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Abstract

Purpose

This observational case series was to determine long term optic disc changes in eyes with

large cup to disc ratio (CDR) and compare the changes induced by myopic shift during child-

hood with normal control eyes.

Methods

Children under 15 years of age who developed myopia with serial optic disc photographs

and spectral domain (SD)-optical coherence tomography (OCT) images with a minimal

interval of three years were evaluated. Children with average CDR� 0.6 on SD-OCT were

classified as having large CDR. The ratios of vertical disc diameter (VDD), horizontal disc

diameter (HDD), and maximum peripapillary atrophy (PPA) width (PPW) were measured to

quantify morphologic changes of optic discs and SD-OCT parameters, such as peripapillary

retinal nerve fiber layer (RNFL) thickness and macular ganglion cell and inner plexiform

layer (GCIPL) thickness were measured.

Results

Of the 82 eyes (82 patients) analyzed, 42 eyes had large CDR and 40 eyes were normal

controls. The mean age and refractive error at initial examination were not different between

groups (P = 0.33, P = 0.76, respectively). The changes in HDD/VDD and PPW/VDD ratios

during follow-up showed no significant difference among the groups (P = 0.45, P = 0.62,

respectively). No statistical significance was found in changes in RNFL and GCIPL thick-

ness between the two groups (P = 0.74, P = 0.79, respectively).

Conclusions

Children with enlarged CDR showed changes in optic disc morphology and RNFL/GCIPL

thickness similar to normal children during myopic shift.
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Introduction

Tilted appearance and temporal crescent are characteristic features of myopic disc which is an

acquired condition, since progressive tilting of the optic nerve head (ONH) and development/

enlargement of peripapillary atrophy (PPA) take place during childhood myopic shift [1, 2].

These optic disc changes were not only observed in normal children, but also in children with

an enlarged cup to disc ratio (CDR) [3].

Introduction of optical coherence tomography (OCT) has enabled measurement of quanti-

tative ONH parameters and retinal nerve fiber layer (RNFL) thickness values and can be per-

formed noninvasively in children [4, 5]. In an effort to establish normative values of RNFL

thickness in children, numerous studies have been performed using spectral domain (SD)-

OCT, and several groups have reported that RNFL thickness decreased with more negative

refractive status [6–9]. Formerly, large discs with large CDR in children were considered phys-

iologic [10, 11]. However, a previous study found 13% of eyes with large CDR progress to defi-

nite glaucoma over three years [12], and assuming refraction has a positive effect on RNFL

thickness, children with large CDR during myopic shift are more likely to undergo glaucoma-

tous damage.

Some population-based studies have suggested myopia as an associated factor for the devel-

opment of glaucoma [13–15]. ONH deformations in myopia may predispose toward glau-

coma, and the direction of disc tilt may correspond to the location of RNFL loss or visual field

defects [16–18]. Unfortunately, whether children with large CDR are at higher risk of develop-

ing glaucoma over time is unknown and no study has been performed to determine optic disc

changes in this age group.

Therefore, the aim of this study was to compare the morphological changes in the optic disc

induced by myopic shift during childhood between eyes with enlarged CDR and normal

controls.

Methods

This observational case series was approved by the institutional review board of Seoul Saint

Mary’s Hospital and the study protocol followed the guidelines of the Declaration of Helsinki.

Written informed consent forms were obtained from the parents of the children. Patients

under 15 years of age who developed myopia with serial optic disc photographs and spectral

domain (SD)-OCT at Seoul St. Mary’s Hospital from January 2008 to December 2018 were

included in this study.

Children with average CDR� 0.6 on SD-OCT were classified in the large CDR group, and

those with CDR < 0.6 were assigned to the normal control group. Exclusion criteria included

the following: best-corrected visual acuity (BCVA) worse than 20/25, SE more than -6 diopters

(D), intraocular pressure (IOP)� 21 mmHg at initial examination, pathological disc and cup,

such as morning glory syndrome, optic nerve hypoplasia, or tilted disc syndrome, abnormal

findings on fundus photography, systemic illness, abnormal developmental history, previous

trauma or ocular surgery, and non-cooperation from children. Patients were required to have

at least two optic disc photographs and two SD-OCT images with an interval of at least 3 years,

and those with a time period less than 3 years between the baseline and final examinations

were not included in this study.

