6‑, and 12‑month 
follow‑up examinations using a time‑domain OCT. At each 
visit, we additionally recorded full‑field visual evoked poten-
tial (VEP) responses and performed the paced auditory serial 
addition test (PASAT), in addition to expanded disability 
status scale (EDSS) scoring. Generalized estimation equation 
(GEE) was used to account for repeated measurements and 
paired‑data. The model‑based approach predicted a monthly 
reduction in the RNFL thickness by 0.19 µm in the eyes of the 
MS subjects. The reduction was estimated to be 0.17 µm in 
case of IFNβ‑treatment and 0.16 µm in case of no treatment. 
Treatment duration and group allocation were not significantly 
associated with the RNFL thickness. Inclusion of further longi-
tudinal data (EDSS, two and three second PASAT) in each 
of our models did not result in any significant association. In 
summary, over a period of one year no significant association 
between IFNβ‑1b treatment and RNFL thinning was identified 
in patients with MS.

Introduction

Recently increasing attention has been focused on investi-
gating the thickness of the retinal nerve fiber layer (RNFL) 
in multiple sclerosis (MS) patients. The RNFL contains the 
proximal portions of the axons that originate from ganglion 
cell neurons and these axons account for >80% of the thickness 
of this layer (1). Thus, quantification of the RNFL by optical 
coherence tomography (OCT) has been proposed to provide an 
indirect appraisal for retinal axonal loss (2‑5). As these axons 
are not myelinated and the visual system is often affected in 
MS, RNFL measurements in MS patients that suffered from 
optic neuritis (ON) may offer an effective approach for the 
study of ON‑related neurodegeneration. Indeed, MS patients 
with a history of ON exhibit reduced RNFL thicknesses 
compared with healthy control eyes (2‑5). It has been reported 
that the majority of patients sustained a thinning of the RNFL 
within a period of only 3‑6 months following acute ON (4). 
A significant thinning of the RNFL has been observed in 
non‑affected contralateral eyes in addition to the eyes of MS 
subjects with no history of ON, suggesting that RNFL damage 
may occur independently of clinically overt ON (2,3,5‑7). 
Accordingly, post‑mortem analyses detected ON lesions in 
94‑99% MS subjects, irrespective of any ON history (8‑10). 
However, RNFL reductions were less evident compared with 
those observed following ON.

It has been demonstrated that following acquired unilat-
eral occipital damage a thinning of the RNFL and optic tract 
occurs, confirming the existence of retrograde trans‑synaptic 
degeneration of neurons in the human visual pathway (11‑13). 
A significant association between visual cortex damage and 
RNFL thinning has been shown in MS patients with no ON 
history, indicating the presence of retrograde trans‑synaptic 
(trans‑geniculate) degeneration in the retina (14‑16). Conversely, 
MS subjects who had previously suffered from ON exhibit 
more intense atrophy in the visual cortex, implicating that 
the damage cascade may also proceed in anterograde direc-
tion (14,15,17,18). Notably, the RNFL thinning in MS patients 
appears to correlate with global brain atrophy in general, which 
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enhances the applicability of using OCT in those subjects, 
as an association between the RNFL and global measures 
of disability has been reported by several authors (3,19‑26). 
Human interferon‑β (IFNβ), which is a first‑line disease 
modifying drug for the therapy of relapsing‑remitting MS 
(RRMS), has been shown to have an impact on some of these 
global measures, including the expanded disability status 
scale (EDSS) (27‑29). However, the proposed neuroprotective 
effect of IFNβ is highly controversial (30,31). IFNβ is specu-
lated to predominantly target the systemic immune response; 
however, whether it modulates axonal degeneration remains 
unknown (30,31). Cross‑sectional and acute ON OCT studies 
have not yet provided evidence for any such role (32,33). Thus, 
the aim of this prospective longitudinal OCT study was to 
determine whether IFNβ treatment is able to impede retinal 
axonal loss.

Materials and methods

Subjects. A total of 24 IFNβ‑1b‑treated and 24 subjects with 
untreated RRMS according to revised McDonald criteria 
(2005) were enrolled (34). The untreated cohort consisted of 
subjects who refused MS disease‑modifying therapy (n=17) or 
did not receive it for >5 years (n=7). The following data were 
obtained from each MS patient at the screening visit: Age, sex, 
co‑morbidities, co‑medication, date of MS symptom onset, 
disease duration, prior episodes of ON, prior MS medication, 
total number of relapses, last relapse, and, for the IFNβ‑1b 
group, start date of IFNβ‑1b therapy. Disease duration was 
defined as the time period between the first recognized 
symptoms of MS and study inclusion. Subjects were aimed 
to broadly match for age, gender and refraction (±2 diopters). 
None of the enrolled MS subjects sustained an acute relapse 
and/or received systemic steroid treatment within 30 days prior 
to study entry. The untreated MS patients had been without 
immunomodulatory treatment for at least one year prior to 
study entry. None of the subjects were previously treated with 
teriflunomide, mitoxantrone or cyclophosphamide. In addi-
tion, none of the subjects suffered from any ophthalmological 
or neurological disorder other than MS. The control group 
consisted of 12 healthy volunteers with no history of ocular 
or neurological disease and with a visual acuity of ≥1.0. The 
study was approved by the Institutional Review Board of the 
Hannover Medical School (Hannover, Germany). All partici-
pants signed an informed consent form detailing the purpose 
of this study, the tests included in the exploratory protocol, and 
the permission to stop participating in the study at any time.

