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Abstract: Nutraceuticals provide many biological benefits besides their basic nutritional value.
However, their biological efficacies are often limited by poor absorption and low bioavailability.
Nanomaterials have received much attention as potential delivery systems of nutrients and phytonu-
trients for multiple applications. Nanomicelles are nanosized colloidal structures with a hydrophobic
core and hydrophilic shell. Due to their unique characteristics, they have shown great perspectives in
food and nutraceutical science. In this review, we discussed the unique properties of nanomicelles.
We also emphasized the latest advances on the design of different nanomicelles for efficient delivery
and improved bioavailability of various nutrients. The role of nanomicelles in the efficacy improve-
ment of bioactive components from nutraceutical and health foods has been included. Importantly, the
safety concerns on nano-processed food products were highlighted.
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1. Introduction

Nutraceuticals have recently received ample attention due to their health benefits
beyond the nutritive role. The majority of nutraceuticals responsible for the positive effects
on well-being are bioactive compounds derived from the plant and animal sources. It has
been demonstrated that food-derived bioactive compounds could positively affect the major
body systems and reduce the risks of chronic diseases [1]. For example, polyphenols from
fruits and vegetables are secondary metabolites in plants. They are not essential nutrients
but could potentially promote human health [2]. Some lipophilic bioactive compounds
such as carotenoids, long chain polyunsaturated fatty acids may also have beneficial effects
on health [3,4]. Many studies have suggested that food-derived bioactive compounds
exert various biological actions including antioxidant, anti-inflammatory, anticancer, anti-
atherosclerotic and antimicrobial activities [5–7]. These compounds in the form of isolated
molecules or extracts become promising ingredients for functional foods, which have found
wide applications in food industries.

In order to exert their health-promoting effects, bioactive compounds need to go
through several processes before reaching the target organs, including food processing, be-
ing released from the food matrix, and transiting through the gastrointestinal tract and then
metabolism [8]. These processes are referred to as bioaccessibility and bioavailability, which
are the main factors affecting the biofunctional properties of bioactive compounds [9]. Thus,
assessment of bioaccessibility and bioavailability of these compounds has currently become
a promising research area. The similar terms have different meanings. Bioaccessibility is the
fraction of a compound released from the food matrix, which can be potentially absorbed
in the small intestine (Figure 1a). It is the first step of bioavailability [10,11]. Bioavailability
is defined as the extent and rate of bioactive compounds absorbed and metabolized by
the human body to exert nutritional efficacy (Figure 1b,c) [12]. It is influenced by various
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factors, including the nature of bioactive compounds such as stability, solubility and compo-
sition, the structure of the food matrix and metabolism in enterocytes [13–16]. Most of plant
bioactive ingredients easily degrade and their stability is affected by light, temperature,
oxygen and storage. Low aqueous solubility of hydrophobic compounds may result in
poor dissolution, limited diffusion and permeability across intestinal epithelium cells, thus
affecting their bioavailability [17]. The bioavailability of bioactive compounds could also
be modified in the gastrointestinal tract by co-ingested macronutrients and micronutrients
presented in the food matrix. These nutrients can interact with bioactive compounds,
favoring or inhibiting their liberation and solubilization during digestion [18,19].
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Figure 1. The overall oral bioavailability of bioactives is governed by three main factors: (a) bioacces-
sibility; (b) absorption and (c) transformation. Reproduced with permission from ref. [9]. Copyright
2016 by MDPI.

High bioavailability is essential for bioactive compounds to reach sufficient blood
concentration and exert their beneficial health effects. There are several strategies to be used
to enhance their bioaccessibility and bioavailability. They include technological and chemi-
cal modifications of the molecules, dosing formulations, combination with other dietary
components for synergism, and use of micro-/nanoparticle delivery systems [20]. Recently,
a wide range of engineered nanomaterials have been proposed to enhance the nutritional
value of food products [21–23]. The nanomaterials can be employed to incorporate bioac-
tive compounds to prevent degradation and metabolic modifications [24,25]. Their further
benefits include the enhancement of bioavailability, controlled release, effective delivery
to specific sites-of-action, masking effect on undesired senses and prevention of interac-
tions with other antagonistic components, etc. [26,27]. Numerous different nanomaterials
have been developed for food-related applications, including nanocapsules, nanofibers or
nanotubes as delivery systems for bioactive compounds [28]. Nanomicelles are nanosized
colloidal dispersions with a hydrophobic core and hydrophilic shell, which have emerged
as a promising tool for the delivery of nutrients [29]. This current review provides an
overview of the unique properties of nanomicelles endowing them with various functions.
The latest advances regarding the design of different nanomicelles for the efficient delivery
and improved bioavailability of various nutrients are critically discussed. The role of
nanomicelles in the efficacy improvement of bioactive components has also been included.
Moreover, the safety concerns on nano-processed food products are also highlighted.
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2. Types of Nanomicelles

