

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery of cyclic sulfonamide derivatives as potent inhibitors of SARS-CoV-2

Young Sup Shin^a, Jun Young Lee^a, Soojin Noh^a, Yoonna Kwak^a, Sangeun Jeon^b, Sunoh Kwon^c, Young-hee Jin^d, Min Seong Jang^e, Seungtaek Kim^b, Jong Hwan Song^a, Hyoung Rae Kim^a, Chul Min Park^{a,}

^a Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea

^c Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea

^d KM Application Center, Korea Institute of Oriental Medicine, Dong-gu, Daegu 41062, South Korea

e Department of Non-Clinical Studies, Korea Institute of Toxicology, Yuseong-gu, Daejeon 34114, South Korea

ARTICLE INFO

Keywords: SARS-CoV-2 Cvclic sulfonamide Coronavirus Inhibitor Structure activity relationship

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) continues to spread worldwide, with 25 million confirmed cases and 800 thousand deaths. Effective treatments to target SARS-CoV-2 are urgently needed. In the present study, we have identified a class of cyclic sulfonamide derivatives as novel SARS-CoV-2 inhibitors. Compound 13c of the synthesized compounds exhibited robust inhibitory activity (IC₅₀ = 0.88 μ M) against SARS-CoV-2 without cytotoxicity (CC $_{50}$ > 25 μ M), with a selectivity index (SI) of 30.7. In addition, compound 13c exhibited high oral bioavailability (77%) and metabolic stability with good safety profiles in hERG and cytotoxicity studies. The present study identified that cyclic sulfonamide derivatives are a promising new template for the development of anti-SARS-CoV-2 agents.

In December 2019, the novel coronavirus was first reported in Wuhan Province, China.¹ The infection has since spread worldwide, with 25 million confirmed cases and 800 thousand deaths as of 31 August 2020.² The new virus, derived from zoonotic transmission, was named by the International Committee on Taxonomy of Viruses (ICTV) as Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2).³ It is a positive-sense single-stranded RNA virus (+ssRNA) that is contagious in humans and other mammals.^{3,4} SARS-CoV-2 shares 82% of its genome with SARS-CoV.⁵ Although many studies are ongoing, no effective vaccine or treatment for SARS-CoV-2 infection has yet been developed.⁶ The U.S. Food and Drug Administration (FDA) approved emergency use of remdesivir, a nucleotide analogue prodrug, in patients hospitalized with severe disease.⁷ However, this intravenous antiviral drug did not improve overall survival rates, but it did decrease recovery time in surviving patients.⁶ More effective approaches to treatment are urgently needed.

We attempted to find biologically active compounds in the library⁸ of the Korea Chemical Bank (KCB) using the Institut Pasteur Korea (IPK) high content screening (HCS) platform. Cyclic sulfonamide compound 1

(Fig. 1) was identified as a hit, and exhibited anti-SARS-CoV-2 activity (IC₅₀ = 15.3 μ M). Cyclic sulfonamide derivatives are known to have various pharmacological activities such as analgesic⁹, anti-inflammatory¹⁰, herbicidal¹¹, and antidiabetic¹² effects. Here, the present study reported the synthesis and biological effects of cyclic sulfonamide derivatives.

A series of cyclic sulfonamide derivatives were synthesized as shown in Scheme 1. Saccharin was treated with α -bromo ketone and triethylamine to yield the alkylated product 2. A Gabriel-Colman rearrangement of 2 with sodium ethoxide afforded intermediate 3, which was reacted with α -chloro amide and α -bromo ketone (or benzyl bromide) under basic conditions using sodium hydride to yield 4 and 5, respectively. To synthesize a one-carbon homologation compound, 3 was treated with ClCH₂CH₂CONH-p-CF₃-Ph and sodium hydride. However, elimination of the alkyl chloride substrate yielded an undesired product, $CH = CHCONH-p-CF_3-Ph$. Alternatively, we designed to synthesize α,β -unsaturated amide **8**. Alkenoic acid ester **6** was prepared by reaction of compound 3 and ethyl propiolate with DABCO as a catalyst. Hydrolysis of 6 with lithium hydroxide afforded carboxylic acid 7. Amide

https://doi.org/10.1016/j.bmcl.2020.127667

Received 7 September 2020; Received in revised form 29 October 2020; Accepted 30 October 2020 Available online 4 November 2020

0960-894X/© 2020 Elsevier Ltd. All rights reserved.