Clinical assessment. The present study was a prospective 
longitudinal study over a period of one year. Subjects were 
evaluated at baseline and at 3, 6 and 12 months. All subjects 
underwent a complete ophthalmic examination that included 
assessment of best‑corrected visual acuity, ocular motility, 
pupillary reflexes, biomicroscopy of the anterior segment 
using a slit lamp, papillary morphology with fundoscopic 
exam, and visual field examination of each eye at baseline 
visit. At each visit, visual acuity tests were performed using 
Landolt rings and RNFL thicknesses were quantified by OCT. 
All examinations were conducted by a team of ophthalmolo-
gists, optometrists and orthoptists.

In addition, the EDSS score and the two/three second 
paced auditory serial addition test (PASAT) were assessed at 
each visit. The EDSS score was ascertained by trained neurol-
ogists, while the PASAT was performed by a trained study 
nurse. At each visit, full‑field VEP were recorded monocularly 
in a dark room after occlusion of the other eye and elicited 
by 1.3 Hz pattern reversal of a 50% contrast black‑and‑white 
checkerboard at a viewing distance of 1 m (Viking Nicolet 
Quest; Natus Medical Incorporated, Soltau, Germany). 
Silver chloride‑plated disk electrodes (GVB‑geliMED, Bad 
Segeberg, Germany) were placed on the scalp at the occipital 
(active electrode) and frontal (reference electrode) areas. The 
latency and amplitude (peak‑to‑peak amplitude of N75‑Pl00) 
of the positive fundamental component (P100) were analyzed.

RNFL imaging. OCT was performed with a time‑domain 
(TD) OCT (Stratus OCT Model 3000; Carl Zeiss Meditec AG, 
Jena, Germany). RNFL images were acquired by taking three 
circular 3.4‑mm scans, centered on the optic disc, the mean 
of which was used to express RNFL thickness (Fast RNFL 
thickness protocol). The ophthalmology team which partici-
pated in this study complied with the majority of the points 
listed in the OSCAR‑IB criteria, such as retinal pathology, 
obvious problems, centration of scans, control of algorithm 
failure, illumination and beam placement. However, a signal 
strength of ≥8 was considered acceptable in this study, whereas 
signal strength of >15 is required to meet the OSCAR‑IB 
criteria (35,36).

Statistical analysis. Analyses were conducted using general-
ized estimating equation (GEE) models with an exchangeable 
working correlation structure to account for correlation 
between the two eyes from a single participant (37,38). As it is 
well known that the GEE estimator of the variance‑covariance 
matrix of the parameter estimates leads to inflated Type I error 
rates, the robust covariance matrix was gauged via an iterative 
jackknife resampling method (39). The free software program-
ming language R version  3.1.2 (https://cran.r‑project.org.) 
with the package geepack was used to perform all GEE 
analyses  (40). For pairwise comparison of the predicted 
marginal means, the R Package doBy was used. One‑way 
analysis of variance, Kruskal‑Wallis test (comparison of three 
independent groups) and the two‑tailed Mann‑Whitney U 
test (comparison of two independent groups) were used for 
additional statistical analysis according to data distribution as 
tested by the Shapiro‑Wilk test. For the latter, analyses were 
performed using GraphPad Prism, version 5.02 (GraphPad 
Software, Inc., La Jolla, CA, USA).

OCT scans were performed by more than one ophthal-
mologist. Repeated RNFL data of healthy controls were used 
to perform Bland‑Altman analysis (data not shown). Prior 
to Bland‑Atman analysis, normal distribution of data were 
confirmed by the Shapiro‑Wilk test and relative and propor-
tional bias were excluded by one‑sample t‑test and linear 
regression, respectively (data not shown). The Bland‑Altman 
method is used to compare two measurement techniques but 
it can also be applied to two measurements obtained with the 
same technique (41). The resulting Bland‑Altman plots showed 
that 95% of the difference scores lie between the limits of 
agreement as requested for this method (data not shown). 
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The limits of agreement revealed test‑retest variability. Thus, 
intraclass correlation coefficients (ICC) with a two‑way 
mixed‑effects model for measures of absolute agreement as 
setting were assessed. The obtained inter‑rater ICC ranged 
between 0.89 and 0.97, indicating the ̔sufficient̓ consistency 
of the measurements. To estimate noise by test‑retest variation, 
single courses of repeated OCT values are displayed in Fig. 1.

Results

Demographics and clinical characteristics. The demographic 
details are summarized in Table I. The study analyzed 96 eyes 
from 48  patients with MS and 24  eyes from 12  healthy 
controls. The majority of the participants were women: 80% 
in among the treated and untreated MS groups and 66.7% in 
the control group. The mean and median age of subjects was 
comparable between the two MS groups. Although the EDSS 

score ranged between 1 and 4 in the untreated and 0 and 6 in 
the IFNβ‑treated MS group, the mean and median EDSS was 
almost identical in both MS groups. Subjects in the untreated 
group had more relapses prior to study entry and significantly 
longer disease duration (Mann‑Whitney U test, P=0.0078, 
U=790.0). The mean time since last relapse until study inclu-
sion did not differ significantly between both MS groups. 
During the study period, six subjects suffered relapses in each 
MS group. Despite IFNβ treatment, relapses occurred slightly 
more frequently in the IFNβ‑treated group (Tables I and II). 
The patient history revealed that 15 of the untreated and 18 of 
the IFNβ‑treated MS patients sustained ON (Table III). During 
the study period, only two subjects suffered from ON and both 
of them belonged to the group of untreated MS patients.

