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Advanced statistical methods have enabled trial-by-trial inference of the underlying

excitatory and inhibitory synaptic conductances (SCs) of membrane-potential recordings.

Simultaneous inference of both excitatory and inhibitory SCs sheds light on the

neural circuits underlying the neural activity and advances our understanding of

neural information processing. Conventional Bayesian methods can infer excitatory and

inhibitory SCs based on a single trial of observed membrane potential. However, if

multiple recorded trials are available, this typically leads to suboptimal estimation because

they neglect common statistics (of synaptic inputs (SIs)) across trials. Here, we establish

a new expectation maximization (EM) algorithm that improves such single-trial Bayesian

methods by exploiting multiple recorded trials to extract common SI statistics across the

trials. In this paper, the proposed EM algorithm is embedded in parallel Kalman filters or

particle filters for multiple recorded trials to integrate their outputs to iteratively update the

common SI statistics. These statistics are then used to infer the excitatory and inhibitory

SCs of individual trials. We demonstrate the superior performance of multiple-trial Kalman

filtering (MtKF) and particle filtering (MtPF) relative to that of the corresponding single-trial

methods. While relative estimation error of excitatory and inhibitory SCs is known to

depend on the level of current injection into a cell, our numerical simulations using MtKF

show that both excitatory and inhibitory SCs are reliably inferred using an optimal level

of current injection. Finally, we validate the robustness and applicability of our technique

through simulation studies, and we apply MtKF to in vivo data recorded from the rat barrel

cortex.

Keywords: excitatory and inhibitory synaptic inputs, synaptic conductance, Kalman filter, current clamp, barrel

cortex, in vivo

INTRODUCTION

Inferring the excitatory and inhibitory synaptic conductances (SCs) from single trials of
membrane-potential recordings, and their underlying trial-to-trial variability, is crucial for
understanding various functional aspects of neuronal sensory response, such as the neuron’s
receptive fields (Anderson et al., 2001; Wehr and Zador, 2003; Priebe and Ferster, 2005)
or unveiling the mechanisms of adaptation (Katz et al., 2006; Heiss et al., 2008; Ramirez
et al., 2014). The importance of such variability in understanding the neuronal mechanisms of
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brain activity and their key roles in information processing is
well reviewed in Destexhe and Contreras (2006). A standard
approach to inferring these conductances is first to average the
membrane potential (MP) (or current, if cells are recorded under
voltage clamp) responses triggered by a stereotypic external
event, such as sensory stimulation, for each level of holding
current. Linear regression is then applied to infer how these
average responses depend on different holding currents (Shu
et al., 2003; Wehr and Zador, 2003; Priebe and Ferster, 2005).
However, this analysis provides only the average SCs, ignoring
their trial-to-trial variability. While the voltage-clamp technique
(Zhang et al., 2003; Murphy and Rieke, 2006; Haider et al., 2013)
can yield either excitatory or inhibitory SCs in each trial by setting
the holding potential equal to the inhibitory or excitatory reversal
potential, respectively, simultaneous recording of both SCs is not
possible.

Bédard et al. (2012) proposed a new method based on
oversampling the sub-threshold MP to estimate the time
course of excitatory and inhibitory SCs from a single recorded
voltage trace. Although, this method works well when these
conductances change slowly relative to MP, the long predefined
oversampling (roughly 20 successive time points) for avoiding
algorithmic instability tends to reduce the temporal precision of
the estimated SCs. Berg and Ditlevsen (2013) divided theMP into
slowly and rapidly varying parts according to a pre-set criterion,
and used the autocorrelation function of the rapidly varying
part to infer the total conductance. Excitatory and inhibitory
SCs were then inferred from the slowly varying part of the
MP and the estimated total conductance. This method resulted
in accurate estimates of both conductances if the MP could
be well approximated as an Ornstein–Uhlenbeck (OU) process,
and if the autocorrelation function of the rapidly varying part
decayed appreciably within the pre-set window. While these
methods are successful in estimating SCs, they do not explicitly
model their underlying probability or infer them at the temporal
resolution of observation steps. In addition, care should be taken
over the dependency of these methods on certain parameter
settings, e.g., the oversampling period (Bédard et al., 2012) or
the pre-set window (Berg and Ditlevsen, 2013) during which
SCs are assumed constant, for achieving optimal estimates in the
presence of noise.

Recently, Bayesian-based algorithms (Paninski et al., 2012;
Lankarany et al., 2013b) have been derived for inferring
excitatory and inhibitory SCs in a more principled manner.
In contrast to the above-mentioned statistical approaches,
these Bayesian approaches model the probability of SCs at
the temporal resolution of observation steps and estimate
parameters optimally from data. Paninski et al. (2012) reported
promising results for low-level observation noise. They derived
a sequential Monte-Carlo method (particle filtering (PF)) for
filtering/smoothing the dynamics of a compact neuronal model,
and used an expectation maximization (EM) algorithm (in both
parametric and non-parametric manners) to infer the time-
varying mean of the SCs. Lankarany et al. (2013b) proposed a
recursive algorithm based on Gaussian-mixture Kalman filtering
for filtering/smoothing the dynamics of a compact neuronal
model (the same as used in Paninski et al., 2012). This

was followed by an EM algorithm for inferring the statistical
parameters of the excitatory and inhibitory synaptic inputs
(SIs) using a non-parametric spline method. This methodology
provided more degrees of freedom for these inputs by estimating
their distributions with a Gaussian mixture model. It is shown
in Lankarany et al. (2013b) that this algorithm can be faster
and easier than PF in several cases. In both algorithms, a
non-parametric EM algorithm is used to estimate time-varying
statistics (mean and variance) of excitatory and inhibitory SIs
from a single trace of a given MP. However, rapid fluctuations
of SCs cannot be reliably estimated. Therefore, the EM algorithm
estimates a temporally smooth version of these statistics.