^b Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, South Korea

^{*} Corresponding author.

Fig. 1. Anti-SARS-CoV-2 compound 1 identified from the KCB library screen.

coupling of **7** with 3-(trifluoromethoxy)aniline, EDCI, and DMAP yielded amide **8**. To synthesize 7-fluorinated cyclic sulfonamide (Scheme 2), sulfonyl chloride **9** was used as a starting material. Amination of **9** with Bioorganic & Medicinal Chemistry Letters 31 (2021) 127667

aqueous ammonium hydroxide yielded sulfonamide **10**. Oxidation of **10** with potassium permanganate afforded compound **11**. Cyclization of **11** with sulfuric acid yielded fluorinated saccharin **12**. Compound **13** was prepared as shown in Scheme **2**. **13c** was treated with amine groups to yield *N*-substituted product **14**.

Biological activities of the synthesized cyclic sulfonamide derivatives were evaluated in Vero cells to test both anti-SARS-CoV-2 activity and cytotoxicity by cellular phenotypic screening method¹³ as shown in Tables 1 and 2. Chloroquine and remdesivir were used as reference compounds.

We began structure activity relationship (SAR) studies of **1** with varying substituents of the phenyl group at the 2 position, having fixed with a 4-fluoro-substituted benzoyl group at the 3 position (Table 1). Unsubstituent (**4a**) and 2-chloro (**4b**) compounds showed no inhibitory effect. 3-Trifluoromethoxy (**4c**) and 4-trifluoromethyl (**4d**) at the 2 position improved anti-SARS-CoV-2 activities (IC₅₀ = 8.90 and 5.30 μ M, respectively). **4c** and **4d** exhibited better activity than compound **1** and similar activity to remdesivir and chloroquine (IC₅₀ = 7.01 and 8.00 μ M, respectively).

Further optimizations of the 2 position were conducted with an unsubstituted benzoyl group (**4e**) at the 3-position, as **4e** and **4c** had similar anti-SARS-CoV-2 effects ($IC_{50} = 11.5$ and 8.9 μ M, respectively).

Scheme 1. Synthesis of cyclic sulfonamide derivatives. Reagents and conditions: (a) BrCH₂COX (X = phenyl groups, *i*-propyl), Et₃N, DMF, rt, 9 h (b) 21% NaOEt, EtOH, 60 °C, 0.5 h (c) ClCH₂CONHY (Y = phenyl, alkyl groups), NaH, DMF, rt, 3 h (d) BrCH₂COPh-3-Cl-4-F or BrCH₂Ph, NaH, DMF, rt, 3 h (e) ethyl propiolate, DABCO, DCM, 60 °C, 3.5 h (f) LiOH, THF/MeOH/H₂O, rt, 5 h (g) 3-(trifluoromethoxy)aniline, EDCI, DMAP, DCM, rt, 9 h.

Scheme 2. Synthesis of cyclic 7-substituted sulfonamide derivatives. Reagents and conditions: (a) aq. NH₄OH, 100 °C, 1 h (b) KMnO₄, 5% aq. NaOH, 120 °C, 5 h (c) sulfuric acid, rt, 1.5 h (d) BrCH₂COPh-3-Cl-4-F, Et₃N, DMF, rt, 9 h (e) 21% NaOEt, EtOH, 60 °C, 0.5 h (f) ClCH₂CONHPhX (X = 3-Cl, 3-OCF₃, 4-CF₃), NaH, DMF, rt, 3 h (g) methylamine or 1-methylpiperazine, K₂CO₃, DMSO, 80 °C, 9 h.