All patients underwent overall ophthalmic examination, including measurement of BCVA,

refractive error, IOP, and axial length (AL) by way of the IOL master (IOL master 500, Carl

Zeiss, Jena, Germany), as well as slit-lamp biomicroscopy. Spherical equivalent (SE) was mea-

sured under cycloplegic refraction. Optic disc photographs were taken using a nonmydriatic

fundus camera (Topcon, Tokyo, Japan). To ensure that the disc shape change was not the

PLOS ONE Optic disc change in children with large CDR

PLOS ONE | https://doi.org/10.1371/journal.pone.0235621 July 17, 2020 2 / 13

https://doi.org/10.1371/journal.pone.0235621


result of different photography angle, the final disc photograph was overlaid onto the baseline

disc photograph and the blood vessel contour around the optic disc served as a reference. Only

photographs with similar angle of viewing were included for analysis. The vertical disc diame-

ter (VDD), horizontal disc diameter (HDD), and maximum peripapillary atrophy (PPA)

width (PPW) were measured from the baseline and final optic disc photographs using ImageJ

software (available at http://rsb.info.nih.gov/ij/index.html). The ratios of HDD to VDD

(HDD/VDD) and PPW to VDD (PPW/VDD) were calculated. For sub-group analysis,

patients were classified into eyes with ONH/PPA change and eyes without ONH/PPA change,

according to the method described by Kim et al. [2] SD-OCT (Cirrus HD-OCT, Carl Zeiss,

Jena, Germany) was performed with FAST RNFL thickness protocols using internal fixation.

Data on peripapillary RNFL (RNFL) thickness, macular ganglion cell and inner plexiform

layer (GCIPL) thickness, rim area, disc area, average CDR, vertical CDR, and cup volume were

obtained and only data with a signal strength greater than 6 without any motion artifacts were

used. Parental CDR was also measured, and children with either a father or mother having

CDR� 0.6 were considered to have disc suspect parents.

For statistical analysis, all data were analyzed using the SPSS Statistics 19.0 software (IBM

Corporation, Armonk, NY, USA). Only one randomly chosen eye was considered for each

patient. The comparison between two groups was performed with chi-square and Student t-
tests. To identify the factors associated with the ONH/PPA change, univariate and multivariate

logistic regression analyses were performed. The variables with a significance of P < 0.1 upon

univariate analysis were included in the multivariate model. Correlation studies were per-

formed using linear regression. A P value less than 0.05 was considered to be statistically

significant.

Results

114 eyes of 114 patients were examined, however, 32 patients were excluded for having a fol-

low-up period shorter than 3 years. Finally, a total of 82 eyes of 82 patients were included in

the present study. The control group consisted of 40 eyes and the large CDR group consisted

of 42 eyes. The mean ages of each group were 7.34±3.03 years in the control group and 8.05

±3.26 years in the large CDR group (P = 0.33). Patients in the large CDR group had more disc

suspect parents with CDR� 0.6 (P = 0.08). The baseline mean SE was -1.15±3.94D in the con-

trol group and -0.93±2.15D in the large CDR group (P = 0.76). Myopic shift in the large CDR

group (-1.81±1.71D) was greater than the control group (-1.47±2.08D), however, the differ-

ence was not statistically significant (P = 0.43). The baseline mean axial length and the axial

elongation during follow-up also did not show statistical difference between groups (P = 0.96,

P = 0.31, respectively) (Table 1).