In this paper, we propose a new EM algorithm that improves
such single-trial Bayesian methods by exploiting multiple
recorded trials to extract the statistics of common SIs across
the trials. Our algorithm, multiple-trial Kalman filtering (MtKF),
also estimates excitatory and inhibitory SCs from single trials of
the sub-threshold MP recorded in response to repeated sensory
stimulation. However, unlike previous algorithms, our proposed
recursive EM algorithm uses all repeatedly recorded trials of the
MP to better estimate the common time-varying statistics of the
excitatory and inhibitory SIs. It does this without requiring any
parametric or non-parametric smoothing step that could blur
the fine temporal features of the conductances. Our recursive
algorithm consists of two steps. Firstly, the Kalman filtering (KF)
algorithm estimates excitatory and inhibitory SCs from each
membrane-potential trace, assuming certain statistics underlying
the excitatory and inhibitory SCs. Secondly, these statistics are
updated based on all estimated values of excitatory and inhibitory
SCs from different trials.

Our simulations demonstrate the accuracy and robustness
of our proposed MtKF approach compared to the single-trial
KF (StKF) (Lankarany et al., 2013b). Moreover, we show that
the multiple-trial framework can be generalized to other single-
trial Bayesian methods. We also develop multiple-trial particle
filtering (MtPF) and show that it outperforms the single-trial
PF (StPF) (Paninski et al., 2012). Moreover, by performing a
comprehensive simulation study, we investigate the level of
injected current that results in the most accurate simultaneous
estimate of both excitatory and inhibitory SCs. We show that
the optimum level of current injection must hold the average
MP at approximately −50 mV, and this level of MP is almost
independent of observation noise level. Applying our algorithm
at the best level of injected current constitutes an easier current-
clamp recording protocol (i.e., requiring only one level of
injected current) for simultaneously inferring both excitatory and
inhibitory SCs in single trials at high accuracy.

MATERIALS AND METHODS

In vivo Data
The in vivo data was recorded in Ilan Lampl’s laboratory at
the Weizmann Institute of Science, Rehovot, Israel (in vivo
whole-cell patch-clamp recording in the rat barrel cortex). All
details about the recordings, pre-processing of data, and animal
preparations have been reported previously (Heiss et al., 2008).
All recordings were made from young (4–7 weeks old) adult
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Wistar rats. Whole-cell patch recordings were performed in
current-clamp mode in the presence of the sodium channel
blocker QX-314 (2mM). The whisker chosen for stimulation was
done so using a piezoelectric device. The stimulation velocity and
the corresponding deflection amplitude were adjusted to evoke
clear sub-threshold responses in the cortical cells located in either
L4 or L2/3. Each cell was stimulated by a train of 20 whisker
deflections at either 10 or 18 Hz. After initial anesthesia with
ketamine (100 mg/kg) and acepromazine maleate (1 mg/kg), a
tracheotomy was performed after a local subcutaneous injection
of lidocaine. All surgical and experimental procedures were
conducted in accordance with the regulations of the Weizmann
Institute Animal Care and Use Committee.

Neuron Model
We use a passive neuronal model (Paninski et al., 2012;
Lankarany et al., 2013b) that represents the MP dynamics
of a single neuron that is receiving SIs. This model, which
neglects the active ion channels (but see Vich and Guillamon,
2015, which studies the influence of active channels during
subthreshold activity, and (Lankarany et al., 2013a), which infers
the parameters of active ion channels), can be expressed as
follows (Koch, 1999; Huys et al., 2006; Paninski et al., 2012):



















V(t + 1) = V(t)+ dt[gL(EL − V(t)) + gE(t)(EE − V(t))
+ gI(t)(EI − V(t))]+ w(t)

gE(t + 1) = gE(t)− dt
gE(t)
τE

+ NE(t)

gI(t + 1) = gI(t)− dt
gI (t)
τI

+ NI(t)

(1)
Here, V, gE, and gI are the dynamic variables of the neuron,
indicating theMP and excitatory and inhibitory SCs, respectively.
The term w(t) is white Gaussian noise of variance σ 2

w, NE(t), and
NI(t) are the instantaneous excitatory and inhibitory SIs to the
neuron at time step t, respectively, and dt is the time bin, which
may differ from the voltage recording sampling. Equation (1) is
the first-order (Euler method) approximation of the underlying
continuous-time differential equation. Note that the time index
t takes integer values between 0 and T, where T × dt is the
entire physical recording time. We assume that these time steps
are equidistant. Similar to Kobayashi et al. (2011), Paninski et al.
(2012), and Lankarany et al. (2013b), the reversal potentials EL,
EE, and EI , the leakage conductance gL, and the synaptic time
constants τE and τI are known in our simulation studies. Note
that the capacitance of the MP is set to 1 nF and therefore has
been removed from Equation (1).

Our objective in this study is to develop a new algorithm,
MtKF, to estimate the time course of excitatory and inhibitory
SCs gE and gI for each trial during sensory stimulation, based
on all repeated trials. Here, we assume that non-negative SIs are
generated by a truncated Gaussian distribution. The probability
distribution functions of the excitatory and inhibitory SIs are
given by:

NE(t)
D
= Gauss

(

µE(t), ŴE(t)
)

, NE(t) ≥ 0

NI(t)
D
= Gauss

(

µI(t), ŴI(t)
)

, NI(t) ≥ 0
(2)

where µE (t) and µI (t) are the mean of the excitatory and
inhibitory SIs, respectively, at time t, and ΓE (t) and ΓI (t) are
the time-varying variances of these SIs at time t.

As shown in Lankarany et al. (2013b), estimations of NE and
NI gives gE and gI directly according to Equation (1). It has
been shown previously (Paninski et al., 2012; Lankarany et al.,
2013b) that these SIs can be inferred from each single trial of
the recorded MP using non-parametric statistical approaches.
However, previous approaches required temporal smoothing of
the estimates and therefore could not capture the fine-timescale
fluctuations of the SIs (and SCs). To solve this issue, we propose
a novel algorithm that takes advantage of all the recorded MP
trials. This is achieved by applying an extended Kalman filter
(EKF) (Lankarany et al., 2013b) to each trial, followed by an EM
algorithm that calculates a common mean and variance of SIs
[i.e., µE(t), µI(t), ΓE (t), and ΓI (t) in Equation (2)] from all
recorded traces of the MP. Similar to the recursive framework
in Lankarany et al. (2013b), these statistics are then used as
the a priori knowledge for the EKF in the next iteration, and
our algorithm repeats until no significant changes occur in the
estimated dynamics.