Nanomicelles usually consist of both hydrophilic (polar) and hydrophobic (nonpolar)
groups and amphiphilic molecules are their common subunits [30]. The orientation of these
molecules changes to form regular or reverse nanomicelles depending on the solvent. In
aqueous medium, the regular nanomicelles are formed with the hydrophilic portion of
molecules toward the outer surface and hydrophobic parts inside (Figure 2a) [31]. Con-
versely, the reverse nanomicelles are formed in the nonpolar solvent with the hydrophobic
portion toward the surface and hydrophilic portion toward the core (Figure 2b) [32]. This
unique property makes the nanomicelles to be the potential vehicle for loading different
types of bioactive compounds. Regular nanomicelles could be used to load nonsoluble com-
pounds and reverse nanomicelles for soluble compounds [33] since the protective shell of
nanomicelles could reduce the direct contact of loading compounds with the environment
and improve their bioavailability [34,35].
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Another category is polymeric micelles (PM) with narrow size distributions in the
range of 10–100 nm. PM have characteristic core–shell structures including an “inner
core” and an “outer shell”, which are usually formed through the self-assembly of block
copolymers (Figure 2c). The inner core consists of a hydrophobic core for compound
entrapment and the outer shell is composed of a hydrophilic block of polyethylene gly-
col (PEG), which could protect entrapped compounds from unexpected interactions and
biodegradation in an in vivo environment [36,37]. With the unique molecular architectures,
PM have high stability and could deliver bioactive compounds to the target site more effi-
ciently. Furthermore, engineering the micelle-forming block copolymers makes it possible
for PM to incorporate drug or bioactive compounds on demand, and endow them smart
functionalities such as environment-sensitivity and targetability as well.



Polymers 2022, 14, 3278 4 of 19

3. Properties of Nanomicelles

The predominant physico-chemical characteristic of micelles is their small size, which
determines their fate in vivo. PM are usually in a diameter range from 10 nm to 100 nm
with a substantial narrow distribution. They can evade scavenging by the mononuclear
phagocytic system in the liver and bypass the filtration of inter-endothelial cells in the
spleen. It is ideal for intravenous injection to attain stable, long-term circulation in the
bloodstream [38]. Moreover, PM are typically formed with the hydrophobic parts of the
polymer on the inside (core) and hydrophilic on the outside (shell). The hydrophobic core
can incorporate drugs with poor aqueous solubility and the hydrophilic shell provides some
protection for the drugs against metabolism [39], which leads to improved accumulation of
delivered drugs at target tissue sites. All these characteristics are critical in the application
of nanomicelles as drug carriers.

High structural stability is one of unique properties of nanomicelles due to the entan-
glement of polymer chains in the inner core, and has the two aspects of thermodynamic and
kinetic stability [39]. Thermodynamic stability occurs when the concentration of monomers
(non-assembled amphiphilic polymer molecule) is above the critical micelle concentration
(CMC) [40]. CMC is a threshold for monomers to start to assemble into PM, which is
usually affected by the hydrophilic-lipophilic balance of the monomers [41,42]. Nanomi-
celles generally have very low CMC ranging from 10–6 to 10–7 M [32]. When above CMC,
the polymer chains associate and the self-assemblies/micelles are formed; otherwise, am-
phiphilic molecules exist separately in aqueous environment. Kinetic stability plays a much
more important role in drug delivery in physiological environments at non-equilibrium
conditions. When monomer concentration is below CMC, the kinetic stability comes into
action, and then nanomicelles disassemble slowly. The slow dissociation could make the
nanomicelles remain intact with the delivered drug until it reaches the target site [43].

Nanomicelles show excellent ability to load a large number of hydrophobic drugs.
Many newly developed drugs are hydrophobic and water insoluble. It is estimated that
about 70% of new chemical entities are poorly water soluble, and many are even insoluble
in organic media [44]. Low solubility limits the drug dissolution rate and results in erratic
absorption patterns. It becomes a key factor to limit the therapeutic efficiency of many
potent drugs [45]. With the unique structure, nanomicellles become a promising platform
to deliver these poorly soluble compounds. The micelles’ inner hydrophobic core could
entrap hydrophobic drug molecules and a hydrophilic outer shell layer extends outwards
to maintain the water solubility. They could also prevent biodegradation of entrapped
drugs [46,47], leading to a better drug accumulation in the target site. Nanomicelles have
been employed as vehicles to deliver chemotherapeutics for cancer treatment. Polyethylene
glycol (PEG)-derivatized dual-functional nanomicelles have been established in the clinic
to deliver small-molecule drugs such as camptothecin (CPT), doxorubicin (DOX), paclitaxel
(PTX), and docetaxel [48,49]. Some other natural products have also been conjugated to
PEG to form dual-functional nanomicelles for cancer therapy such as vitamin E succinate,
(−)-epigallocatechin-3-gallate, embelin, and S-trans, trans-farnesyl thiosalicylic acid [50,51].