RNFL thickness is decreased only in the eyes of MS subjects with 
prolonged VEP latencies. As further analyses were conducted 

Table I. Demographic characteristics.

						      Age (years)
					‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑   
Group	 n	 Female	 Male	 Mean	 Minimum	 Maximum	 Median

Healthy controls	 12	 9	 3	 41.67±9.82	 26	 61	 38.5
Untreated MS	 24	 20	 4	 46.46±11.09	 29	 69	 47.0
IFNβ‑treated MS	 24	 20	 4	 45.63±10.54	 28	 63	 47.5

MS, multiple sclerosis; IFNβ, interferon‑β.
 

Table II. Clinical characteristics.

Parameter	 Untreated MS	 IFNβ‑treated MS

Duration of IFNβ treatment, years
  Mean	 N/A	 2.6±3.1
  Medium	 N/A	 1
EDSS
  Mean	 2.2±0.8	 2.3±1.1
  Medium	 2	 2
Disease duration, years
  Mean	 13.6±9.8	 8.3±6.0*

  Median	 10	 8
Relapses prior to study, n
  Mean	 5.4±4.8	 4.5±3.6
  Medium	 5	 3
Time from last relapse to study inclusion, years
  Mean	 1.8±2.3	 1.6±2.1
  Medium	 1	 1
Relapses during study, n	 6	 7
Total subjects with MS relapse, n	 6	 6

One‑way analysis of variance was used for statistical analyses, followed by Kruskal‑Willis test, when comparing three independent groups and 
two‑tailed Mann‑Whitney U test, when comparing two independent groups, according to the normality of the data. *P<0.01 vs. the untreated 
MS group. IFNβ, interferon‑β; MS, multiple sclerosis; EDSS, expanded disability status scale.
  



PUL et al:  LONGITUDINAL TIME-DOMAIN OPTIC COHERENCE STUDY IN MS PATIENTS 193

Ta
bl

e 
II

I. 
M

ea
su

re
m

en
ts

 o
f t

he
 v

is
ua

l s
ys

te
m

.

Pa
ra

m
et

er
	

A
ll 

M
S 

su
bj

ec
ts

	
U

nt
re

at
ed

 M
S 

su
bj

ec
ts

	
IF

N
β‑

tre
at

ed
 M

S 
su

bj
ec

ts
	

H
ea

lth
y 

co
nt

ro
ls

O
N

 h
is

to
ry

  S
ub

je
ct

s w
ith

 O
N

 h
is

to
ry

, n
 (%

)	
15

 (3
1.

3)
	

 1
8 

(3
7.

5)
	

N
/A

  L
as

t O
N

 p
rio

r t
o 

st
ud

y,
 y

ea
rs

 (±
SE

)	
7.

3 
(±

7.
3)

	
5.

5 
(±

5.
6)

	
N

/A
  O

N
 d

ur
in

g 
st

ud
y,

 n
	

2	
0	

N
/A

V
is

ua
l a

cu
ity

, (
±S

E)
	

0.
97

 (±
0.

01
)	

0.
96

 (±
0.

02
)	

0.
96

 (±
0.

02
)	

0.
98

 (±
0.

02
)

  W
ith

 O
N

 h
is

to
ry

	
0.

92
 (±

0.
03

)	
0.

94
 (±

0.
03

)	
0.

94
 (±

0.
04

)	
N

/A
  W

ith
ou

t O
N

 h
is

to
ry

	
0.

98
 (±

0.
02

)	
N

/A
  P

ro
lo

ng
ed

 V
EP

 la
te

nc
y	

0.
94

 (±
0.

03
)	

0.
98

 (±
0.

01
)	

0.
92

 (±
0.

06
)	

N
/A

  N
or

m
al

 V
EP

 la
te

nc
y	

0.
99

 (±
0.

01
)	

0.
97

 (±
0.

02
)	

0.
99

 (±
0.

01
)	

N
/A

V
EP

 la
te

nc
y,

 m
se

c 
(±

SE
)

  M
ea

n 
P1

00
 la

te
nc

y	
11

5.
6 

(±
1.

70
)a 	

11
6.

3 
(±

2.
44

)a 	
11

4.
8 

(±
2.

37
)a 	

10
3.

0 
(±

1.
28

)
  W

ith
 O

N
 h

is
to

ry
	

11
9.

7 
(±

2.
29

)a 	
11

8.
5 

(±
3.

37
)a 	

12
0.

6 
(±

3.
06

)a 	
N

/A
  W

ith
ou

t O
N

 h
is

to
ry

	
11

4.
0 

(±
1.

71
)a 	

11
5.

0 
(±

2.
55

)a 	
11

2.
6 

(±
2.

14
)a 	

N
/A

  P
ro

lo
ng

ed
 la

te
nc

y	
12

3.
8 

(±
1.

82
)a 	

12
8.

6 
(±

2.
17

)a 	
12

8.
0 

(±
2.

64
)a 	

N
/A

  N
or

m
al

 la
te

nc
y	

11
1.

1 
(±

1.
14

)a 	
10

9.
4 

(±
1.

38
)b 	

10
8.