Proposed Algorithm: Multiple-Trial Kalman
Filtering (MtKF)
We present the MtKF algorithm for identifying the excitatory
and inhibitory SCs of a single neuron expressed by (Equation
1) from noisy MPs recorded during multiple stimulation trials.
In the following sections, we use the notation xi(0:t) = {xi(0),
xi(1),..., xi(t)} to represent the time trace of variable x= (V, gE, gI)
corresponding to the ith recorded trial from time 0 to t. Figure 1
shows a block diagram of the MtKF algorithm.

The dynamical system underlying the generation of the MP in
trial i is defined as

{

xi(t + 1) = F(xi(t))+ v(t)
yi(t + 1) = H(xi(t + 1))+ εi(t)

(3)

where xi(t) and yi(t) indicate the state vector (including the true
MPs and SCs) and the observation (a noisy measurement of
MP), respectively, of the ith trial at time t. Functions F and H
are the transition and observation functions, respectively, and
v(t) and εi (t) are the system noise (comprising the common
inputs) and the observation noise, respectively. An explicit form
of these equations is introduced in the next section. While we
assume above that the system is observed at each time step, it is
easy to consider a case, in which observations are less frequent.
In Figure 1, θ stands for the statistical parameters of v and ε,
e.g., the mean and variances. Our objective is to estimate the
dynamics of each trial (xi(t) i = {1,..., L}, where L is the number
of trials) as well as to estimate the statistical parameters of the
common synaptic input v(t) and observation noise εi(t). The
MtKF algorithm begins with an arbitrary initiation followed by
forward and backward Kalman filtering. These filtering steps are
necessary to identify the hidden dynamics xi(t) for each trial
given the noisy observation. Once this step is accomplished and
the statistics (such as mean and variance) of the dynamics are
calculated, the parameters of the common (shared) stochastic
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FIGURE 1 | Schematic representation of multiple-trial Kalman filtering (MtKF). The forward and backward KFs compute the system’s state statistics based on

parameter θ , and the following EM algorithm updates this θ . These processes are repeated until θ converges. x is the state of the system and y is the observation.

Here, k and θ0 are the iteration number and the initial values of the statistical parameters, respectively. X and Y are abbreviations for the entire samples of x and y over

time, i.e., X = x(0:T ) and Y = y(0:T ). Index i indicates a trial index (i = 1,...,L) where L is the number of trials, θ is the unknown statistical parameters of the system and

observation noise, θ = [µE , µE , ŴE , ŴI, σV , σY ], and (•)H represents the matrix transpose operation.

sources are inferred by using an EM algorithm. Since these
parameters determine the initial values of the next iteration,
the algorithm can be stopped with an appropriate criterion, i.e.,
no significant change in likelihood function in two consecutive
iterations.

Derivation of MtKF Algorithm
We derive the MtKF algorithm in this section. Let x(t) =

[Vi(t), giE(t), giI(t)]
H denote the vector of neuron dynamics

corresponding to ith recorded voltage at time t, where [·]H

represents the matrix transpose operation. We can represent the
neuronal model (Equation 1) in the dynamical-system form of
Equation (3), where the observation function for each trial is
given by H[xi(t)] = Cxi(t), with a vector C = [1, 0, 0], meaning
that only the MP is observed. Similarly, the transition function F
is given by

F[xi(t)] =







1− dt
(

gL + giE(t)+ giI(t)
)

, dt EE, dt EI
0 , 1− dt

τE
, 0

0 , 0 , 1− dt
τI













V i(t)

giE(t)

giI(t)






+







dtgLEL

0

0






(4)

The distribution of the system noise (dynamical noise) v (t)= [w
(t), NE(t), NI(t)]

H is given by

p(vt) = Gauss
(

µv(t), Ŵv(t)
)

, vt ≥ 0

µv(t) = [0,µNE(t),µNI(t)] & Ŵv(t) =





σ 2
w , 0 , 0

0 , ŴNE(t), 0
0 , 0 , ŴNI(t)





(5)
where NE and NI describe excitatory and inhibitory SIs,

respectively. Since we apply the EKF for each recorded MP (see
Lankarany et al., 2013b for more details), we require to estimate

the conditional probabilities p(xi(t)|yi(0:t)) and p(xi(t)|yi(0:T))
in the forward and backward KF, respectively (see Appendix I
in Supplementary Material for details). In the next section, we
derive the KF for each observed trial and calculate the statistical
parameters of the common SIs using the EM algorithm.

Kalman Forward/Backward Filtering
In a KF, we use a set of mathematical equations to estimate the
present state of a dynamical system and employ the observed
measurements to update its state accordingly (Haykin, 2001).
In the EKF used here, the first-order Taylor linearization of
the nonlinear process and measurement model is used to
derive the underlying prediction–correction mechanism. Using
Equation (1), the a priori state estimate and error covariance
matrix are calculated at each time t. We then calculate the a
posteriori state estimate and error covariance matrix for the
same time instant. These variables are used in an iterative
manner for the next time instant t+1, upon the arrival of a
new observation. According to the proposed MtKF algorithm
(Figure 1), we calculate the state estimate E{xi(t)|yi(0:t)} and
state correlation matrix E{xi(t)xi(t)H|yi(0:t)} in the forward
filtering step and E{xi(t)|yi(0:T)} and E{xi(t)xi(t)H|yi(0:T)} in the
backward filtering (smoothing) step using the KF approach for
each observed recorded MP. Here, E{·} stands for the expected
value and xi is the state vector of the ith trial (see Appendix 2 and
3 of Lankarany et al., 2013b) for more details).