Advanced nanotechnology has endowed nanomicelles some novel properties, such
as stimuli sensitivity. An ideal micellar system is supposed to deliver the drug, retain
its stability during circulation and release it in the target tissue as a result of physiolog-
ical or external triggers [52]. These nanomicelles are referred to as “stimuli-sensitive
nanomicelles”. A variety of triggers have been used to destabilize drug-loaded PM such
as temperature, pH, enzymatic reactions, redox processes, light, ultrasound, as well as
combinations thereof [53,54]. The pH-responsive PMs are a newly emerged drug nanocar-
rier for cancer treatment. Generally, block copolymeric micelles containing L-histidine,
pyridine, and tertiary amine groups are pH sensitive. When pH is above pKa of protonable
group, the copolymers assemble into micelles and the pH-sensitive block forms the core of
micelles, which are uncharged and hydrophobic. While pH is below the pKa value, the
acidic core is protonated and becomes negatively charged. The ionisation of the polymers
leads to increased hydrophilicity and electrostatic repulsion, which in turn causes the
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destabilisation of the micelles. Therefore, the delivered therapeutic agents could be re-
leased selectively in acidic circumstances like a tumor cell, endosomes, or lysosomes [55,56].
Thermo-sensitivity is another property of nanomicelles that is most investigated, especially
in the field of oncology. In temperature-responsive systems, drug release is controlled by
variation of microenvironmental temperature. The delivery carriers retain the drug load
within normal body temperature (~37 ◦C) and release the drug at higher temperature, for
example, at the local temperature of the tumor environment (~40–42 ◦C) [57]. Thermo-
responsive polymers have lower critical solution temperature (LCST), which is a threshold
for thermo-responsive polymers to undergo a phase transition [58]. Desired LCST range
could be obtained by the introduction of hydrophobic or hydrophilic comonomers [59].
When the temperature is below the LCST, the polymers with thermo-responsive blocks
form water-soluble nanomicelles. Whereas, when the temperature is over LCST, hydrogen
bonds between water and the polymer chains disrupt and the polymers become insoluble
in water and then the destabilization results in the release of delivered drugs. Poly(N-
iso-propylacrylamide) (PNIPAAm) and poly(N-alkylacrylamide) compounds have been
studied as temperature-responsive PM [54]. Light, including UV, visible, and infrared/NIR
light has also been explored as an external trigger for PM to achieve on-demand drug
release [60,61]. The light-responsive PM usually are composed of chromophores, such as
azobenzene, pyrene, or nitrobenzyl groups [62,63]. When exposed to light, the nanostruc-
ture of PM can be altered, leading to disintegration of nanomicelles and then release of
payloads [64]. Besides the above-mentioned triggers, hydrolysis, ultrasound and redox
potential have also been explored and evaluated in many studies for selective delivery of
delivered compounds [65–67].

Nanomicelles can deliver drugs into tumors via passive accumulation. Their charac-
teristic of small size endows them the ability to extravasate into the interstitium of body
compartments with leaky vasculature (tumors and infarcts) by the enhanced permeation
and retention (EPR) effect [68]. However, there are still some problems associated with
rapid drug release from the micelles and challenges with respect to intracellular delivery
of the drug [69]. For active targeting, ligands such as antibodies and peptides could be
incorporated on the surface of nanomicelles. They can target cells based on relationships
with particular targets and conjugation with locally functioning signal protein [70]. The ac-
tive nanomicelles could be uptaken by a specific diseased or cancerous cell with maximum
distribution and minimum side effects.

4. Advantages and Disadvantages of Nanomicelles

Nanomicelles have some advantages due to their size and structural composition.
They are an amphiphilic molecule with the characteristic core-shell structure. The hy-
drophobic drugs can bind to the hydrophobic core of nanomicelles, leading to the enhanced
solubility of the drugs by several folds [71]. They can also increase the stability of the drugs,
protect them against the elimination by the mononuclear phagocyte system and lead to
prolonged blood circulation [70]. Some target moieties such as specific surface receptor,
transporter protein, or the phage fusion protein, could be conjugated with nanomicelles,
endowing them specific targeting capability [72]. By incorporating or conjugating with
special assembly units, PM could release the loaded drugs triggered by various extra- and
intracellular biological stimuli, resulting in higher selectivity and lower side effects [73].
Nanomicelles are made of hydrophobic and biodegradable polymeric nanoparticles, which
could act as the local depot of drugs for continuous supply of therapeutic agents at the
targeted diseased site and improve their treatment effect [74]. PM are formed typically in a
diameter range from 10 nm to 100 nm. The size range is considered ideal for intravenous
drug delivery without the occurrence of embolism.