4 
(±

1.
36

)b 	
N

/A
V

EP
 a

m
pl

itu
de

, µ
V

 (±
SE

)
  M

ea
n 

am
pl

itu
de

	
10

.9
 (±

0.
61

)	
11

.3
 (±

0.
77

)	
10

.5
 (±

0.
95

)	
13

.5
 (±

1.
50

)
  W

ith
 O

N
 h

is
to

ry
	

10
.4

 (±
0.

91
)	

11
.0

 (±
0.

92
)	

  9
.8

 (±
1.

48
)	

N
/A

  W
ith

ou
t O

N
 h

is
to

ry
	

10
.6

 (±
0.

51
)	

11
.0

 (±
0.

83
)	

 1
0.

2 
(±

0.
58

)c 	
N

/A
  P

ro
lo

ng
ed

 la
te

nc
y	

   
9.

8 
(±

0.
60

)c 	
11

.7
 (±

1.
02

)	
   

8.
1 

(±
0.

60
)b 	

N
/A

  N
or

m
al

 la
te

nc
y	

11
.6

 (±
0.

74
)	

11
.5

 (±
0.

95
)	

11
.6

 (±
1.

11
)	

N
/A

R
N

FL
 th

ic
kn

es
s, 

µm
 (±

SE
d )	

98
.8

/9
6.

6 
(±

1.
49

/1
.4

6)
	

98
.5

/9
6.

2 
(±

2.
54

/2
.4

5)
	

99
.1

/9
7.

0 
(±

1.
56

/1
.5

8)
	

10
0.

4/
10

0.
6 

(±
2.

46
/2

.2
)

  W
ith

 O
N

 h
is

to
ry

	
96

.2
/9

2.
9c  (±

1.
97

/1
.9

5)
	

95
.2

/9
3.

8 
(±

3.
12

/3
.3

8)
	

97
.0

/9
2.

6c  (±
2.

46
/2

.1
6)

	
N

/A
  W

ith
ou

t O
N

 h
is

to
ry

	
10

0.
1/

98
.5

 (±
1.

65
/1

.6
2)

	
10

0.
1/

97
.4

 (±
2.

79
/2

.6
2)

	
10

0.
1/

99
.3

 (±
1.

68
/1

.6
8)

	
N

/A
  P

ro
lo

ng
ed

 la
te

nc
y	

91
.9

b /8
9.

7a  (±
1.

95
/1

.7
1)

	
88

.9
b /8

8.
3 

(±
2.

50
/2

.4
5)

	
95

.1
/9

1.
2b  (±

2.
67

/2
.2

7)
	

N
/A

  N
or

m
al

 la
te

nc
y	

10
2.

3/
10

0.
3 

(±
1.

52
/1

.6
9)

	
10

3.
3/

10
0.

1 
(±

2.
46

/2
.7

5)
	

10
1.

4/
99

.9
 (±

1.
58

/1
.6

9)
	

N
/A

Pa
irw

is
e 

co
m

pa
ris

on
s o

f p
re

di
ct

ed
 m

ar
gi

na
l m

ea
ns

 w
er

e 
pe

rf
or

m
ed

 a
cc

or
di

ng
 to

 th
e 

co
nc

ep
t o

f l
ea

st
‑s

qu
ar

es
 m

ea
ns

. a P<
0.

00
1,

 b P<
0.

01
 a

nd
 c P<

0.
05

 v
s. 

th
e 

he
al

th
y 

co
nt

ro
ls

; d ba
se

lin
e/

12
 m

on
th

 fo
llo

w
‑u

p.
 

M
S,

 m
ul

tip
le

 sc
le

ro
si

s;
 IF

N
β,

 in
te

rf
er

on
‑β

; O
N

, o
pt

ic
 n

eu
rit

is
; S

E,
 st

an
da

rd
 e

rr
or

; V
EP

, v
is

ua
l e

vo
ke

d 
po

te
nt

ia
l; 

R
N

FL
, r

et
in

al
 n

er
ve

 fi
be

r l
ay

er
.

 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  12:  190-200,  2016194

on paired data, estimated marginal means were assessed using 
the GEE approach and for pairwise comparisons (Table III). 
In addition to IFNβ treatment or non‑treatment, untreated MS 
subjects were additionally grouped to those with/without ON 
and those with/without prolonged VEP latency. The subgroup 
prolonged VEP latency was selected as the ON history of each 
MS subject partially coincided with prolonged VEP latencies. 
In total, 18 eyes of the untreated (6 with prior ON history) and 
14 eyes of the IFNβ‑treated MS subjects (10 with prior ON 
history) exhibited prolonged VEP latencies at baseline.

Considering estimated marginal means, the visual acuity 
did not significantly differ between all groups (Table III). As 
expected, MS subjects exhibited longer P100 latencies of the 
VEP compared to healthy controls (Table III). However, in all 
subgroups there was no statistical difference in VEP latency 

between IFNβ‑treated and untreated MS subjects (Table III). 
Next, the amplitudes of the P100 wave were compared between 
the groups. The VEP amplitudes tended to be lower in the eyes 
of IFNβ‑treated MS subjects, and were significantly lower in 
cases with ON history or prolonged VEP latency compared to 
VEP amplitudes obtained from healthy control eyes (Table III). 
A statistical difference in VEP amplitudes was detected 
between MS subjects with prolonged and normal VEP latency 
(P<0.001). However, there was no statistically significant differ-
ence in VEP amplitudes between IFNβ‑treated and untreated 
MS subjects in all subgroups (Table III). 