Inferring Statistical Parameters via Expectation

Maximization
The EM algorithm is a robust optimization technique for
inferring the parameters of models involving unobserved data
(Dempster et al., 1977), e.g., the excitatory/inhibitory SIs NE(t)
and NI(t) in this paper. We derive the EM algorithm to use
all recorded traces of MP, and infer the statistics underlying
common SIs. The EM algorithm infers the statistical parameters
of Equations (3–5), i.e., the time-varying mean (µv (t)) and
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the variance of the states (σ 2
w, Γv(t)), and the variance of the

observation noise (σ 2
ε ). We note that these statistics, for each

excitatory and inhibitory SI, are shared over all recorded trials.
Providing sufficient statistics of the state estimates (mean and
correlation matrices) by Kalman filtering steps, we can easily
derive the EM algorithm. To achieve this, we should maximize
the logarithm of the joint probability of the states and observation
(X and Y denote the entire samples of x and y over time,
respectively) as follows:

maxQ(θ , θ̂)
s.t.θ̂

= max
(

E
{

log
(

p(Y1, ...,YL,X1, ...,XL/θ̂)
)

/Y1, ...,YL, θ
})

= max

(

E

{

log

(

L
∏

i= 1
p(Y i,Xi/θ̂)

)

/Y1, ...,YL, θ

})

= max

(

L
∑

i= 1
S log

(

p(Y i,Xi/θ̂)
)

p(Xi/Y i, θ)dXi

)

(6)
By doing the corresponding calculations to solve Equation (6)
(as described in Appendix II in Supplementary Material), we
can obtain the mean and variance of the common SIs (statistical
parameters assigned to θ in Equation (5), i.e., the statistical
parameters of the model, θ = [µE, µE, ŴE, ŴI , σV , σY ]) as well
as the variance of the observation noise. As a result, we can
update the statistical parameters of the excitatory and inhibitory
SIs as well as the variance of the observation noise in the M-step
(see Appendix II in Supplementary Material for full derivations).
Inferring all parameters, we can initialize the next iteration of the
recursive algorithm. The algorithm continues until there is no
significant change (<1% increase in likelihood function) between
two consecutive iterations.

Following the EM algorithm derived in Appendix II in
Supplementary Material, the statistical parameters of the
common SIs are estimated as follows:

µNE(t) =
1
L

L
∑

i= 1
µ
i
NE(t)

ŴNE(t) =
1
L

L
∑

i= 1
{Ŵi

NE(t)+ (µNE(t)− µ
i
NE(t))

2
}

(7)

µNI(t) =
1
L

L
∑

i= 1
µ
i
NI(t)

ŴNI(t) =
1
L

L
∑

i= 1
{Ŵi

NI(t)+ (µNI(t)− µ
i
NI(t))

2
}

(8)

Here, µ
i
NE, µ

i
NI , Ŵi

NE, and Ŵi
NI are the mean (µ) and the

variance (Ŵ) of the excitatory and inhibitory SIs corresponding
to each single trial (see Appendix II in Supplementary Material).
We repeat this update recursively within the EM algorithm
until the estimates converge (see Figure 3 for the manner in
which the result converges with the number of iterations; see
Supplementary Code for a sample code).

Extension of Multiple-Trial Framework for
Particle Filtering (MtPF Algorithm)
The proposed multiple–trial framework (Figure 1) is extended
to the PF algorithm (Paninski et al., 2012). This approach is

referred to as the multiple-trial PF (MtPF). Note that all the
details about the derivation of PF for single-trial estimation of
the excitatory and inhibitory SCs can be found in Paninski et al.
(2012). Similar to the derivation of MtKF, we derive the EM
algorithm to update the statistics of the common SIs, exploiting
multiple recorded trials. As the first step, the algorithm runs
parallel PF for individual trials to infer excitatory and inhibitory
SCs giE/I(t) (i indicates the ith trial) and the corresponding SIs

Ni
E/I(t), whose distributions are expressed as follows (exponential

distribution as used in Paninski et al., 2012):

p
[

Ni
E(t)

]

= 1
µNE(t)

exp
(

− Ni
E(t)/µNE(t)

)

p
[

Ni
I(t)

]

= 1
µNI(t)

exp
(

− Ni
I(t)/µNI(t)

) (9)

Here, µNE(t) and µNI(t) are the trial means of the excitatory and
inhibitory SIs, respectively. Similar to Equation (6), we wish to
maximize the logarithm of the joint probability of the states and
observation as follows:

Ep(NE ,NI/Y)

{

∑

i
log

(

p(yi,Xi/θ̂)
)

/Y , θ

}

=

∑

i

T
∑

t= 1
Ep(NE ,NI/Y)

{

− 1
2 log σ 2

ε +
(

yi(t)− V i(t)
)H (

σ 2
ε

)−1

(

yi(t)− V i(t)
)}

+

∑

i

T
∑

t= 1
Ep(NE ,NI/Y)

{

log
[

µNE(t)
]−1

−Ni
E(t)

[

µNE(t)
]−1

}

+

∑

i

T
∑

t= 1
Ep(NE ,NI/Y)

{

log
[

µNI(t)
]−1

−Ni
I(t)

[

µNI(t)
]−1

}

(10)
Then, given Ep(NE/Y)

{

Ni
E(t)

}

= µi
NE , Ep(NI/Y)

{

Ni
I(t)

}

= µi
NI ,

the common statistics of the SIs are estimated as follows:

µNE(t) =
1
L

L
∑

i= 1
µ
i
NE(t)

µNI(t) =
1
L

L
∑

i= 1
µ
i
NI(t)

(11)

It is clear from Equation (11) that the means of the SIs have
the same update rule (only for mean SIs) as those presented in
Equations (7) and (8). These means are then used for the next
iteration of MtPF. Comparing the EM derivation of MtPF with
that in Paninski et al. (2012), we see that the trial means of the SIs
inMtPF are estimated using neither a nonlinear link function (an
exponential function was used in Paninski et al., 2012) nor a non-
parametric M-step that applies the B-spline method. Therefore,
the closed-form update rule (EM algorithm) of MtPF is simpler
than that in Paninski et al. (2012).