The major concern of micelles is their stability in blood dream. When injected in-
travenously, the nanomicelles are diluted, which may shift the equilibrium towards the
unimer state, thus leading to their dissociation. The loaded drugs can leak out of the
polymer assembly [75]. Therefore, more strategies should be developed to modify the
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physical-chemical properties of micelles for high stability. Animal study is necessary to gain
further insight to micelle stability. It may provide answers to the fundamental questions
which cannot be answered using fluorescence techniques.

5. Application of Nanomicelles in Bioactive Nutrient Delivery
5.1. Enhance Stability and Bioavailability of Delivered Bioactive Nutrients

Some advantages of nanomicelles contribute to the improved bioavailability of bioac-
tive compounds. Nanomicelles can increase stability during digestion, facilitate transport
across the biological barriers, enhance the solubility of poorly water-soluble nutraceuti-
cals, decrease biological and environmental degradation of sensitive compounds, realize
target delivery and controlled release. Therefore, they offer a promising solution for the
problems regarding solubility, stability and oral bioavailability of bioactive nutraceuticals
(Figure 3) [76–78], and have been investigated as delivery vehicles for hydrophobic nu-
traceuticals [28,79]. Some recent applications of nanomicelles in delivering food nutrients
and bioactives have been summarized in Table 1.
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Figure 3. Bioavailability of hydrophobic bioactive substances can be increased by encapsulating
them in nanoparticles. The triglycerides (TG) in the lipid nanoparticles are broken down into free
fatty acids (FFA) and monoglycerides (MG), which are packed into mixed micelles with bioactive
substances and transported to the epithelium cells. They are then reassembled into triglycerides,
packed into chylomicrons, and transported into the bloodstream through the lymphatic system. Lipid
digestion and nutraceutical bioaccessibility increase with decreasing droplet size. Reproduced with
permission from ref. [78]. Copyright 2020 by the American Chemical Society.

Table 1. Application of nanomicelles in delivering food nutrients and bioactives.

Category Compound Micelles Responsible for
the Delivery References

Vitamins Vitamin D2
Re-assembled casein micelle

from micellar casein [80]

Vitamin D3 Re-assembled casein micelle [81]
Vitamin E
Vitamin A

NanoSolve®

Casein micelle
[82]
[83]

Lipids Fish oil Casein micelle [84]
Vegetable oil Casein micelle [84]

Docosahexaenoic acid
(DHA) Re-assembled casein micelle [85]
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Table 1. Cont.

Category Compound Micelles Responsible for
the Delivery References

Bioactives β-carotene Casein micelle [86]
Co-enzyme Q10 (CoQ10) NanoSolve® [82]

Curcumin Casein micelle [87]

Resveratrol mPEG-PLA co-polymeric
nanomicelles [88]

Capsaicin α-lactalbumin nanomicelles [89]
Quercetin Polymeric micelles [90]

Gambogic acid Polymeric micelles [91]

Casein is phosphorylated protein, accounting for about 70~80 percent of total protein
in milk. It demonstrates high stability at temperatures >100 ◦C and pressures up to 100 MPa.
Due to its elastic structural and functional properties, casein is regarded as an excellent
encapsulation particle and recognized as GRAS (Generally Recognized as Safe). Casein
micelles (CM) are one of natural nanovehicles for hydrophobic nutraceuticals. They are in
the form of spherical colloidal particles with the average diameter of 150 nm (50–500 nm),
consisting of αs1-casein, αs2-casein, β-casein, and κ-casein [92]. κ-casein is on the surface
of CM, providing a hydrophilic, charged, and diffuse surface layer (Figure 4a) [93]. The
micelles are stabilized by casein structures and calcium-phosphate bridges. Many studies
have tried to produce reassembled (or reformed) casein micelles (r-CM) to encapsulate
hydrophobic compounds (Figure 4b) [94].
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Figure 4. (a) The schematic of the submicelle model of the casein micelle. Reproduced with permission
from ref. [93]. Copyright 2021 by the MDPI; (b) Graphical representation of the general principle
behind reassembled casein nanospheres. Briefly, the micellar structure is disrupted, lipophilic
compounds dissolved in organic solvents bind to hydrophobic regions of casein peptides; then
caseins are reassembled, creating new, substance-loaded nanoparticles. Reproduced with permission
from ref. [94]. Copyright 2017 by Springer.