Table 2 describes the optic disc and peripapillary tissue characteristics on optic disc photog-

raphy in the two groups. The HDD/VDD ratio was not different between the groups at base-

line (P = 0.46) or at final examination (P = 0.99). The change in the HDD/VDD ratio was also

not different between groups (P = 0.45). Likewise, the PPW/VDD ratio showed no difference

both at baseline (P = 0.18) and at final examination (P = 0.53), and the change in the PPW/

VDD ratio was not significantly different (P = 0.62).

As the previously used time domain (TD)-OCT images are not compatible with SD-OCT

images, the mean follow-up periods of ONH parameters with OCT were shorter compared to

optic disc photography follow-up periods (control group, 41.10±14.69 months; large CDR

group, 44.52±20.36 months; P = 0.21) (Table 3). The average RNFL thickness at baseline and

final follow-up were not significantly different between groups (P = 0.44, P = 0.34, respec-

tively), as well as the changes during follow-up (P = 0.74). The changes between baseline and
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final examinations of the average CDR, vertical CDR, disc area, and cup volume were not sta-

tistically significant. On the other hand, the average GCIPL thickness, as well as the six sur-

rounding segments, at baseline, final, and changes between baseline and final examinations,

also did not show significant difference.

The change in the HDD/VDD ratio (control group; R2 = 0.002, P = 0.816, large CDR

group; R2 = 0.001, P = 0.852), RNFL thickness (control group; R2 = 0.036, P = 0.265, large

CDR group; R2 = 0.030, P = 0.283), and GCIPL thickness (control group; R2 = 0.081,

P = 0.176, large CDR group; R2 = 0.008, P = 0.683) did not show significant correlation with

SE change during follow-up. However, the change in PPW/VDD ratio (control group; R2 =

0.205, P = 0.034, large CDR group; R2 = 0.411, P = 0.029) was significantly correlated with the

degree of myopic shift in both groups (Fig 1).

Table 2. Optic disc morphological changes on fundus photography in eyes with large CDR and normal controls.

Large CDR group

(n = 42)

Control group

(n = 40)

P-value

Follow-up periods (months) 52.55±22.02 51.70±23.25 0.87

Horizontal disc diameter to vertical disc diameter ratio

Baseline 0.874±0.090 0.893±0.133 0.46

Final 0.862±0.108 0.863±0.128 0.99

Changes -0.011±0.089 -0.030±0.125 0.45

Maximum peripapillary width to vertical disc diameter

ratio

Baseline 0.067±0.082 0.099±0.127 0.18

Final 0.127±0.119 0.148±0.166 0.53

Changes 0.059±0.096 0.049±0.095 0.62

CDR, cup/disc ratio.

https://doi.org/10.1371/journal.pone.0235621.t002

Table 1. Demographic and clinical characteristics.

Large CDR group (n = 42) Control group (n = 40) P-value

Age (years) 8.05±3.26 7.34±3.03 0.33�

Sex (Male:Female) 23:19 20:20 0.67†

Disc suspect parents 16 5 0.08†

IOP (mmHg)

Baseline 15.56±2.84 15.12±2.88 0.53�

Final 15.68±3.40 15.07±2.72 0.46�

SE (D)

Baseline -0.93±2.15 -1.15±3.94 0.76�

Final -2.74±2.76 -2.30±3.78 0.56�

Changes -1.81±1.71 -1.47±2.08 0.43�

Axial length (mm)

Baseline 23.46±1.17 23.48±1.71 0.96�

Final 24.7351.22 24.12±1.83 0.20�

Changes 0.75±0.71 0.96±0.72 0.31�

CD, cup/disc ratio; IOP, intraocular pressure; SE, spherical equivalent; D, diopter.

�Comparison by Independent t-test.

†Comparison by chi-square test.

https://doi.org/10.1371/journal.pone.0235621.t001
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Table 3. Optic disc parameters on optical coherence tomography in eyes with large CDR and normal controls.