Structured and Non-structured Synaptic
Inputs
The time-varying mean of the Poisson distribution for excitatory
and inhibitory inputs is either structured or non-structured.
A non-structured mean is modeled as an OU process (the
absolute white noise (non-negative) is filtered based on excitatory
and inhibitory time constants). To build a structured mean
that mimics the post-synaptic potential (PSP) evoked by
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whisker stimulation (in our simulations), we used excitatory
and inhibitory SCs of real neurons. Simulation results (those
belonging to structured inputs) are shown for neuron #3
calculated using the least squares (LS) method (Heiss et al., 2008).
These estimates are then smoothed and used as the time-varying
mean in our simulations (Figures 2A, 4). As a result, these
traces (Figure 4) exhibit adaptation (Heiss et al., 2008) as seen
in the in vivo data. We synthesize excitatory and inhibitory SIs,
for both structured and non-structured inputs, from a Poisson
distribution in our simulations. Excitatory and inhibitory SCs
are then generated by Equation (1). We clarify that inferences
by MtKF and MtPF are, respectively, based on Equations (2)
and (9) in which the distributions of SIs are truncated Gaussian
and exponential. In our simulations, we have generated SIs from
Poisson distributions in order to evaluate the performances of
those algorithms in non-ideal scenarios.

RESULTS

Multiple-Trial Kalman Filtering (MtKF)
Outperforms Existing Bayesian Algorithms
for Simultaneously Inferring Excitatory and
Inhibitory Synaptic Conductances
The MtKF algorithm takes advantage of repeatedly recorded
membrane-potential trials to better estimate the common
excitatory and inhibitory SIs. Here, we show that the precise
estimation of these common SIs leads to better inference of the
excitatory and inhibitory SCs. We first simulate the membrane-
potential dynamics with zero current injection to compare the
performance ofMtKF with that of StKF (Lankarany et al., 2013b).
In all our simulations, the excitatory and inhibitory reversal
potentials are EE = 0 mV and EI = −80 mV, respectively. The
leak potential is EL = −60 mV and the membrane time constant
is 1/gL = 12.5 ms. The excitatory and inhibitory synaptic time
constants are τE = 3 ms and τI = 10 ms, respectively. The
sampling time is 2ms.

Examples are shown in Figure 2 for both structured mean SI
(periodic stimuli; see Materials andMethods) and non-structured
mean SI (random OU processes; see Materials and Methods).
Given the common mean, the SIs in each trial (total L = 10
trials) are randomly generated by a Poisson distribution (see
Materials andMethods). Synaptic conductances and the resulting
MP trace are then generated according to Equation (1) and are
continued for 2 s for each trial. A white Gaussian observation
noise of standard deviation (std) 1 mV is added to the MP
at each time step. The StKF and MtKF algorithms are then
applied to infer the excitatory and inhibitory SCs from these
membrane-potential traces. In order to quantify the trial-to-trial
performances of each algorithm, we calculate the root-mean-
square error (RMSE) between the true and estimated SCs for
each single trial. The error bars are plotted in Figure 2A for both
non-structured and structured SIs. Multiple-trial Kalman filtering
outperforms StKF in estimating both excitatory and inhibitory
SCs. The trial-to-trial variabilities of excitatory and inhibitory
SCs are shown in Figure 2B. In order to show that MtKF
improves the single-trial estimates (i.e., the ability to track the

variabilities of each trial), two representative traces of arbitrarily
selected single trials of excitatory and inhibitory SCs (for non-
structured input) are plotted in Figure 2C. The conductances
estimated by MtKF are better at tracking the true SCs in each
trial (for inhibitory conductances, it is not as clear as excitatory
conductances because of the weak driving force of inhibitory
conductances for Iinj = 0; we suggest a better current level later).

We note that StKF and MtKF are equivalent if only one trial
is applied. The main advantage of our proposed MtKF algorithm
is that it uses all recorded trials to estimate the statistics of the
common SI and therefore is better at inferring the SCs in each
single trial. In order to highlight this advantage of MtKF and to
demonstrate that our algorithm is not just a simple averaging
of StKF, the normalized error of the SCs is plotted against the
number of trials (for zero injected current) in Figure 3 for three
different methods: MtKF, the average of the StKF method (the
average conductance estimated by StKF applied to each trial),
and the StKF method applied to the average MP. The normalized
error is defined as

Err =

(

ErrE + ErrI
)

2
, (12)

where ErrE/I =

√

1
T

∑

t
var(gE/I(t)−ĝE/I(t))

var(gE/I(t))
, var calculates the trial

variance, and ĝE/I describes the estimated SC. This normalized
error weights the error of excitatory and inhibitory SCs with
the same contribution. As we can see from Figure 3 (left), the
normalized error for MtKF decreases when the number of trials
increases, whereas this error remains approximately constant for
the other two methods. This suggests that those methods do not
benefit fully from multiple trials for estimating single-trial SCs.
Instead, they can only estimate the trial average of excitatory
and inhibitory SCs. The key consideration in this example is
the trial-to-trial variability of SCs. If such variability is small, all
mentioned methods perform effectively equivalently. However,
if the variability over trials is high, simple averaging methods
cannot track the changes of single trials, whereas MtKF benefits
from all trials to better estimate the SCs of the individual trials.

Multiple-Trial Particle Filtering (MtPF):
multiple-Trial Framework is Generalizable
Consistent with Figure 3 (left), we also demonstrate that MtPF
outperforms the simple averaging methods based on single-trial
particle filtering (StPF) (Paninski et al., 2012) for estimating
excitatory and inhibitory SCs of individual trials. In particular,
we compare the performances of MtPF, the average of StPF, and
StPF applied to the average of MP. Figure 3 (right) shows that
the simple averaging methods do not benefit from multiple trials
(approximately constant normalized error for different numbers
of trials) whereas the normalized error decreases for MtPF when
the number of trials is increased. Hence, the multiple-trial EM
framework that we propose is generalizable to different kinds of
single-trial Bayesian methods.
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FIGURE 2 | Inferring Exc and Inh synaptic conductances (SCs) of the non-structured (OU process) and structured (periodic stimuli) inputs using MtKF

and StKF. (A) Error box for Exc (left) and Inh (right) SCs. Each box represents the RMSE calculated for 10 trials. (B) Trial-to-trial variability of Exc–Inh conductances,

i.e., the time-dependent variance of those conductances. (C) Examples of time traces (single trials; two arbitrary trials are shown) of each algorithm vs. the original

conductances. Color map, black (true); purple (MtKF), cyan (StKF).
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FIGURE 3 | Performance of MtKF and MtPF, unlike simple averaging of trials, improves when number of trials increases. Left: normalized error (see

Equation 12) of conductances is plotted against number of trials for MtKF (black) and StKF with simple averaging (gray) and StKF applied to the average of membrane

potential (MP) (cyan). Note that the above-mentioned methods would have the same performance if such variability is negligible over trials. Right: normalized error

(same as left) for MtPF (black) and StPF with simple averaging (gray) and StPF applied to the average of MP (cyan).