CM could not only entrap the hydrophobic chemotherapeutic drugs for oral drug
delivery, but also provide excellent target-activated release of bioactives in the stomach [95].
Vitamin D (VD) is a fat-soluble vitamin and plays a great role in calcium and phospho-
rus homeostasis [96]. VD deficiency is a public health problem, and about one billion
people suffer from VD deficiency in the world. VD fortification, especially in milk and
its products proves to be an efficient way to achieve healthy level of VD. Haham et al.
produced r-CM loaded VD3 by using ultra-high-pressure homogenization [81]. Their study
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indicated that r-CM could significantly prevent thermal degradation of encapsulated VD3
and keep it stable during cold storage. The high bioavailability of VD3 encapsulated in
r-CM in vivo was confirmed as well, which was at least as high as VD3 in a standard
aqueous supplement stabilized with Tween-80. It was also found CM had a strong intrinsic
affinity to bind vitamin A and could act as carriers for the fat-soluble vitamin used to fortify
commercially available skim milks [83]. Docosahexaenoic acid (DHA) is a kind of Omega-3
polyunsaturated fatty acid, and has lots of beneficial effects on the human body such as
cardiovascular-protective and cancer-preventive effects, antithrombotic, antiatherogenic
and anti-inflammatory properties [97–99]. DHA is hydrophobic and practically insoluble
in water, and highly prone to oxidation due to its polyunsaturated structure. The r-CM
was introduced to delivery DHA. In the study of Zimet et al., they bound DHA to casein
and then entrapped it within re-assembled casein micelles to develop the DHA-loaded
r-CM [85]. The system exhibited remarkable protection against DHA oxidation and demon-
strated good colloidal stability and bioactive conservation throughout shelf life at 4 ◦C.
CM was also exploited as a carrier of curcumin for cancer therapy. Curcumin is a natural
polyphenolic compound extracted from the rhizome of turmeric (Curcuma longa) with
multiple bioactivities [100,101]. But curcumin is lipophilic with extremely low solubility
in aqueous solution and poor bioavailability [102]. Moreover, it is prone to chemically
degrade when exposed to light. Many studies have been conducted to increase its aqueous
solubility and bioavailability through encapsulation in various nanoparticles [103–105].
Sahu et al. developed the complex formation of curcumin with bovine CMs [87]. The
CM-curcumin complex exhibited cytotoxic effects on HeLa cells with IC50 of 12.69 µM,
which was compared to an equal dose of free curcumin with IC50 of 14.85 µM. Because
casein is an edible protein, the complex may become a potential oral dose of curcumin for
cancer therapy. In addition to antitumor activity, curcumin is a food-grade photosensitizer
and exhibits remarkable antimicrobial activity through redox reaction. Micelles with two
surfactants of Surfynol 465 and Tween 80 have been used to encapsulate curcumin [106].
The curcumin in all surfactant solutions prepared from Surfynol 465 or Tween 80 showed
high stability and good photoinactivation. Furthermore, the micelle-based delivery sys-
tem promoted adsorption and the generation of reactive oxygen species in the immediate
environment of the microbial cell and then enhanced the photoinactivation.

NanoSolve® is a commercial micellar formulation (Lipoid GmbH, Ludwigshafen, Ger-
many) with a key component of purified phospholipids. Purified phospholipids are natural
emulsifier derived from soybean extract and could be dispersed in highly concentrated
aqueous solutions of polyol or carbohydrate. They are able to solubilize lipids or lipophilic
actives for oral application [107] and form transparent emulsions with particle sizes be-
tween 30 and 60 nm. Co-enzyme Q10 (CoQ10) and vitamin E are both lipophilic molecules
with excellent antioxidant activity. However, their commercial formulations are usually
poorly absorbed in the intestine. A human study conducted by Wajda et al. showed the
bioavailability of CoQ10 and vitamin E in NanoSolve formulation was increased fivefold
and tenfold when compared to their pure substances [82]. In another study, a water soluble
micellar formulation of α-tocopherol acetate was developed with a particle size of 50 nm
(Aquanova AG, Darmstadt, Germany), which could remarkably increase the α-tocopherol
acetate concentration in plasma (Aquanova AG, Darmstadt, Germany) [108].

5.2. Improve Bioefficiency of Delivered Nutrients and Bioactives for Disease Therapy

With the development of molecular nutrition, nanomicelles have been regarded as an
effective platform to deliver various compounds for health purpose. They have been used
as vehicles for many bioactive nutrients in the therapy of some chronic non-communicable
diseases. The recent applications of nanomicelles in delivering bioactive nutrients for
disease therapy have been summarized in Table 2.

