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ABSTRACT
More than 1 billion people live in informal settlements 
worldwide, where precarious living conditions pose unique 
challenges to managing a COVID-19 outbreak. Taking 
Northwest Syria as a case study, we simulated an outbreak 
in high- density informal Internally Displaced Persons 
(IDP) camps using a stochastic Susceptible- Exposed- 
Infectious- Recovered model. Expanding on previous 
studies, taking social conditions and population health/
structure into account, we modelled several interventions 
feasible in these settings: moderate self- distancing, self- 
isolation of symptomatic cases and protection of the most 
vulnerable in ‘safety zones’. We considered complementary 
measures to these interventions that can be implemented 
autonomously by these communities, such as buffer 
zones, health checks and carers for isolated individuals, 
quantifying their impact on the micro- dynamics of 
disease transmission. All interventions significantly reduce 
outbreak probability and some of them reduce mortality 
when an outbreak does occur. Self- distancing reduces 
mortality by up to 35% if contacts are reduced by 50%. 
A reduction in mortality by up to 18% can be achieved 
by providing one self- isolation tent per eight people. 
Protecting the most vulnerable in a safety zone reduces the 
outbreak probability in the vulnerable population and has 
synergistic effects with the other interventions. Our model 
predicts that a combination of all simulated interventions 
may reduce mortality by more than 90% and delay an 
outbreak’s peak by almost 2 months. Our results highlight 
the potential for non- medical interventions to mitigate 
the effects of the pandemic. Similar measures may be 
applicable to controlling COVID-19 in other informal 
settlements, particularly IDP camps in conflict regions, 
around the world.

INTRODUCTION
The spread of airborne infectious diseases 
with pandemic potential in regions immersed 
in protracted armed conflicts, with large 
displaced populations, is an important chal-
lenge.1 When the displaced population 
exceeds official resettlement and refugee 
camp capacity, internally displaced persons 

(IDPs) must live in informal settlements 
(hereafter named ‘camps’). These regions 
must contend with the public health chal-
lenges resulting from violence,2 the deterio-
ration of health systems,3 especially of critical 
care,4 and the breakdown of essential public 
infrastructure such as water and sanitation 

Key questions

What is already known?
 ► Since the onset of the COVID-19 pandemic, many 
studies have provided evidence for the effectiveness 
of strategies such as social distancing, testing, con-
tact tracing, case isolation, use of personal protec-
tive equipment/face masks and improved hygiene 
to reduce the spread of the disease. These studies 
underlie the recommendations of WHO, but their im-
plementation is contingent on local conditions and 
resources.

 ► Mathematical modelling is the basis of many epi-
demiological studies and has helped inform policy-
makers considering COVID-19 responses around the 
world. Nevertheless, only a limited number of studies 
have applied these models to informal settlements.

What are the new findings?
 ► We developed a mathematical model to study the 
dynamics of COVID-19 in Syrian internally displaced 
persons (IDP) camps, elaborating on previous ef-
forts done in similar settings by explicitly parame-
terising the camps’ demographics, living conditions 
and microdynamics of interpersonal contacts in our 
modelling.

 ► We designed interventions such as self- distancing, 
self- isolation and the creation of safety zones to pro-
tect the most vulnerable members of the population, 
through conversations with camp managers. We 
ensured that our proposed interventions would be 
feasible and have community buy- in.

 ► Our results show how low- cost, feasible, community- 
led non- medical interventions can significantly mit-
igate the impact of COVID-19 in Northwest Syrian 
IDP camps.
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systems.5 Urgent action is needed to contain the spread of 
disease in these settings, a task which necessarily involves 
the engagement of the communities living in them.6

This study focuses on the spread of COVID-19 in the 
Northwest region of Syria (NWS): a relatively small 
geographical area with 4.2 million people, of which 1.15 
million (27.4%) are IDPs living in camps,7 and where the 
number of cases increased 20- fold between 8 September 
and 20 October 2020.8 The health status of households 
in camps in NWS is poor; 24% have a member with a 
chronic disease, of whom 41% have no access to medi-
cines.9 As in other conflict regions, the political instability 
in NWS hinders coordinated public health actions, and 
the ongoing movements of IDPs create ample opportu-
nity for infectious disease transmission, while making 
contact tracing interventions infeasible.