Large CDR group (n = 42) Control group (n = 40) P-value

Follow-up periods (months) 44.52±20.36 41.10±14.69 0.21

Peripapillary RNFL

Average thickness (μm)

Baseline 95.28±10.25 97.83±17.60 0.44

Final 92.58±10.93 95.44±14.90 0.34

Changes -1.47±4.77 -1.94±7.38 0.74

Superior thickness (μm)

Baseline 117.80±18.50 119.00±25.57 0.81

Final 112.05±20.93 115.88±23.46 0.45

Changes -3.40±7.30 -3.37±14.44 0.99

Inferior thickness (μm)

Baseline 120.88±16.42 126.56±22.83 0.20

Final 116.29±16.46 121.90±27.00 0.26

Changes -3.33±10.84 -5.11±9.56 0.45

Temporal thickness (μm)

Baseline 75.02±12.37 77.79±23.80 0.52

Final 74.90±12.03 76.38±22.11 0.71

Changes -1.23±10.70 -1.13±9.02 0.97

Nasal thickness (μm)

Baseline 67.62±9.77 68.05±13.87 0.87

Final 64.17±10.73 62.43±13.51 0.52

Changes -2.26±8.56 -4.05±8.51 0.36

Rim area (mm2)

Initial 1.16±0.28 1.52±0.45 <0.001

Final 1.24±0.30 1.44±0.36 0.009

Changes 0.06±0.47 -0.0006±0.38 0.53

Disc area (mm2)

Baseline 2.47±0.53 2.24±0.49 0.05

Final 2.37±0.44 2.08±0.47 0.006

Changes -0.19±0.46 -0.08±0.53 0.35

Average CDR

Baseline 0.73±0.06 0.51±0.15 <0.001

Final 0.67±0.13 0.52±0.17 <0.001

Changes -0.09±0.22 0.02±0.11 0.06

Vertical CDR

Baseline 0.68±0.09 0.49±0.14 <0.001

Final 0.62±0.14 0.48±0.17 <0.001

Changes -0.09±0.22 0.04±0.18 0.07

Cup volume (mm3)

Baseline 0.51±0.27 0.22±0.13 <0.001

Final 0.49±0.30 0.22±0.14 <0.001

Changes 0.49±0.30 0.22±0.14 0.11

GCIPL (μm)

Average thickness

Baseline 82.40±4.17 82.56±5.11 0.86

Final 79.73±8.29 80.70±7.74 0.60

Changes -0.57±1.75 -0.38±2.96 0.79

(Continued)
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Meanwhile, the change in the HDD/VDD ratio (control group; R2 = 0.054, P = 0.022, large

CDR group; R2 = 0.258, P = 0.0.019), PPW/VDD ratio (control group; R2 = 0.262, P = 0.0.005,

large CDR group; R2 = 0.433, P = 0.001), and GCIPL thickness (control group; R2 = 0.360,

P = 0.014, large CDR group; R2 = 0.278, P = 0.012) showed significant correlation with AL

change during follow-up. The change in RNFL thickness (control group; R2 = 0.005, P = 0.737,

large CDR group; R2 = 0.043, P = 0.369) did not correlate with axial elongation in either group

(Fig 2). The representative cases are shown in Fig 3.

When classified according to the ONH morphology change, 37 eyes were sorted into the

ONH/PPA change group and 45 eyes into the ONH/PPA unchanged group. The baseline SE

was not different (P = 0.17), but the final SE was more myopic in the ONH/PPA change group

compared to the ONH/PPA unchanged group (P = 0.001), and the mean myopic shift was

greater in the ONH/PPA change group (-2.50±1.82 D) than the ONH/PPA unchanged group

(-0.95±1.66 D, P<0.001). The ONH/PPA change group had longer AL at both baseline

(P = 0.03) and final examination (P = 0.001), and the ONH/PPA change group underwent

greater axial elongation compared to the ONH/PPA unchanged group (P = 0.008). Age at

Table 3. (Continued)