Cancer is now widely recognized as a great threat to the health of people. Many
works have been done on the micellar delivery system for chemotherapeutic drugs such
as PTX and docetaxel [109]. Some nanomicellar drugs have advanced to the market. For
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example, Genexol-PM is a primary mPEG-PLA polymeric micelle loaded with PTX, which
was approved by the FDA in 2007 [110]. In addition to chemotherapeutic drugs, some nu-
trients and phytochemicals have emerged as effective agents for cancer therapy due to their
various effects on diverse molecular signaling pathways and having fewer side effects than
conventional treatments [111,112]. Quercetin is a polyphenolic compound and rich in many
plants, fruits, and vegetables. It exhibits anticancer activity by inhibiting growth of cancer
cells and suppressing tumorigenesis and cancer progression. But its water solubility is as
low as 0.17–7.7 µg/mL and only 1% in humans and 17% in rats is bioavailable [113–115].
Recently, nanomicelles have been implemented to enhance the solubility and bioavailability
of quercetin for better therapeutic use. Zhao et al. encapsulated quercetin in nanomicelles.
The water solubility of quercetin was improved by 450-fold. About 25% quercetin was
released within the initial 2 h, and then it was followed by slow, sustained release during
48 h monitoring period. The quercetin-loaded micelles inhibited proliferation and apopto-
sis of human androgen prostate cancer cell lines in vitro with the half-maximal inhibitory
concentration (IC50) value of 20.2 µM, much lower than free quercetin (>200 µM). Fur-
thermore, the nanomicelles with quercetin showed higher antitumor efficiency in the PC-3
xenograft mouse model, and proliferation rate decreased by 52.03% compared with the
control group. They may become a promising vehicle to deliver bioactives for prostate
cancer treatment (Figure 5) [116]. Patra et al. developed optimal mixed polymeric micelle
formulation to encapsulate quercetin [90]. Drug loading and encapsulation efficiency of
the selected formulation were 9.01 ± 0.11% and 90.07 ± 1.09%, respectively. The solubility
and stability of quercetin was significantly improved, and quercetin could be released
sustainedly from the mixed micelles. Increased in vitro cytotoxicity was found in breast
(MCF-7 and MDAMB-231), ovarian (SKOV-3), and multidrug resistant (NCI/ADR) cancer
cells compared to free quercetin. Some other bioactive compounds such as curcumin
(Gou, et al.) [117,118], and gambogic acid [91] have also been explored by using mixed PM
to enhance their therapeutic potential in cancer.
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Osteoporosis is a skeletal disease with low bone mass and a deterioration of the
bone microarchitecture, leading to increased bone fragility and risk of fractures. It affects
mostly postmenopausal women due to the reduction of estrogen. Resveratrol (3,5,40-
trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol with two aromatic rings
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connected through a methylenic bridge. It is presented in many species of plants such as
grapes, cocoa, strawberries, tomatoes, peanuts, hop, cranberries, and sugar cane [119–122].
Due to structural similarity to estrogen, RSV can bind to estrogen receptors and exhibit
beneficial effect in osteoporosis [123]. However, due to its lipophilic nature, RSV has
low aqueous solubility. It is extensively metabolized and rapidly eliminated, resulting
in poor bioavailability. Nanomicelles have been tested on their ability to encapsulate
RSV for improved efficacy. A human study with twelve healthy volunteers showed oral
bioavailability of RSV in liquid micellar solubilization was significantly higher than the
native powder and no side effects were detected [124]. Nie et al. synthesized RSV loaded
mPEG-PLA co-polymeric nanomicelles by using the dialysis membrane technique and
investigated their osteoporosis preventive effect in ovariectomized Sprague-Dawley female
rats [88]. The synthesized nanomicelles had drug loading and encapsulation efficiency of
11 ± 2.3% and 72.8 ± 2.4%, respectively. RSV in the formulation was sustainedly released
over a long period of time and its bioavailability was significantly increased. It could not
only increase bone mineral density and bone strength, but also facilitate restoration of bone
turnover markers of osteocalcin and C-terminal teleopeptide of type 1 collagen, therefore
exhibiting prominent protective effects against osteoporosis.