To investigate feasible COVID-19 prevention interven-
tions in the camps, we considered a Susceptible- Exposed- 
Infectious- Recovered model similar to the one presented 
by Gatto et al,10 in which the camps’ populations are 
divided into classes reflecting their estimated age struc-
tures and comorbidity prevalence. We use this model 
to propose various interventions aimed at reducing the 
number of contacts within and between population 
classes in general, and with symptomatic individuals in 
particular. We paid special attention to how the living 
conditions in informal camps inform the assumptions 
underlying our proposed interventions, a question 
often neglected.11 We modelled interventions previously 
proposed for African cities,12 such as self- distancing, 
isolation of symptomatic individuals and the creation of 
a ‘safety zone’ in which more vulnerable members of the 
population are protected from exposure to the virus.

Building on the approach used to model the impact of 
these interventions in African cities, our model includes 
a parameterisation of the number of contacts each 
individual has per day.12 We further elaborate on this 
approach by making a more explicit representation of 
contacts and other parameters in the model. We consider 
the microdynamics of contacts, the effect of having carers 
to attend to isolated individuals, and the existence of a 
buffer zone in which exposed and protected population 
classes can interact under certain rules. We examine a 
potential worst- case scenario in which there is no access to 
any healthcare facility. Since empowering local commu-
nities in conflict regions to understand how to control 
diseases like COVID-19 is possibly the most (and perhaps 

only) effective way to minimise its spread, our models are 
of utmost importance for informing the implementation 
of realistic interventions in these regions.

METHODS
The model
We consider a model simulating a viral outbreak in a single 
camp over a 12- month period inspired by those proposed 
by Gatto et al10 and Bertuzzo et al13 (see figure 1). The 
model is adapted to the context of NWS IDP camps and 
is divided into compartments containing individuals at 
different possible stages along the disease’s progression, 
governed by the following set of differential equations:

 Ṡi = −λiSi  (1)

 Ėi = λiSi − δEEi  (2)

 Ṗi = δEEi − δPPi  (3)

 Ȧi =
(
1 − f

)
δPPi − γAAi  (4)

 İi = fδPPi −
(
liγI + hiη + giα

)
Ii  (5)

 Ḣi = hiηIi − γHHi  (6)

 Ṙi = γAAi + liγIIi +
(
1 − σ

)
γHHi  (7)

 Ḋi = giαIi + σγHHi  (8)

The susceptible population  
(
Si

)
  becomes exposed at rate 

 λi , while exposed individuals  
(
Ei

)
  progress through the 

latent period at rate  δE  to a preclinical infectious stage 
( Pi ), which then progresses to (at rate  δP ) either a clin-
ical (symptomatic,  Ii , with probability  f  ) or subclinical 
(asymptomatic,  Ai , with probability  1 − f  ) infectious 
stage. Asymptomatic cases recover ( Ri ) at rate  γA . Symp-
tomatic cases have three potential outcomes: mild cases 
will recover at rate  γI , severe cases will progress to an 

Figure 1 Diagram of the model. The model considers 
the following compartments: susceptible (S) exposed (E) 
infectious- presymptomatic (P) infectious asymptomatic (A) 
infectious symptomatic (I) infectious- requiring hospitalisation 
(H) recovered (R) and dead (D).