Baseline and 12‑month follow‑up data for RNFL thickness 
are shown in Table III. Without classification to any subgroup, 
there was no difference in the estimated marginal means of the 
RNFL thicknesses between healthy control eyes and the eyes 

Table IV. Generalized analyses of different covariates and their association with the RNFL thickness in the healthy controls and 
entire MS cohort.

			     95% Wald CI
			‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  
Parameter	    B	 SE	   Lower	    Upper	   Wald χ2	 P‑value

Healthy control subjects (n=24)a

  Intercept value	 111.21	 4.03	   14.14	   29.95	 230.70	 <0.001
  Time per month	     0.02	 0.05	    ‑0.08	     0.11	     0.10	   0.754
  Age per year	    ‑0.27	 0.16	    ‑0.58	     0.05	     2.81	   0.090
All MS subjects (n=96)b

  Intercept value	   94.93	 6.84	   81.53	 108.34	 192.61	 <0.001
  Time per month	    ‑0.19	 0.04	    ‑0.28	    ‑0.11	   21.21	 <0.001
  Age per year	     0.18	 0.17	    ‑0.15	     0.52	     1.13	   0.287
  Disease duration per year	    ‑0.61	 0.17	   ‑0.95	    ‑0.27	   14.25	 <0.001
  Total relapses per relapse	     0.48	 0.28	   ‑0.07	     1.03	     2.89	   0.089
VEP latency and amplitude of all subjects (n=120)c

  Intercept value	  118.95	 8.13	 103.01	 134.88	 214.00	 <0.001
  VEP latency per msec	    ‑0.21	 0.07	    ‑0.34	    ‑0.07	     9.22	   0.002
  VEP amplitude per µV	     0.29	 0.10	    ‑0.09	     0.49	     7.73	   0.005
ON history of MS subjects (n=96)d

  Intercept value	 100.63	 2.52	   95.69	 105.58	 1,590.71	 <0.001
  Group with no ON history	     2.98	 1.49	     0.06	     5.90	     4.01	   0.045
  Time per month (no ON history)	    ‑0.18	 0.05	    ‑0.28	    ‑0.08	   12.76	 <0.001
  Time per month (ON history)	    ‑0.23	 0.07	    ‑0.37	    ‑0.08	     9.59	   0.002
  ON vs. ON history	     N/A	 1.49	     0.05	     5.88	     3.96	   0.046
Prolonged VEP latency of MS subjects (n=96)e

  Intercept value	   96.16	 3.02	   90.25	 102.08	 1,014.82	 <0.001
  Normal group	     7.99	 2.00	     4.07	   11.91	   15.94	 <0.001
  Time per month (normal)	    ‑0.20	 0.05	    ‑0.31	    ‑0.10	   15.00	 <0.001
  Time per month (prolonged)	    ‑0.18	 0.06	    ‑0.30	    ‑0.06	     8.67	   0.003
  Prolonged vs. normal	     N/A	 1.99	     3.96	   11.75	   15.65	 <0.001

Pairwise comparisons of predicted marginal means were performed according to the concept of least‑squares means. Significant P‑values are 
indicated in bold. aDependent variables: Retinal nerve fiber layer (RNFL) thickness; model, (intercept); time; age; bDependent variables: RNFL 
thickness; model: (intercept); time; age; disease duration; total number of relapses; cDependent variables: RNFL thickness; model: (intercept); 
VEP latency; VEP amplitude; dDependent variables: RNFL thickness; model: (intercept); group; time(group); eDependent variables: RNFL 
thickness; model: (intercept); group; time(group). CI, confidence interval; B, regression coefficient; SE, standard error; MS, multiple sclerosis; 
VEP, visual evoked potential; ON, optic neuritis.
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of MS subjects at baseline (P=0.848). Similarly, no differences 
in RNFL thickness were observed between healthy control 
eyes and the eyes of MS subjects with or without ON history 
(GEE, P=0.375 and P=0.992, respectively). Notably, eyes of 
MS subjects with prolonged VEP latencies, in particular those 
of untreated MS subjects, exhibited significantly lower RNFL 
thicknesses compared with healthy subjects (GEE, P=0.007 and 
P=0.001, respectively). At the 12‑month follow‑up OCT exami-
nation, a significantly lower RNFL thickness was detected in 
the eyes of MS subjects with ON history compared with control 
eyes. Again, there was no statistical difference in the RNFL 
thicknesses between IFNβ‑treated and untreated MS subjects.

IFNβ‑treatment does not have an impact on RNFL thinning. 
GEE model‑based approaches were used for investigation of 

covariates. The design of each model and results are summa-
rized in Tables IV and V. The covariates age and total number 
of (non‑visual) relapses did not contribute significantly to our 
GEE models (Table IV). MS disease duration was strongly 
associated with the RNFL thickness and each year was asso-
ciated with an annual reduction in the RNFL thickness by 
0.61 µm (Table IV). The regression coefficient B of the covariate 
time predicted a monthly decrease in the RNFL thickness by 
0.19 µm in eyes of MS subjects, while this covariate was not 
predictive in healthy control eyes (Table IV). A history of ON 
was associated with lower RNFL thicknesses, while having 
no ON history was associated with higher RNFL thicknesses 
(Table IV). Time was associated with a monthly reduction in 
the RNFL thickness by 0.23 µm in cases with ON history and 
0.18 µm in MS subjects without ON history (Table IV).