Obesity is a major public health challenge, which can increase the risk of a multitude
of diseases and early mortality in people. Effective, safe, and widely available anti-obesity
treatments are urgently warranted. Capsaicin is an alkaloid in various species of chili
peppers responsible for the pungent sensation in chili peppers [125]. Accumulating ev-
idence has indicated that capsaicin has excellent anti-obesity activity by facilitating fat
oxidation and energy expenditure, improving insulin sensitivity, and promoting the white
adipose browning in both rodents and adult humans [126–128]. However, there are several
disadvantages of capsaicin limiting its application as oral supplements, including poor
water solubility, low bioavailability, and obvious irritation of the mouth and gastrointestinal
tract [129]. Bao et al. successfully developed a nanomedicine by using α-lactalbumin (α-lac)
nanomicelles to encapsulate capsaicin and then delivered it directly to adipose tissues
by a microneedle technology [89]. In 3T3-L1 adipocyte model, the nanomicelles could
regulate adipogenesis and improve mitochondrial biogenesis, leading to reduced lipid
droplet content. Dramatic weight loss and adipose tissue browning was also detected in
the obese mice model. The naomicelles could activate energy metabolism, increase mito-
chondrial biogenesis, and induce adipocyte browning markers. Their effect outperformed
direct subcutaneous injection of free capsaicin. Other bioactive compounds have also
exhibited protective effect against obesity. Xanthohumol is a prenylated chalcone of the
female inflorescences (hop cones) [130]. It could decrease adipogenesis, and improve lipid
and glucose metabolism in murine models of hyperlipidemia, obesity and type 2 diabetes
mellitus [131–133], which are the main components of the metabolic syndrome. However,
its therapeutic use was limited by the poor oral bioavailability. A micellar solubilization
of xanthohumol was applied by oral gavage at a daily dose of 2.5 mg/kg body weight in
a preclinical mouse model of diet-induced obesity, diabetes and non-alcoholic fatty liver
disease. Plasma xanthohumol was detected at a concentration of 100–330 nmol/L in the
mouse model. It could significantly inhibit body weight-gain and glucose intolerance
of the mice induced by western-type diet. The micellar solubilization was proved to be
an effective way to enhance the bioavailability and beneficial effects of xanthohumol on
different components of the metabolic syndrome [134].

Hepatic fibrosis is one kind of chronic liver diseases with a high incidence and mortal-
ity in the world. Its most fundamental pathogenesis is the activation and proliferation of
hepatic stellate cells (HSCs) [135]. Inhibiting the activation of HSCs becomes an important
way for the treatment of hepatic fibrosis. Although there are some drugs, such as silibinin
and interferon have been proved to be effective in reversing the activation of HSCs [136].
However, it is still difficult for these drugs to reach HSCs and exhibit their anti-hepatic
fibrosis effect in vivo due to the physiological structure of liver. Hyaluronic acid (HA)
is a kind of polysaccharides consisting of alternating units of N-acetyl-D-glucosamine
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and glucuronic acid [137]. It has been demonstrated that HA could specifically bind to
CD44 receptors which are usually overexpressed in fibrotic liver [138]. HA has been em-
ployed to fabricate HA-functionalized nanomicelles (HA micelles) for target delivery of
anti-hepatic fibrosis drugs. Li et al. designed silibinin-loaded hyaluronic acid (SLB-HA)
micelles and intravenously injected into rats (Figure 6) [139]. The pharmacokinetic profile
in vivo showed the release of SLB-HA continued for 12 h and the blood circulation time
was greatly extended. The area under curve was 30.4-fold higher than that of SLB solution.
The SLB-HA micelles showed significant liver-targeting effects and could selectively kill
activated HSCs. Moreover, it had a good biological safety and biocompatibility. The novel
nanomicelle system proved to be a potential vehicle for anti-hepatic fibrosis drugs delivery.
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Nanomicelles have exhibited lots of advantages as a delivery system. Many PM
formulations have reached clinical trials and some have obtained regulatory approval or
clinical evaluation, such as Genexol® PM, NK105 and so on [140]. These drugs are all for
cancer indications. As mentioned above, many nanomicelle formulations delivering food
nutrients and bioactives have been reported in the literature. However, most of them are
currently in experimental research phase. By now, there is no nanomicelle formulation with
food nutrients and bioactives to reach clinical trials.
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Table 2. Application of nanomicelles in delivering bioactive nutrients for disease therapy.

Disease Bioactives Nanomicelle
Formulation Size (nm) Cell Line or

Animal Model Possible Mechanism References

Cancer Quercetin DSPE-PEG2000 13.21 ± 0.97

Human prostate
cancer cell line PC-3;

PC-3 xenograft
mouse model Inhibit growth of cancer

cells and suppress
tumorigenesis and
cancer progression

[113]

Quercetin

Mixed polymeric
micelles obtained

from Pluronic
polymers, P123

and P407

24.83 ± 0.44 (A16);
26.37 ± 2.19 (A22)

SKOV-3 (ovarian),
NCI/ADR (multidrug
resistant), MCF-7 and
MDA-MB-231 (breast)

cancer cells

[90]

Curcumin

Monomethoxy
poly(ethylene
glycol)-poly(3-
caprolactone)
(MPEG-PCL)

micelles

27.3 ± 1.3
C-26 colon carcinoma
cells; C-26 xenograft

mouse model

Suppress proliferation of
tumor cells,

down-regulate
transcription factors

NF-kappa B, AP-1 and
Egr-1; down-regulate

growth factor receptors;
and inhibit the activity of
c-Jun N-terminal kinase,
protein tyrosine kinases

and protein
serine/threonine kinases.