Improvement of the Estimated Excitatory
and Inhibitory Synaptic Conductances by
Optimizing the Level of Current Injection
Inference of SC is less accurate if the MP is close to its
reversal potential because the synaptic driving force is small
there. For example, this typically happens for the inhibitory
conductance when no current is injected to a recorded neuron
but a Bayesian approach is applied nonetheless to simultaneously
estimate excitatory and inhibitory SCs (see Figure 1). To visually
compare how the SCs are estimated through different levels of
the injected currents, we plot a single trial of true excitatory and
inhibitory SCs against the corresponding estimated SCs (L = 10
trials) for three different injected currents, Iinj = [−200, 50, 150]
pA. Each current level is simulated by adding a constant current
to the right-hand side of the MP dynamics of Equation (1). As
can be observed from Figure 4A, both excitatory and inhibitory
conductances are estimatedwith good resolutions for Iinj = 50 pA
(inhibitory conductance is underestimated for Iinj = −200 pA,
whereas excitatory conductance is very noisy for Iinj = 150 pA).

Furthermore, we quantify the performance of the proposed
MtKF algorithm at estimating excitatory and inhibitory SCs
at the above holding currents. The RMSE between true and
estimated conductances is calculated for each trial (L = 10 trials
corresponding to each level of current) and presented as an
error box. Figure 4B shows that there is a trade-off between the
accuracies of the estimated excitatory and inhibitory SCs. Our
next objective is to find an optimum level of injected current
that provides a balance between the accuracies of the estimated
excitatory and inhibitory SCs such that both conductances are
estimated reasonably accurately. To meet this objective, we
investigate in our simulation study which level of injected current
results in the most accurate estimation of both excitatory and
inhibitory SCs. Through several trials, different levels of current
are injected to themodel neuron and theMP traces are calculated.
We apply the proposed MtKF algorithm to the MP traces that
are recorded with each level of injected current. We define a new
error measurement that capitalizes the greatest of the excitatory
and inhibitory errors, i.e., log

{

exp
(

ErrE
)

+ exp
(

ErrE
)}

, where

ErrE and ErrI are defined in Equation (12). We run the MtKF

algorithm in this simulation setup for low and high signal-
to-noise ratios (SNRs) (observation noise with std of 1 mV
for low SNR, and that of 0.1 mV for high SNR). Figure 4C
shows that this error measure is smallest at the baseline MP
around −50 mV (Iinj = 50 pA) for both SNRs. Therefore, we
suggest applying the MtKF algorithm with this best level of
the injected current as a new technique. This way, excitatory
and inhibitory SCs can be accurately estimated simultaneously
using a single level of current injection in the current-clamp
recordings.

Inferring Excitatory and Inhibitory Synaptic
Conductances from In vivo Recordings
We further apply the MtKF algorithm to estimate the single
trials of SCs from single neurons (n = 5) responding to whisker
stimulation in the rat barrel cortex. As mentioned before, all
details about the recording can be found in Heiss et al. (2008).
In accordance with our results in the previous section, we apply
the MtKF algorithm to membrane-potential traces with a fixed
level of current injection (Iinj = 130 pA, baseline MP is
about −35 mV). We note that although four different holding
potentials were available in Heiss et al. (2008), the baseline of
sub-threshold MP of Iinj = 130 pA was the closest to that
of the optimal one (Figure 4C). Figure 5A shows the whisker
stimulation pulses and 35 trials of recorded membrane-potential
traces, from which we infer SCs. Figure 5B shows the estimated
conductances of neuron #1 for four arbitrarily selected trials.
Since the actual values of these conductances are unknown, and
in order to verify the accuracy of our estimates, we compare
the trial average of conductances estimated by MtKF with that
obtained by the standard least squares (LS) method (Heiss et al.,
2008). Note that four different levels of injected current (total
≥120 trials) are used for LS, whereas only one level of injected
current (25 trials) is used for MtKF. Figure 5C compares trial-
averaged traces of excitatory and inhibitory SCs estimated by
the MtKF and LS methods. Figure 6 summarizes the RMSE of
MtKF and LS as a proxy for the error for both excitatory and
inhibitory conductances for all neurons. These results show that
the estimated trial averages of the excitatory and inhibitory SCs

Frontiers in Computational Neuroscience | www.frontiersin.org 8 November 2016 | Volume 10 | Article 110

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Lankarany et al. Multiple-Trial Algorithm for EI-Conductance Estimation

FIGURE 4 | Finding the best level of injected current, in current-clamp recording, for estimating the Exc and Inh SCs at individual trials. (A) Examples of

the Exc–Inh estimates for three different values of injected current, namely, Iinj = −200 pA (left), Iinj = 50 pA (middle) and the Iinj = 150 pA (right). (B) Error box for

excitatory and inhibitory SCs including all trials. Each box represents the RMSE calculated for 10 trials. (C) The total error of excitatory and inhibitory conductances

(from their original values) estimated by MtKF algorithm for high (left: std of observation noise is 0.1 mV) and low (right: std of observation noise is 1 mV) SNRs. The

total error is calculated as the log{exp(ErrE ) + exp(ErrI)}, where ErrE/I were already defined. The total error is plotted against the baseline level of MP (bottom axis) and

the level of injected current (top axis). As can be seen, the total error has a minimum for Iinj = 50 pA (baseline = −50 mV).
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FIGURE 5 | (A) Whisker stimulus (left) and recorded MP (25 trials) from Iinj = 130 pA in current-clamp mode. (B) Estimated single trials (four arbitrary trials are

selected) of excitatory and inhibitory SCs, trials (from top to bottom) #16, 13, 3, 7. (C) Trial average of estimated conductances using MtKF algorithm (colors) vs. that

estimated by least-squares (LS) method (black) using all different levels of injected currents.

are very close to those calculated by the LSmethod. This confirms
the practicality of our methodology.