Figure 1. Single courses of repeated RNFL values in (A) untreated MS subjects, (B) interferon‑β‑treated MS subjects and (C) healthy controls. To ensure a 
better overview, RNFL values are displayed according to the right or left eye, respectively. Colors are used to delineate lines that would otherwise be indiscern-
ible. RNFL, retinal nerve fiber layer; MS, multiple sclerosis.

  A

  B

  C
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Prolonged VEP latency was associated with a reduction in 
the RNFL thickness by 7.99 µm. The covariate time, however, 
did not show an appreciable difference in the regression 
coefficients between subjects with and without prolonged 
VEP latency (Table IV). Comparison of the marginal means 
confirmed significantly higher RNLF thickness values in MS 
subjects without ON history (98.73±1.50 µm) or normal VEP 
latency (100.53±1.32 µm) compared with those with ON history 

(95.75±1.71 µm) or prolonged P100 latency (92.55±1.97 µm) of 
the VEP, respectively (Table IV).

In a second set of GEE analyses, we analyzed the asso-
ciation between treatment and the RNFL thickness when 
controlling for group (IFNβ treatment or no treatment) and 
treatment duration. Time, disease duration, VEP latency and 
amplitude were also entered in each model and the results are 
shown in Table V. Considering all MS subjects, no apparent 

Table V. Generalized analyses of treatment covariates and their association with the RNFL thickness; allocation to treatment or 
no‑treatment.

			   95% Wald CI
			‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  
Parameter	    B	   SE	   Lower	  Upper	 Wald χ2	 P‑value

All MS subjects (n=96)
  Intercept value	   99.51	   2.78	  94.05	 104.96	 1,278.52	 <0.001
  Group with no treatment	     5.39	   4.09	   ‑2.63	   13.41	   1.74	   0.188
  Time per month (no treatment)	    ‑0.16	   0.06	   ‑0.32	    ‑0.09	 11.78	   0.001
  Time per month (treatment)	    ‑0.17	   0.06	   ‑0.30	   ‑0.07	 10.51	   0.001
  Treatment duration	     0.77	   0.40	   ‑0.08	     1.55	   3.77	   0.052
  No treatment vs. IFNβ treatment	    N/A	   4.10	   ‑2.75	   13.31	   1.66	   0.197
MS subjects with ON history (n=33)
  Intercept value	 123.18	 14.04	  95.66	 150.69	 76.99	 <0.001
  Group with no treatment	     2.04	   5.43	   ‑8.60	   12.67	   0.14	   0.707
  Time per month (no treatment)	    ‑0.02	   0.11	   ‑0.24	     0.20	   0.04	   0.852
  Time per month (treatment)	    ‑0.42	   0.12	   ‑0.66	    ‑0.18	 11.82	   0.001
  Treatment duration	     0.78	   0.58	   ‑0.35	     1.92	   1.84	   0.175
  No treatment vs. IFNβ treatment	    N/A	   5.48	   ‑6.65	   14.83	   0.56	   0.456
MS subjects without ON history (n=63)
  Intercept	   98.90	   6.86	  85.45	 112.35	 207.68	 <0.001
  Group with no treatment	     8.02	   4.13	   ‑0.87	   16.12	   3.76	   0.053
  Time per month (no treatment)	      ‑0.023	   0.11	   ‑0.45	    ‑0.01	   4.26	   0.039
  Time per month (treatment)	    ‑0.30	   0.08	   ‑0.20	     0.14	     0.013	   0.723
  Treatment duration	     0.95	   0.44	    0.09	     1.81	   4.64	   0.031
  No treatment vs. IFNβ treatment	    N/A	   4.08	   ‑0.92	   15.09	   3.00	   0.083
MS subjects with prolonged VEP latencies (n=32)
  Intercept value	 114.32	 15.51	  83.92	 144.72	 54.33	 <0.001
  Group with no treatment	    ‑4.35	   6.37	‑ 16.83	     8.14	   0.47	   0.495
  Time per month (no treatment)	    ‑0.01	   0.11	   ‑0.20	     0.22	   0.02	   0.903
  Time per month (treatment)	    ‑0.42	   0.12	   ‑0.66	    ‑0.18	 11.38	   0.001
  Treatment duration	     0.66	   0.60	   ‑0.52	     1.84	   1.20	   0.273
  No treatment vs. IFNβ treatment	    N/A	   6.06	‑ 14.28	     9.48	   0.16	   0.692
MS subjects with normal VEP latencies (n=64)
  Intercept value	 103.27	   2.74	  97.91	 108.64	 1,425.29	 <0.001
  Group with no treatment	   10.15	   3.58	    3.13	   17.17	   8.03	   0.005
  Time per month (no treatment)	    ‑0.30	   0.08	   ‑0.45	    ‑0.15	 14.71	   0.000
  Time per month (treatment)	    ‑0.12	   0.06	   ‑0.24	     0.01	   3.29	   0.070
  Treatment duration	     0.97	   0.52	   ‑0.06	     2.00	   3.43	   0.064
  No treatment vs. IFNβ treatment	    N/A	   3.29	    1.89	   14.79	   6.42	   0.011