Key questions

What do the new findings imply?
 ► Our model represents a step forward in the much- needed search 
for epidemiological models that are sufficiently flexible to consid-
er specific social contexts. The model can also help inform similar 
interventions in refugee camps in conflict- torn regions, and poten-
tially be adapted to other informal settlements and vulnerable com-
munities around the world.
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extended infectious period during which they require 
hospitalisation ( Hi ) at rate  η , while critical cases requiring 
intensive care unit (ICU) care will die ( Di ) at rate α . 
Finally, since the fate of individuals in the hospitalised 
compartment is uncertain if healthcare is not available, 
we run simulations considering two possibilities: either 
all recover ( σ = 0 ), or all die (σ = 1 ) (see section Epide-
miological severity assumptions). The specific values for 
the parameters are presented in table 1.

While we introduced the model as a classical system 
of ordinary differential equations (Equations 1–8) we 
considered a stochastic implementation,14 with an integer 
description of the population in which a state is encoded 
in a vector  X =

(
S, E, P, I, A, H, R, D

)t
 , with the total popu-

lation size conserved throughout the simulation N = S + 
E + P + I + A + H + R + D, where an arrow indicates tran-
sitions in which the source compartment transfers one 
individual to the target compartment. The mean transi-
tion rates corresponding to each transition are displayed. 
The system then evolves following a continuous- time 
Markov process which is simulated following the Gillespie 
algorithm implemented in the R package adaptivetau.15

Demographic and behaviour classes
The model splits the population into classes (indexed  i  ) 
to account for heterogeneity with respect to clinical risk 
and behaviour. Working with population classes allows 
us to encode behavioural assumptions in the model 
and strike an appropriate balance between generality, 
computational tractability and the requisite specificity to 
realistically evaluate our proposed interventions.16 More-
over, the explicit representation of contacts between and 
within population classes allows us to design interven-
tions considering cultural and context- specific assump-
tions (see section Interventions and online supplemental 

material for details).11 Under a null model where no 
interventions are implemented, the distinctions between 
classes are only dependent on age and comorbidity status 
(hereafter ‘demographic classes’).  hi ,  gi , and  li  are demo-
graphic class- specific parameters, adjusted to ensure 
that the proportions of symptomatic cases progressing 
through each of the three potential clinical outcomes 
(mild, severe, and critical) are consistent with the litera-
ture (see section Epidemiological severity assumptions).

Under some interventions, the demographic classes 
may be subdivided further into subclasses according to 
behaviour (‘behaviour classes’). Consequently, different 
interventions may require models with different numbers 
of classes. We refer to both demographic and behaviour 
classes generically as ‘classes’ (see section Interventions 
for the modelling of behaviour classes).

Population structure and demographic classes
We parameterised the model with data from IDPs in 
NWS.17 The population sizes of informal camps are right- 
skewed, with a mean of 1212. We simulated camps with 
populations of 500, 1000 and 2000 individuals. Since 
interventions tend to be less effective in larger camps, 
the results presented refer to simulations with 2000 indi-
viduals, unless otherwise specified. For our demographic 
classes, we considered three age groups: children (age 
1, 0–12 years old), younger adults (age 2, 13–50 years.) 
and older adults (age 3, >50 years.). For ages 2 and 3, we 
considered two subclasses comprising healthy individuals 
and individuals with comorbidities (see table 2).

Transmissibility assumptions
Although individuals in IDP camps share tents with 
other co- occupants, whom they may be more likely to 
infect than occupants of different tents, we ignore spatial 

Table 1 Fixed parameters

Parameter Description Value Distribution Reference

 1/δE + 1/δP Incubation period (days) 5.2 (95% CI 4.1 to 7.0) Lognormal 45

 1/δP Presymptomatic infectious period (days) 2.3 (95% CI 0.8 to 3.8) Gaussian 18 46

 1/δE Latent period (days)  1/δE + 1/δP − 1/δP 
(Maximum=0.5 days)

Derived

 1/γI Symptomatic infectious period (days) 7 --- 18 47

 1/γA Asymptomatic infectious period (days) 7 --- 18 47

 1/η Time from symptom onset to requiring 
hospitalisation (days)