Large CDR group (n = 42) Control group (n = 40) P-value

Minimal thickness

Baseline 79.75±4.81 79.30±8.47 0.84

Final 78.81±7.06 76.59±11.97 0.34

Changes -0.09±2.52 -1.78±11.20 0.49

Superior thickness

Baseline 82.35±3.77 79.87±17.06 0.53

Final 81.94±7.39 80.97±8.26 0.60

Changes 0.83±1.80 2.79±16.01 0.56

Superotemporal thickness

Baseline 82.45±4.06 81.61±5.03 0.55

Final 80.73±6.42 79.68±8.15 0.54

Changes -0.04±3.14 -0.29±2.56 0.77

Inferotemporal thickness

Baseline 82.65±5.42 82.39±5.13 0.87

Final 79.73±6.82 79.46±9.59 0.89

Changes -1.57±2.54 -1.29±3.28 0.75

Inferior thickness

Baseline 80.75±5.27 81.61±6.18 0.63

Final 78.24±7.51 79.67±8.66 0.46

Changes -170±4.26 0.33±4.72 0.13

Inferonasal thickness

Baseline 82.30±4.26 82.83±6.25 0.75

Final 81.22±7.28 81.32±8.99 0.96

Changes -0.61±2.54 -0.21±6.37 0.78

Superonasal thickness

Baseline 83.55±5.03 84.83±5.33 0.43

Final 82.81±6.61 80.59±14.95 0.41

Changes -0.09±2.39 -4.13±15.24 0.22

CDR = cup/disc ratio; RNFL = retinal nerve fiber layer; GCIPL = ganglion cell-inner plexiform layer

https://doi.org/10.1371/journal.pone.0235621.t003
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Fig 1. The relationship between degree of myopic shift (diopters, D) and the changes in optic disc morphology, as

well as OCT parameters. The horizontal disc diameter (HDD) to vertical disc diameter (VDD) ratio merely changed,

while the peripapillary atrophy width (PPW) to vertical disc diameter (VDD) ratio increased as the subjects underwent

myopic shift. However, the changes were not statistically significant in either group (upper panel). Both retinal nerve

fiber layer (RNFL) and ganglion cell and inner plexiform layer (GCIPL) thickness decreased as the eyes became more

myopic, but the changes were not significant in either group (lower panel).

https://doi.org/10.1371/journal.pone.0235621.g001

Fig 2. The relationship between the degree of axial length change (mm) and the changes in optic disc morphology,

as well as OCT parameters. The horizontal disc diameter (HDD) to vertical disc diameter (VDD) ratio and the

peripapillary atrophy width (PPW) to vertical disc diameter (VDD) ratio significantly changed as the subjects

underwent axial elongation (upper panel). Retinal nerve fiber layer (RNFL) merely decreased with AL change, but

ganglion cell and inner plexiform layer (GCIPL) thickness significantly decreased as the eyes became longer in both

groups (lower panel).

https://doi.org/10.1371/journal.pone.0235621.g002
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baseline, number of disc suspect parents, IOP at baseline, distribution of eye with large CDR,

and change in mean RNFL and GCIPL thickness did not differ between groups (Table 4).

Logistic regression analysis was performed to identify which factors are related to the

ONH/PPA change (Table 5). Based on univariate analysis, whether the subject had disc suspect

parents or not, change in SE, baseline AL, and change in AL were factors related to the change

in ONH morphology. On multivariate analysis, the baseline AL and the AL change turned out

to be the final related factors to the ONH/PPA change.

Discussion

We compared changes in the optic disc morphology and OCT parameters that occur with

myopia during childhood under normal and enlarged CDR conditions. Only disc suspect chil-

dren were evaluated and those with childhood glaucoma were not included in the present

study. The mean age, SE, and axial length were not different between groups at baseline exami-

nation and showed similar changes throughout the follow-up period. The changes in optic

disc ovality and the development of or increase in PPA during childhood myopic shift, as well

as changes in RNFL and GCIPL thickness, did not show statistical difference between the two

groups.