Pairwise comparisons of predicted marginal means were performed according to the concept of least‑squares means. Significant P‑values are 
indicated in bold. CI, confidence interval; B, regression coefficient; SE, standard error; IFNβ, interferon‑β; MS, multiple sclerosis; ON, optic 
neuritis; RNFL, retinal nerve fiber layer; VEP, visual evoked potential.
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difference was identified in the predicted monthly decrease of 
the RNFL thickness. The decrease was estimated to be 0.17 µm 
in case of IFNβ‑treatment and 0.16 µm in case of no treatment. 
Treatment duration and group allocation were not significantly 
associated with the RNFL thickness, underlining that treat-
ment in general was not predictive for the RNFL thickness 
(Table V). In subgroup analyses, there were discrepant results. 
Accordingly, significant negative associations were found for 
the covariate time in MS subjects without ON and normal 
P100 latency of the VEP in case of no treatment, while in case 
of treatment such associations were found for MS subjects 
with ON and prolonged P100 latency of the VEP (Table V). 
These findings may allude to heterogeneity among our MS 
cohort. Notably, treatment duration showed a significant posi-
tive association with the RNFL thickness, but only in MS 
subjects without ON history. Furthermore, in this subgroup 
group allocation did not reveal an association between RNFL 
thickness and treatment (Table V). In the subgroup of MS 
subjects with normal VEP latency, comparison of the marginal 
means confirmed significantly higher RNLF thickness values 
in untreated MS subjects (105.97±2.33 µm) compared with 
IFNβ‑treated subjects (97.63±1.72 µm) (Table V).

Inclusion of further longitudinal data (EDSS, two and 
three second PASAT) in each of the above mentioned GEE 
models did not result in any significant associations (data not 
shown). Notably, since analysis of quadrant data using Stratus 
OCT is highly prone to artefacts, particularly in longitudinal 
measurements, and probably will to a certain extent reflect eye 
position changes in subjects rather than actual measurement 
differences, quadrant data were not analyzed.

Discussion

RNFL thickness is considered to be a relevant parameter to 
infer axonal loss in patients with MS and/or ON. Although 
stipulated in numerous studies, the number of longitudinal 
studies and particularly those which investigated possible 
drug effects on the RNFL in MS is limited (6,7,21). The study 
conducted by Talman et al (42), which included 593 eyes, was 
among the first longitudinal OCT studies in MS patients. Using 
a TD OCT, they observed a consistent decline in RNFL thick-
ness in the eyes of MS patients, even in those without history 
of ON. Although in that study 87% of subjects were receiving 
disease modifying therapies, treatments were not speci-
fied (42). In another longitudinal study (43), which included 
a total of 155  eyes, TD OCT was performed at two time 
points, with an interval of one year. Treatment groups were 
well classified (IFNβ‑1a, IFNβ‑1b, and glatiramer acetate); 
however, the number of study participants per group was not 
stated. After a follow‑up of one year, no differences in RNFL 
loss were identified in treated compared with the untreated 
MS subjects. With the exception of these two studies, there 
are no other longitudinal OCT studies addressing the ques-
tion whether classical first‑line treatment of MS (IFNβ and 
glatiramer acetate) may impede RNFL thinning.

In the present study, GEE models were used to identify 
significant associations between IFNβ treatment and the peri-
papillary RNFL thicknesses obtained from four defined visits 
over a period of one year. According to the present model‑based 
approach, the RNFL loss in the total MS cohort was estimated 

to be 0.16 µm per month of disease, which is consistent with the 
RNFL loss observed in a previous study by Talman et al (42). 
Garcia‑Martin et al (43), the authors of the aforementioned 
second longitudinal study, have reported a reduction in RNFL 
thickness of 3.48 µm per year. However, this discrepancy may 
be ascribable to their different statistical approach, as the study 
by Talman et al (42) and the present study employed a GEE 
method adjusted for within‑patient and inter‑eye correlations. 
In other longitudinal studies following different objectives, 
RNFL thinning rates ranging between 0.3 and 4.6 µm per year 
in eyes of MS subjects have been reported (14,44‑47). Besides 
differences in statistical approaches, variations in the rate 
of RNFL thinning may be explained by the composition of 
cohorts, disease course and disease duration. The distinction 
between benign (EDSS, ≤3; disease duration, ≥15 years) and 
classical MS appears to play no role in the observed differ-
ences  (44). In the present study, the monthly reduction in 
untreated MS subjects was predicted to be 0.16 and 0.17 µm 
in IFNβ‑treated MS subjects. Treatment duration and group 
allocation as independent and time‑invariant covariates did 
not reveal a significant association with RNFL thickness. 
Subgroup analyses, however, provided disparate results, which 
was construed as heterogeneity among the present MS cohort. 
However, none of these analyses indicated that IFNβ treatment 
may have an impact on the rate of RNFL loss.

According to Henderson  et  al  (47), RNFL thinning is 
most probably not a linear process. They speculate that there 
is more rapid RNFL loss in earlier RRMS when subclinical 
inflammatory demyelination is common and may involve 
the optic nerve, suggesting that the dynamics of RNFL 
thinning may alter during the MS course (47). The lack of 
knowledge regarding the time course of RNFL loss generally 
complicates the interpretation of longitudinal OCT studies 
irrespective of whether time‑domain or newer generation of 
this device is used, such as spectral domain OCT. It remains 
unclear whether this may have played a role in the longitu-
dinal OCT study of Serbecic et al (high resolution spectral 
domain OCT, 27 subjects with RRMS and 10 subjects with 
secondary progressive MS; observation period of ~two years) 
and Henderson et  al (TD OCT, 18  subjects with primary 
progressive and 16 with secondary progressive MS, observa-
tion period of ~18 months) (47,48). Measuring the RNFL loss 
following acute ON would enable the study of a well‑defined 
time frame of pathology. Accordingly, Suehs et al examined 
changes in RNFL thickness in subjects with clinically isolated 
syndrome manifested as acute ON. However, at this rather 
early point of disease, they did not detect any effect of IFNβ 
on RNFL thinning (32).