7 (IQR: 4–8) Gamma 48

 1/α Time from symptoms onset to death (critical 
cases, days)

10 (IQR: 6–12) Gamma 48

 1/γH Time from requiring hospitalisation to 
recovery/death (days)

10 (IQR: 7–14) Gamma 48

 f  Probability an infectious individual is 
symptomatic

0.84 (95% CI 0.8 to 0.88) Gamma 49

 σ Indicator of whether hospitalised recover or 
die  σ ∈

{
0, 1

}
 

--- Assumed

See online supplemental material for details.

https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
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structure in our model and assume a well- mixed popula-
tion. This is justified because individuals from different 
tents share common spaces (e.g. latrines) and have 
frequent interactions with each other, especially among 
children. Consequently, our following derivation of the 
transmissivity parameter itself, τ  , is not spatially explicit.

The rate at which susceptible individuals become 
exposed is

 
λi =

∑n
j=1 τCij

βPPj+βAAj+βIIj+βHHj
Nj   (9)

where  Cij   is the average number of contacts that individ-
uals of class  i  have with individuals of class  j   per day and 
 Nj  is the total population size of class  j . We parameterised 
 Cij  by multiplying the mean number of total contacts that 
individuals from a population class  i  have per day,  ci , by 
the probability of random interaction with individuals of 
class  j . Considering a well- mixed population, this proba-
bility is proportional to class  j ’s fraction of the total popu-
lation, that is,  Cij = ciNj/N . If interventions are absent, we 
consider demographic classes only and, hence, different 
values of  ci  reflect heterogeneity in the number of contacts 
by demographic class. We assume specific values of  ci  for 
each class based on conversations with camp managers in 
NWS (see table 2).

The probability of infection if there is a contact between 
a susceptible and an infected person is  τβP ,  τβA ,  τβI , or  τβH  

depending on whether the infected individual is in the 
presymptomatic ( Pi ), symptomatic ( Ii ), asymptomatic ( Ai

 ) or hospitalised compartment ( Hi ), respectively. The τ   
parameter represents the maximum transmissivity, which 
is observed at the presymptomatic stage for individuals 
who go on to become symptomatic.18 Thus, we selected 
the transmissivity of these individuals as a reference 
( βP→I = 1 ) with the remaining parameters set relative to 
 βP→I  ( βi < βP→I, i ∈

{
P, A, H, I

}
 ), where the mean transmis-

sibility of all presymptomatic individuals ( βP ) is estimated 
as a weighted average of the transmissibility of individuals 
that will become symptomatic and asymptomatic (see 
table 3, online supplemental materials for derivation).

The τ   parameter was estimated by randomly generating 
a value for the basic reproduction number,  R0 , following 
a Gaussian distribution with a mean of 4 (99% CI 3 to 
5) and dividing this value by the dominant eigenvalue of 
the next- generation matrix (see section Computational 
implementation for details and online supplemental 
material for the analytical results). The distribution of 
 R0  was a compromise between values reported in the 
literature from regions with high- density informal settle-
ments:  R0  = 2.77 in Abuja and 3.44 in Lagos, Nigeria,19 
3.3 in Buenos Aires20 and 5 in Rohingya refugee camps 
in Bangladesh.21

Table 2 Demographic class- specific parameters

Parameter Description

Demographic class

Age 1 
(0–12)

Age 2
(13–50) no 
comorbidities

Age 2
(13–50) 
comorbidities

Age 3 (>50) no 
comorbidities

Age 3 (>50) 
comorbidities References

Fraction in 
class

– 0.407 0.471 0.0626 0.022 0.0373 17 50

 ci Mean contacts 
per day

25 15 15 10 10 From camp 
managers

Estimated proportions of individuals in the population and mean number of contacts per individual per day for each demographic class. See 
online supplemental materials for derivations.