DISCUSSION

We proposed a new multiple-trial EM framework to
simultaneously infer the excitatory and inhibitory SCs in

individual trials from the recorded MP. This method inherits
the general advantage of Bayesian approaches (e.g., single-trial
PF, Paninski et al., 2012 and KF Lankarany et al., 2013b) that
can optimize underlying statistics of the SI according to data.
This is in contrast to previous non-Bayesian techniques that
require some parameter pre-settings about oversampling period
or slow/fast timescale separation (Bédard et al., 2012; Berg and
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FIGURE 6 | Error box for excitatory and inhibitory SCs including all trials (25 trials corresponding to Iinj = 130 pA). The root-mean-square error (RMSE)

between the estimated conductances, for each trial, and the trial average (calculated by LS method) is shown.

Ditlevsen, 2013). More importantly, unlike previous single-trial
Bayesian methods, this framework can optimize common SI
statistics without requiring temporal smoothing steps by utilizing
all recorded trials of the MP. Extending previous single-trial
Bayesian methods under this framework, we developed multiple-
trial Kalman filtering (MtKF) and particle filtering (MtPF). We
showed that MtKF and MtPF provide superior performance
relative to the corresponding single-trial Bayesian method that
can use only one trial of MP at a time. The advantage becomes
increasingly evident as the number of available trials increases
(Figure 3). This technique is readily applicable to existing MP
data, where a single level of current injection was applied, to
estimate both excitatory and inhibitory conductances in each
trial.

The relative estimation error of excitatory and inhibitory SCs
is known to depend on the level of current injection. We applied
theMtKF algorithm to quantify how the level of current injection
affects simultaneous estimation of excitatory and inhibitory SCs
(Figure 4). Our numerical simulations showed that the optimal
level of injected current is robust to observation noise. Hence, the
MtKF algorithm with this optimal current can reliably estimate
both excitatory and inhibitory SCs in individual trials.

We also applied the MtKF algorithm to in vivo intracellular
data from the rat barrel cortex. Using the near-to-optimum level
of injected current, we simultaneously inferred excitatory and
inhibitory SCs in each trial. The accuracy of our estimates was
confirmed by comparing the trial average results with those from
the conventional LS technique (where multiple levels of current
injection are used). The estimation results of MtKF that used a
single level of current injection matched well with those of the LS
technique that required multiple levels of current injection.

An alternative approach can be used to extract specific joint
statistics between excitatory and inhibitory SCs. For example, Tan
et al. (2013) proposed a methodology to calculate the Pearson
correlation of excitatory and inhibitory SCs from stationary data
based on the dependency of the variance of membrane current
on holding potential. This approach is distinct from MtKF
because MtKF infers the full time course of conductances as

opposed to only certain statistics. Secondly, while this approach
requires recordings at multiple holding potentials, MtKF can
simultaneously infer excitatory and inhibitory conductances
by applying a single level of current injection. Furthermore,
the ability of MtKF to efficiently integrate observations at
neighboring time points is an additional benefit for analyzing
non-stationary data.

In this study, to improve the estimation performance of MtKF,
we utilized multiple recording trials with the same stimulation
protocol. However, application of the stimulus is not a strict
requirement for MtKF to benefit from multiple recording trials.
Improvement should be observed as long as excitatory or
inhibitory SI is correlated across trials. In this sense, multiple
recording trials without any stimulation should also benefit the
estimation because some statistics about SI are expected to be
common across trials. Obviously, additional information that
can better align SIs across different trials would allow more
efficient extraction of common underlying features about SIs.
This could be, for example, motor actions, onsets of up/down
state transitions (Shu et al., 2003), or oscillation phases of local
field potential (Buzsáki and Draguhn, 2004).

One limitation of MtKF is that it assumes a Gaussian
distribution of SIs. If this assumption is invalid (e.g., if the
distribution is characterized by a long tail or is bimodal), the
method would not work so well. One approach to resolve
this issue is to align trials precisely so as to minimize the
variability of trials. As described above, if the distribution of
SI is bimodal because of up and down states (Katz et al.,
2006), that bimodal variability could be removed by aligning
trials according to an up/down transition. Another approach
is to apply the multiple-trial EM framework to Gaussian
mixture Kalman filtering (Lankarany et al., 2013b), where the
distribution of SIs is characterized by a Gaussian mixture model.
A drawback of this approach is that it would require additional
computational complexity. Hence, the complexity of the data
should be appropriately chosen considering the trade-off between
accuracy and computational complexity for a given amount
of data.
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In summary, the general applicability of the multiple-trial
EM framework and the promising results of MtKF and MtPF
obtained from both the synthetic and in vivo data suggest that this
framework is capable of extracting the intricate interplay between
excitatory and inhibitory SCs underlying an animal’s neuronal
activity.

AUTHOR CONTRIBUTIONS

ML, TT developed algorithm. JH, IL recorded and provided
in-vivo data. ML, JH, IL, and TT wrote the paper.

ACKNOWLEDGMENTS

This work was supported by the RIKEN Brain Science Institute
(TT), Brain/MINDS from AMED (TT), HFSP grant (IL), and
Fonds de recherché du Quebec – Sante (FRQS) (ML).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fncom.
2016.00110/full#supplementary-material

REFERENCES

Anderson, J. S., Lampl, I., Gillespie, D. C., and Ferster, D. (2001). Membrane

potential and conductance changes underlying length tuning of cells in cat

primary visual cortex. J. Neurosci. 21, 2104–2112.