In a number of previous studies, as summarized in a 
meta‑analysis by Petzold et al (49), a clear RNFL reduction 
compared to healthy controls has been reported. The present 
sample size is most probably too small to detect such a differ-
ence and, in addition, the majority of these previous studies 
enrolled MS subjects with visual impairments, which may 
explain lower RNFL thicknesses in their cohorts. The vast 
majority of MS subjects that were enrolled in the present study 
had a stable visual acuity of 1.0, as assessed using Landolt 
ring tests. This may explain higher RNFL thicknesses and 
the lack of association between visual acuity and the RNFL 
thickness in the present MS cohort. In general, visual acuity 
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testing appears to be a relatively insensitive measure of optic 
nerve dysfunction in MS. Low‑contrast visual acuity, visual 
field testing, color vision, and stereopsis have been shown 
to more effectively capture visual impairment among MS 
subjects (3,4,50,51). In the present study, prolongation of the 
latency remained as a functional surrogate marker, which 
elicited visual pathway dysfunction. Furthermore, the eyes of 
MS subjects with prolonged latencies exhibited lower RNFL 
thicknesses compared with healthy control eyes and were 
associated with a strong RNFL reduction of 7.99 µm, indi-
cating that demyelination is involved in promoting axonal loss. 
In addition, both VEP parameters (i.e., amplitude and P100 
latency) revealed a significant association with the RNFL 
thickness, corroborating the results of previous studies (2,52).

As expected, MS subjects with ON history exhibited 
the highest rate in RNFL thinning, however, the predicted 
reduction of 0.23 µm per month was slightly higher than in 
eyes without ON history. Such a slight difference between 
eyes with and without ON has been previously reported by 
Talman et al  (42). In addition, Talman et al observed that 
healthy control eyes also experience RNFL thinning, which 
was estimated to be 0.49 µm over a 3‑year period (28). The 
shorter duration of the present study, the relatively small 
cohort size and the fact that the structural changes in RNFL 
thickness may have been below the detection limit of the TD 
OCT, may have played a role in not detecting RNFL thinning 
in the control cohort.

Toledo et al (20) observed a marked correlation between 
RNFL thickness and a visually dependent cognitive test 
(symbol digit modality test), indicating that RNFL loss 
may reflect similar pathological changes taking place in the 
brain. Among other cognitive tests, Toledo et al identified a 
significant correlation between the average RNFL thickness 
and the three second PASAT. However, the authors did not 
focus on this result as they did not detect a correlation with 
the thickness in the temporal quadrant of the RNFL. In the 
present study, two and three second PASAT was selected as 
a non‑visual test, and no association was detected with the 
RNFL thickness. Notably, visual dysfunction has been shown 
to potentially impair test performance in visually dependent 
cognitive tests, suggesting that those tests are more likely 
to show correlation with RNFL parameters than non‑visual 
tests (53,54). It seems conceivable that this association may 
also hold true in the other direction, i.e. decline of visual 
test performance by cognitive impairment (55). The EDSS 
inadequately captures dysfunction within the visual system, 
which may explain conflicting results of a previous study (49). 
No association between the EDSS and RNFL thickness was 
detected in the present study.

Little is known about the effects of IFNβ on axonal 
preservation. Increased neuronal survival in  vitro and 
increased nerve growth factor concentrations in glial and 
brain cell cultures that were exposed to IFNβ have been 
reported (56‑58). Recently, IFNβ has been shown to regulate 
genes involved in neuronal preservation, such as the nuclear 
factor erythroid 2‑related factor 2, and genes involved in 
energy metabolism, such as the inhibition of IκB kinase 
(IKK) and IKK‑related kinases (59). A previous clinical trial 
revealed an inconsistent impact of IFNβ on general brain 
atrophy  (60). A reanalysis of the BEYOND study, which 

was a large, phase  III, clinical trial comparing IFNβ‑1b 
treatment in two different doses (250 and 500 µg) and glat-
iramer acetate, showed that IFNβ‑1b therapy was associated 
with a reduction in magnetic resonance imaging‑detected 
permanent black hole formation and evolution, suggesting 
a possible neuroprotective effect  (61). As black holes are 
multiple sclerosis plaques detected in the chronic stage 
during axonal destruction, they are indicative of neurodegen-
eration in MS (62). With respect to the RNFL, the present 
data do not indicate that IFNβ is able to deter neurodegenera-
tion, although a neuroprotective effect by IFNβ therapy may 
be conceivable by preventing optical relapses. MS subjects 
without ON appear to be an ideal cohort for investigating 
the neuroprotective properties of IFNβ on RNFL. However, 
it remains unclear whether axonal loss in eyes without ON 
history is a result of several episodes of subclinical ON or 
may be attributed to an unknown mechanism of neurodegen-
eration. Reliable criteria to detect subclinical ON have not 
yet been established.

In conclusion, over a period of one year no significant 
association between IFNβ‑1b treatment and RNFL thinning 
was observed in MS subjects. The inherent limitation of this 
study is the use of TD OCT, which has higher test‑retest 
variability compared with more recent spectral domain tech-
nology. Crucially, measurement values from these different 
techniques are not interchangeable (63). Longitudinal studies 
that include a longer period are required not only to examine 
treatment effects but also the dynamics of RNFL thinning.
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