[118]

Gambogic
acid

Poloxamer
407/TPGS mixed

micelles
17.4 ± 0.5

Breast cancer MCF-7
cells;

multidrug-resistant
NCI/ADR-RES cells

Induce apoptosis of tumor
cells, depolymerize
microtubule, and

downregulate
telomerase activity

[91]

Osteoporosis Resveratrol
mPEG-PLA

co-polymeric
nanomicelles

52.87 ± 3.8
Ovariectomized
Sprague-Dawley

female rats

Promote
osteoblast-mediated bone

formation and inhibit
osteoclast-stimulated
bone resorption via
similar mechanisms

to genistein

[88]

Obesity Capsaicin
α-lactalbumin

(α-lac)
nanomicelles

30.2 3T3-L1 adipocyte
model

Promote the white
adipose browning and
suppress lipogenesis

[89]

Xanthohumol Micellar Xantho-
Flav-Solubilisate -

Mouse model of
obesity, diabetes and
non-alcoholic fatty

liver disease

Decrease adipogenesis
and improve lipid and
glucose metabolism in

murine models of
hyperlipidemia, obesity

and T2DM

[134]

Hepatic
fibrosis

Hyaluronic
acid

Hyaluronic acid
micelles 44.9 ± 2.1 Rat model of

liver fibrosis

Hyaluronic acid can
specifically bind to CD44

receptors which are
overexpressed in the liver

when hepatic
fibrosis occurs

[139]

5.3. Safety Concerns of Nanomicelles in Nutrition and Food Science

Apart from advantages of nanomicelles in the nutrition and food industry, safety
issues associated with the nanomicelles cannot be neglected. Although the material is
generally regarded as safe, risk may arise in human beings due to their completely dif-
ferent physiochemical properties in nanostates. Their small size may increase the risk
of bioaccumulation within organs and tissues. They may come into contact with cells
and their internal components, such as the nucleus, mitochondrion, and membrane, caus-
ing the occurring of a variety of diseases [141]. Many studies have shown nano-entities
may change the intracellular milieu by disrupting some cellular pathways and functional
processes [142], and then exhibit unanticipated effects on the overall functionality of the
cellular system [143]. Lots of factors have impact on the toxicity of nanoparticles such
as their nature, concentration, length of exposure, and individual sensitivity [144]. Their
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special characteristic of large surface area to volume ratio may also be the premise of their
migration into food and the toxic effect on humans after consumption [145].

The application of nanomaterials in nutrition and food science is increasing at a high
rate. However, there are no standard regulatory laws regarding their use in food and
agri-sector so far. The lack of necessary knowledge and regulations may pose a risk to the
environment and human health. Therefore, it is critical to build up effective guidelines
and policies for the safe utilization of nanoparticles in the food industry. A regulatory
structure is required to regulate any dangers connected to nanofood and the usage of
nanotechnologies in the food industry. Economic, social, and ethical issues raised by
nanotechnology should also been addressed in the regulations. Public participation in
nanotechnology decision making is also necessary to ensure democratic control of these
technological advances in nutrition and food area. Moreover, any new nanoparticles must
undergo full safety assessments before being used in any food product, and at last it should
be in the ingredients list of food products containing any nanoparticles.

6. Conclusions and Future Perspective

As nanobiotechnology steps forward, the popularity of nanomaterial in nutrition and
the food sector is increasing. Nanomicelles have unique architecture, with all their charac-
teristics incorporated into a single cage. They have lots of advantages such as small size,
high stability, stimuli sensitivity, and sustained release for hydrophobic compounds. They
could enhance stability and bioavailability of poorly soluble bioactive compounds and offer
excellent vehicle systems to deliver these agents to the target tissues. Promising results have
been achieved which show that nanomicelles could be applied to personalized therapy
of some chronic diseases and thus increase the therapy’s efficiency. However, there are
still some issues that need to be addressed. The risk can’t be neglected that nanomaterials
utilized as food ingredient or delivery vehicle may cause DNA damage, cell membrane
disruption, and cell death, and then affect the overall function of systems. Until now, very
few studies in an in vivo environment are available to study the effects of nanofoods on
human and animal health. Therefore, the introduction of the nanomaterial into nutrition
and food system should be prudent. More research work should be conducted to clarify
their possible adverse effects on human being as well as the impact on environment. Ap-
propriate regulations are necessary for the practical application of nanofoods. Compulsory
testing, especially safety assessments, should be required. The transparency of these issues
and scientific information may alleviate the concerns of consumers and increase the accept-
ability of nanofoods. The nanomicelles, if managed correctly, may bring great changes in
improving bioavailability and bioefficacy of bioactive compounds, which will be beneficial
to human health.
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