Aliphatic amide derivatives (**4f** and **4 g**) were detrimental for anti-SARS-CoV-2 activities. Benzyl (**5a**) and phenylacetyl groups (**5b** and **5c**) at the 2 position had no anti-SARS-CoV-2 activities.

Subsequently, substituents at the 3 position (4 h-4o) were optimized in the compound containing 3-CF₃O-phenyl acetamide (4c) at the 2 position. 3-Fluoro (4 h) and 3-chloro (4j) showed no significant difference in antiviral activity (IC₅₀ = 10.10 and 11.90μ M, respectively). The activity of an electron donating group, 4-methoxy compound 4n, also did not improve anti-SARS-CoV-2 activity ($IC_{50} = 11.60 \mu M$). Compound 40, substituted with an isopropyl, alkyl group instead of phenyl, had similar activity (IC₅₀ = 10.80 μ M). 3-Cyano (4i) and 4-cyano (4m) substituents decreased activity (IC₅₀ = 14.30 μ M), compared with 4c. 3-Chloro-4-fluoro (4k) and 4-chloro (4l) exhibited marginally improved antiviral activities (IC₅₀ = 9.20 and 8.50, respectively). Next, substituent effects at the 3 position with 4-CF₃-aryl at the 2 position were investigated (4p-4w). Compounds with 4-CF₃ at the 2 position were generally more active than compounds with 3-OCF₃ at the 2 position. 3-Fluoro (4p), 3-cyano (4q), 4-cyano (4u), 4-methoxy (4v), and isopropyl (4w) compounds, maintaining 4-CF3 at the 2 position, also displayed

moderate antiviral activities (IC₅₀ = 7.00–10.70 μ M). 3-Chloro (4r), 3-chloro-4-fluoro (4s), and 4-chloro (4t) had good antiviral activities (IC₅₀ = 4.10, 2.50, and 4.00 μ M, respectively). Compound 4s was identified as a potent inhibitor of SARS-CoV-2.

We conducted further modifications to increase activity (Table 2). Carboxylic acid 7 exhibited no antiviral effect. Substitution of α , β -unsaturated amide 8 for acetamide slightly decreased antiviral activity (IC₅₀ = 6.60 µM). Interestingly, 7-fluorinated cyclic sulfonamide (13a-c) improved antiviral activity (0.88–3.10 µM). Compound 13c showed the most potent inhibitory activity against SARS-CoV-2 (IC₅₀ = 0.88 µM) without cytotoxicity, having a selectivity index of 30.7. The 7-*N*-substituted products 14a and 14b had decreased antiviral activity (IC₅₀ = 13.80 and 14.00 µM, respectively), compared with the 7-fluorinated compounds (13a-c).

Compound **13c**, found to be a potential anti-SARS-CoV-2 agent, was evaluated for its metabolic stability, human ether a-go-go (hERG) binding, cytotoxicity, and *in vivo* PK profile (Table 3). **13c** exhibited good microsomal stability in human and dog, low binding with hERG, and no cytotoxicity toward Vero, HFL-1, L929, NIH 3T3, and CHO-K1

Table 1

Anti-SARS-CoV-2 activity and cytotoxicity of cyclic sulfonamide derivatives.