Scleral stretching associated with the axial elongation during myopic shift has been sug-

gested for the cause of progressive disc tilting and development/enlargement of PPA in myopic

eyes [2]. Another study by Park et al [3] demonstrated that optic disc changes during myopic

shift can differ among various conditions and showed greater changes in disc suspects while

childhood glaucoma eyes showed significantly less changes. As corneal hysteresis has been

reported to be reduced in eyes with glaucoma [19], the authors hypothesized that altered

Fig 3. Four cases of childhood eyes with normal optic disc (A and B) and eyes with enlarged CDR (C and D) during

myopic shift are presented. The refractive error status (spherical equivalent, SE) and axial length (AL), retinal nerve

fiber layer (RNFL) and ganglion cell and inner plexiform layer (GCIPL) thickness at baseline examination are shown

in the upper panel, while the parameters at final examination are shown in the lower panel. Eyes with greater AL

elongation during follow-up showed more prominent disc tilting and development/enlargement of PPA in both the

normal control and large CDR group. However, the RNFL and GCIPL thickness changes were not significant.

https://doi.org/10.1371/journal.pone.0235621.g003
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biomechanics of the ocular tissue may have resulted in different responses of the ONH com-

plex and sclera to axial elongation.

In the current study, the HDD/VDD ratio and PPW/VDD ratio, which represents optic

disc morphology, were not correlated with the degree of myopic shift during the follow-up

period in both the normal control and the large CDR group. On the other hand, HDD/VDD

ratio and PPW/VDD ratio showed significant correlation with AL change during follow-up.

The large CDR group underwent greater change than the normal control group, however the

difference was statistically insignificant. Regression analysis also revealed ONH/PPA change

was associated with baseline AL and AL change, but not with SE change nor baseline CDR. As

shown in the representative cases, more pronounced disc shape changes were seen in eyes with

greater AL elongation, even with similar myopic shift in refraction (Fig 3). These changes were

Table 4. Comparison between patients with or without optic disc morphological changes.

ONH/PPA unchanged group (n = 45) ONH/PPA change group (n = 37) P-value

Age (years) 7.30±3.10 8.26±3.19 0.19�

Sex (Male:Female) 26:19 17:20 0.29†

Disc suspect parents 37 24 0.07†

Distribution of groups (large CDR:normal) 19:26 23:14 0.07†

IOP (mmHg) 15.32±3.10 15.38±2.58 0.94�

SE (D)

Baseline -0.60±2.81 -1.57±3.45 0.17�

Final -1.42±3.08 -3.89±3.00 0.001�

Changes -0.95±1.66 -2.50±1.82 <0.001�

Axial length (mm)

Baseline 23.14±1.34 23.90±1.54 0.03

Final 23.80±1.53 25.30±1.32 0.001�

Changes 0.61±0.51 1.24±0.85 0.008�

Horizontal disc diameter to vertical disc diameter ratio

Baseline 0.87±0.70 0.90±0.15 0.40�

Final 0.90±0.10 0.82±0.12 0.001�

Changes 0.03±0.09 -0.08±0.10 <0.001�

Maximum peripapillary width to vertical disc diameter ratio

Baseline 0.06±0.10 0.11±0.11 0.06�

Final 0.07±0.11 0.21±0.15 <0.001�

Changes 0.01±0.05 0.11±0.11 <0.001�

Average CDR 0.61±0.17 0.64±0.14 0.34�

Average RNFL thickness (㎛)

Baseline 97.80±15.85 95.03±12.15 0.40�

Final 94.28±12.81 93.57±13.27 0.81�

Changes -2.78±6.49 -0.43±5.54 0.09�

Average GCIPL thickness (㎛)

Baseline 82.96±4.72 81.94±4.61 0.49�

Final 80.58±9.96 79.79±5.05 0.66�

Changes -0.04±2.79 -1.05±1.70 0.13�

ONH = optic nerve head; PPA = peripapillary atrophy; IOP = intraocular pressure; SE = spherical equivalent; D = diopter; CDR = cup/disc ratio; RNFL = retinal nerve

fiber layer; GCIPL = ganglion cell-inner plexiform layer.