Bédard, C., Béuret, S., Deleuze, C., Bal, T., and Destexhe, A. (2012). Oversampling

method to extract excitatory and inhibitory conductances from single-

trial membrane potential recordings. J Neurosci. Methods 210, 3–14. doi:

10.1016/j.jneumeth.2011.09.010

Berg, R. W., and Ditlevsen, S. (2013). Synaptic inhibition and excitation estimated

via the time constant of membrane potential fluctuations. J Neurophysiol. 110,

1021–1034. doi: 10.1152/jn.00006.2013

Buzsáki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks.

Science 304, 1926–1929. doi: 10.1126/science.1099745

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from

incomplete data via the EM algorithm. J. R. Stat. Soc. B Stat. Methodol. 39, 1–38.

Destexhe, A., and Contreras, D. (2006). Neuronal computations with stochastic

network states. Science 314, 85–90. doi: 10.1126/science.1127241

Haider, B., Häusser, M., and Carandini, M. (2013). Inhibition dominates sensory

responses in the awake cortex. Nature 493, 97–100. doi: 10.1038/nature11665

Haykin, S. (ed.). (2001). Kalman Filtering and Neural Networks. John Wiley and

Sons Inc.

Heiss, J. E, Katz, Y., Ganmor, E., Lampl, I. (2008). Shift in the balance between

excitation and inhibition during sensory adaptation of S1 neurons. J. Neurosci.

28, 13320–13330. doi: 10.1523/JNEUROSCI.2646-08.2008

Huys, Q. J., Ahrens, M. B., and Paninski, L. (2006). Efficient estimation of detailed

single-neuronmodels. J. Neurophysiol. 96, 872–890. doi: 10.1152/jn.00079.2006

Katz, Y., Heiss, J. E., and Lampl, I. (2006). Cross-whisker adaptation of

neurons in the rat barrel cortex. J. Neurosci. 26, 13363–13372. doi:

10.1523/JNEUROSCI.4056-06.2006

Kobayashi, R., Shinomoto, S., and Lansky, P. (2011). Estimation of time-dependent

input from neuronal membrane potential. Neural Comput. 23, 3070–3093. doi:

10.1162/NECO_a_00205

Koch, C. (1999). Biophysics of Computation. New York, NY: Oxford University

Press.

Lankarany, M., Zhu, W. P., Swamy, M. N., and Toyoizumi, T. (2013a). Blind

deconvolution of Hodgkin-Huxley neuronal model.Conf. Proc. IEEE Eng. Med.

Biol. Soc. 2013, 3941–3944. doi: 10.1109/embc.2013.6610407

Lankarany, M., Zhu, W. P., Swamy, M. N., and Toyoizumi, T. (2013b). Inferring

trial-to-trial excitatory and inhibitory synaptic inputs from membrane

potential using Gaussian mixture Kalman filtering. Front. Comput. Neurosci.

7, 109. doi: 10.3389/fncom.2013.00109

Murphy, G. J., and Rieke, F. (2006). Network variability limits stimulus-evoked

spike timing precision in retinal ganglion cells. Neuron 52, 511–524. doi:

10.1016/j.neuron.2006.09.014

Paninski, L., Vidne, M., DePasquale, B., and Ferreira, D. G. (2012). Inferring

synaptic inputs given a noisy voltage trace via sequential Monte Carlo methods.

J. Comput. Neurosci. 33, 1–19. doi: 10.1007/s10827-011-0371-7

Priebe, N. J., and Ferster, D. (2005). Direction selectivity of excitation and

inhibition in simple cells of the cat primary visual cortex. Neuron 45, 133–145.

doi: 10.1016/j.neuron.2004.12.024

Ramirez, A., et al. (2014). Spatiotemporal receptive fields of barrel cortex revealed

by reverse correlation of synaptic input. Nat. Neurosci. 17, 866–875. doi:

10.1038/nn.3720

Shu, Y., Hasenstaub, A., and McCormick, D. A. (2003). Turning on and

off recurrent balanced cortical activity. Nature 423, 288–293. doi:

10.1038/nature01616

Tan, A. Y., Andoni, S., and Priebe, N. J. (2013). A spontaneous state of weakly

correlated synaptic excitation and inhibition in visual cortex. Neuroscience 247,

364–375. doi: 10.1016/j.neuroscience.2013.05.037

Vich, C., and Guillamon, A. (2015). Dissecting estimation of conductances in

subthreshold regimes. J. Comput. Neurosci. 39, 271–287. doi: 10.1007/s10827-

015-0576-2

Wehr, M., and Zador, A. M. (2003). Balanced inhibition underlies tuning

and sharpens spike timing in auditory cortex. Nature 426, 442–446. doi:

10.1038/nature02116

Zhang, L. I., Tan, A. Y., Schreiner, C. E., andMerzenich, M.M. (2003). Topography

and synaptic shaping of direction selectivity in primary auditory cortex. Nature

424, 201–205. doi: 10.1038/nature01796

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Lankarany, Heiss, Lampl and Toyoizumi. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 November 2016 | Volume 10 | Article 110

http://journal.frontiersin.org/article/10.3389/fncom.2016.00110/full#supplementary-material
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Simultaneous Bayesian Estimation of Excitatory and Inhibitory Synaptic Conductances by Exploiting Multiple Recorded Trials
	Introduction
	Materials and Methods
	In vivo Data
	Neuron Model
	Proposed Algorithm: Multiple-Trial Kalman Filtering (MtKF)
	Derivation of MtKF Algorithm
	Kalman Forward/Backward Filtering
	Inferring Statistical Parameters via Expectation Maximization

	Extension of Multiple-Trial Framework for Particle Filtering (MtPF Algorithm)
	Structured and Non-structured Synaptic Inputs

	Results
	Multiple-Trial Kalman Filtering (MtKF) Outperforms Existing Bayesian Algorithms for Simultaneously Inferring Excitatory and Inhibitory Synaptic Conductances
	Multiple-Trial Particle Filtering (MtPF): multiple-Trial Framework is Generalizable
	Improvement of the Estimated Excitatory and Inhibitory Synaptic Conductances by Optimizing the Level of Current Injection
	Inferring Excitatory and Inhibitory Synaptic Conductances from In vivo Recordings

	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