4

5

Entry	Cpd	\mathbb{R}^1	\mathbb{R}^2	R ³	IC ^a ₅₀ (μM)	CC ^b ₅₀ (µM)	SI
1	1	4-F-Ph	3-F-Ph	-	15.3	>25	1.6
2	4a	4-F-Ph	Ph	-	>25	>25	1.0
3	4b	4-F-Ph	2-Cl-Ph	-	>25	>25	1.0
4	4c	4-F-Ph	3-CF ₃ O-Ph	-	8.90	>25	2.7
5	4d	4-F-Ph	4-CF ₃ -Ph	-	5.30	>25	4.7
6	4e	Ph	3-CF ₃ O-Ph	_	11.50	>25	2.1
7	4f	Ph	ethyl	-	>25	>25	1.0
8	4g	Ph	cyclohexyl	-	>25	>25	1.0
9	4h	3-F-Ph	3-CF ₃ O-Ph	-	10.10	>25	2.3
10	4i	3-CN-Ph	3-CF ₃ O-Ph	_	14.30	>25	1.6
11	4j	3-Cl-Ph	3-CF ₃ O-Ph	_	11.90	>25	2.1
12	4k	3-Cl-4-F-Ph	3-CF ₃ O-Ph	_	9.20	>25	2.8
13	41	4-Cl-Ph	3-CF ₃ O-Ph	_	8.50	>25	2.9
14	4m	4-CN-Ph	3-CF ₃ O-Ph	-	14.30	>25	1.6
15	4n	4-OMe-Ph	3-CF ₃ O-Ph	-	11.60	>25	2.0
16	4o	i-propyl	3-CF ₃ O-Ph	-	10.80	>25	1.9
17	4p	3-F-Ph	4-CF ₃ -Ph	-	7.00	>25	3.2
18	4q	3-CN-Ph	4-CF ₃ -Ph	_	10.70	>25	1.5
19	4r	3-Cl-Ph	4-CF ₃ -Ph	_	4.10	>25	5.8
20	4s	3-Cl-4-F-Ph	4-CF ₃ -Ph	_	2.50	>25	11.1
21	4t	4-Cl-Ph	4-CF ₃ -Ph	-	4.00	>25	6.0
22	4u	4-CN-Ph	4-CF ₃ -Ph	-	9.30	>25	1.4
23	4v	4-OMe-Ph	4-CF ₃ -Ph	-	8.60	>25	2.5
24	4w	i-propyl	4-CF ₃ -Ph	-	7.30	>25	3.0
25	5a	Ph	-	PhCH ₂	>25	>25	1.0
26	5b	3-CN-Ph	-	3-Cl-4-F-PhCOCH ₂	>25	>25	1.0
27	5c	4-CN-Ph	-	3-Cl-4-F-PhCOCH ₂	>25	>25	1.0
28	chloroquine				8.00	>25	3.1
29	remdesivir				7.01	>25	3.6

 $^{a,b}\mbox{IC}_{50}$ and \mbox{CC}_{50} were derived from the results of at least two independent experiments in Vero cells.

 ^{c}SI (selectivity index) = CC_{50}/IC_{50} for inhibiting SARS-CoV-2 infection.

Table 2 Anti-SARS-CoV-2 activity and cytotoxicity of further modified cyclic sulfonamide derivatives.

Entry	Cpd	Х	R	IC ^a ₅₀ (μM)	СС ^b ₅₀ (µМ)	SI
1	4s	Н	-CH ₂ CONH-4-CF ₃ -Ph	2.50	>25	11.1
2	7	Н	-CH=CHCOOH	>25	>25	1.0
3	8	Н	-CH=CHCONH-3-CF ₃ O-Ph	6.60	>25	3.6
4	13a	F	-CH2CONH-3-Cl-Ph	2.20	>25	12.1
5	13b	F	-CH2CONH-3-CF3O-Ph	3.10	>25	8.9
6	13c	F	-CH2CONH-4-CF3-Ph	0.88	>25	30.7
7	14a	NHMe	-CH2CONH-4-CF3-Ph	13.80	>25	1.3
8	14b	1-methyl-piperazine	-CH ₂ CONH-4-CF ₃ -Ph	14.00	>25	1.6

 ${}^{a,b}\mathrm{IC}_{50}$ and CC_{50} were derived from the results of at least two independent experiments in Vero cells.

 ^{c}SI (selectivity index) = CC_{50}/IC_{50} for inhibiting SARS-CoV-2 infection.

Table 3

hERG, microsomal stability (MS), cytotoxicity, and PK profile of 13c.