� Comparison by Independent t-test.

† Comparison by chi-square test.

https://doi.org/10.1371/journal.pone.0235621.t004
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observed both in the normal control group and the large CDR group. Our findings may repre-

sent that morphologic changes of the optic disc are mostly affected by AL change. Other ocular

biometries, such as corneal power, anterior chamber depth, lens thickness, and vitreous cham-

ber depth were not measured. Moreover, three-dimensional visualization of the posterior pole

has been introduced using the En face program, which can reconstruct the eyeball in the ante-

roposterior orientation, enabling the evaluation of the deepest point of eyeball [20]. Further

investigation on these parameters might give explanation of the discrepancy between AL and

SE change in this study.

OCT has become a widely used tool in clinical ophthalmology, and a number of studies

investigating normative data for children have shown that RNFL thickness decreases with less

positive refractive error [6, 8, 21] and increasing axial length [22–24]. Tsai et al. reported that

the average RNFL thickness increased by 1.7 μm for every diopter change towards hyperopia

[21]. Recently, some authors observed that macular GCIPL thickness in normal children posi-

tively correlated with SE [25, 26] and negatively correlated with AL [25, 27, 28]. However, in

the present study, we evaluated the OCT parameter changes over 36 months, and the thickness

of the nerve fiber layer and the ganglion cell layer were not correlated with SE change. On the

other hand, GCIPL thickness decreased with AL elongation, but RNFL thickness showed no

correlation with AL change; these results were demonstrated regardless of CDR. Parikh et al.

claimed that RNFL losses happen later in life, after the age of 50 years [29]. Our results also

suggest that although optic discs change as myopia progresses, RNFL thickness does not

change during childhood regardless of whether the CDR is enlarged. Compared to the RNFL

thickness, which was measured in the peripapillary area, the macular GCIPL thickness was

more greatly affected by AL change, as the posterior pole region is more vulnerable to axial

elongation than the peri-optic nerve region [30].

Our study has several limitations that must be acknowledged. First, it had a relatively small

sample size and it is difficult to generalize our findings because all of the subjects were referred

to a tertiary hospital and only Korean patients were included. The findings might be unique to

this population, in which myopia prevalence and progression rate is high, and may not be

applicable to other populations. Second, visual field test was not performed because it is diffi-

cult to perform and is not routinely carried out with children. However, damage to the RNFL

precedes visual field loss, and up to 40–50% of the RNFL could be lost before visual field

defects are detected [31]. Thus, RNFL measurements may be used as a surrogate marker for

visual field defects.

Table 5. Related factors to optic disc morphological changes in patients with or without large CDR.

Univariate analysis Multivariate analysis

OR 95% CI p-value OR 95% CI p-value

Age 1.104 0.954–1.277 0.185

Sex (M) 1.610 0.670–3.867 0.287

Disc suspect parents 0.399 0.144–1.107 0.077 0.313 0.119–1.099 0.141

IOP 1.006 0.851–1.190 0.941

Average CDR 0.470 0.228–1.922 0.341

Baseline SE 0.901 0.777–1.045 0.168

SE change 0.592 0.437–0.802 0.001 0.579 0.396–0.848 0.058

Baseline AL 1.466 1.023–2.101 0.037 1.627 0.986–2.685 0.047

AL change 2.479 1.496–3.414 0.007 0.612 0.436–0.860 0.013

CDR = cup/disc ratio; OR = odds ratio; CI = confidence intervals; M = male; IOP = intraocular pressure; SE = spherical equivalent; AL = axial length

https://doi.org/10.1371/journal.pone.0235621.t005
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In conclusion, during myopic shift, optic disc tilting and development/enlargement of

PPA, as well as changes in the RNFL and GCIPL thickness, were not different between eyes

with large CDR and normal controls. Morphologic optic disc changes and OCT parameter

changes were affected by the amount of AL change, irrelevant of CDR.
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