Compound	hERG inhibition %at 10 µM	MS ^a	Cytotoxicity $(\mu M)^b$	PK ^c in rats
13c	<1%	93% (human) 61% (monkey)	Vero: 42.1 HFL-1: 44.2 L929: 31.4	$\begin{array}{l} C_{max} = 14.33 \; \mu g/mL \\ T_{1/2} = 18.5 \; h \\ CL = 0.04 \; l/h/kg \end{array}$
			NIH 3 T3: 68.0 CHO-K1: 10.6	F = 77%

^a % original compound remained after 30 min incubation.

^b Cell information. Vero: African green monkey kidney cell line, HFL-1: human embryonic lung cell line, L929: NCTC clone 929, mouse fibroblast cell line, NIH 3 T3: mouse embryonic fibroblast cell line, CHO-K1: Chinese hamster ovary cell line.

 $^{\rm c}\,$ Rats (n = 3) were dosed at IV 5 mg/kg and PO 10 mg/kg.

cell lines. Moreover, an *in vivo* PK study of **13c** identified good bioavailability of 77% in rats by intravenous (IV) and oral (PO) routes at 5 and 10 mg/kg, respectively.

In conclusion, we identified a novel class of cyclic sulfonamide derivatives as SARS-CoV-2 inhibitors using SAR optimization, viral inhibitory assays, cytotoxicity assays, and PK studies. Compound **13c** is a potent SARS-CoV-2 inhibitor (IC₅₀ = 0.88 μ M), has no cytotoxicity, and has a selectivity index of 30.7. Further evaluation of compound **13c** was conducted to determine the PK profile of cyclic sulfonamide. Compound **13c** showed good oral bioavailability of 77%, metabolic stability, low binding with hERG, and no cytotoxicity. This study identified that cyclic sulfonamide derivatives are a promising new template for the development of SARS-CoV-2 inhibitors.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The chemical library used in this study was kindly provided by Korea Chemical Bank (http://www.chembank.org/) of Korea Research Institute of Chemical Technology. This research was supported through the National Research Foundation of Korea (NRF) (2020M3E9A1041758) and National Research Council of Science & Technology (NST) (No. CRC-16-01-KRICT) funded by the ministry of Science and ICT (MSIP).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bmcl.2020.127667.

References

- 1 Zhou P, Yang X-L, Wang X-G, et al. Nature. 2020;579:270.
- 2 World Health Organization (WHO). Weekly Epidemiological Update, 31 August 2020; https://www.who.int/docs/default-source/coronaviruse/situation-reports/ 20200831-weekly-epi-update-3.pdf?sfvrsn=d7032a2a_4 [online].
- 3 Yang P, Wang X. Cell Mol Immunol. 2020;17:5
- 4 Akhtar MJ. Bioorg Chem. 2020;101, 104027.
- 5 Chan JF, Kok K-H, Zhu Z, et al. *Emerg Microbes Infect.* 2020;9:221.
 6 Baden LR, Rubin EJ. N Engl J Med. 2020;382:1851.
- 7 U.S. Food & Drug Administration, Coronavirus (COVID-19) Update: FDA Issues Emergency Use Authorization for Potential COVID-19 Treatment, FDA News Release, May 1, 2020; https://www.fda.gov/news-events/press-announcements/coronaviruscovid-19-update-fda-issues-emergency-use-authorization-potential-covid-19treatment [online].
- 8 Lee JY, Shin YS, Lee J, et al. Bioorg Med Chem Lett. 2020;30, 127472.
- 9 Ukrainets IV, Petrushova LA, Sidorenko LV, et al. Sci Pharm. 2016;84:497.
- 10 Gannarapu MR, Vasamsetti SB, Punna N, et al. Eur J Med Chem. 2014;75:143.
- 11 Lei K, Hua X-W, Tao Y-Y, et al. Bioorg Med Chem. 2016;24:92.
- 12 Kim SH, Ramu R, Kwon SW, et al. Bioorg Med Chem Lett. 2010;20:1065.
- 13 Jeon S, Ko M, Lee J, et al. Antimicrob Agents Chemother. 2020;64, e00819.