Table 3 Transmissibility parameters

Parameter Description Value Distribution Reference

 τ  Maximum transmissibility 0.14 (95% CI 0.05 to 0.40) Lognormal Derived

 βP→I Presymptomatic transmissibility of 
individuals becoming symptomatic 
relative toτ  

Reference stage (=1) – 18 46

 βP Mean presymptomatic 
transmissibility relative toτ  

0.93 (95% CI 0.88 to 0.99) Empirical Derived

 βA Asymptomatic transmissibility 
relative toτ  

0.14 (95% CI 0.05 to 0.40) Lognormal Derived

 βI Clinical symptomatic 
transmissibility relative toτ  

0.24 (95% CI 0.11 to 0.60) Lognormal Derived

 βH Hospitalised transmissibility 
relative toτ  

0.11 (95% CI 0.05 to 0.29) Lognormal Derived

See online supplemental materials for details.

https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
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Epidemiological severity assumptions
In NWS, there are four active and two planed COVID-19 
referral hospitals, with a current capacity of 66 ventilators, 
74 ICU beds and 355 ward beds for 4.2 million people.22 23 
Estimations based on an exponential growth model from 
Hariri et al predicted a collapse of health facilities 8 weeks 
into an outbreak.24 Although we do not have access to offi-
cial data on healthcare occupancy, the reported number 
of cases suggests that this scenario could have been 
reached.8 Hence, we considered a worst- case scenario in 
which individuals will not have access to healthcare and 
assumed that all critical cases (those requiring ICU care) 
would die. However, there is greater uncertainty about 
the fate of severe cases, those requiring hospitalisation 
but not ICU care. We therefore considered a compart-
ment for severe cases to account for a longer infectious 
period if they stay in the camp (see compartment  Hi , 
figure 1). This compartment also helped us model some 
interventions more realistically, for example, by noting 
that the symptoms of severe cases are incompatible with 
self- isolation. To estimate upper and lower bounds for 
the outcome variables of our model, we simulated two 
possible scenarios for the fate of this compartment: one 
in which all cases recover, and another in which all cases 
die. In the simulations presented in the Main Text, we 
consider the worst- case scenario in which all cases die.

The fractions of symptomatic cases that are severe  (qH
i ) , 

critical  (qD
i )  and recover ( q

R
i  , where  q

R
i = 1 − qH

i − qD
i  ) are 

demographic class- specific (see table 4). We estimated the 
fractions of symptomatic cases in each demographic class 
that would become severe ( qHi  ) and critical ( qDi  ) using 
data from developed countries with superior population 
health.25 26 Following previous work,12 we mapped the 
age- specific case severity distributions of the NW Syrian 
adult population to those of age groups 10 years older in 
developed countries.

Since the rates at which clinical symptomatic indi-
viduals ( Ii ) resolve into these three epidemiological 
outcomes are different ( η  for H , α  for D  and  γI  for R ) we 
introduced three parameters,  hi ,  gi  and  li , to distribute 
individuals according to the desired proportions. The 

analytic derivation is provided in online supplemental 
material and the specific values in table 4.

Interventions
The interventions we consider are modelled by modi-
fying the rate at which individuals become exposed (the 
term  λi , Eq. 9), and/or adding new population classes 
that govern behavioural changes (behaviour classes). 
Since  λi  can be factorised in four terms, the interven-
tions may influence one or several of these terms. The 
factors present in  λi  and the terms modulating them in 
the interventions are (see Eq. 10): (1) the maximum 
transmissibility, τ  , which is reduced in some interven-
tions by a factor  ξij , when interactions are restricted to 
buffer zones (see below for details); (2) the average 
number of contacts that individuals in class  i  have per 
day,  ci . This quantity can either be uniformly reduced 
across all classes, or the contact rate of class  i  with class  j  
can be modified. We model this modification of contact 
rates using the matrix  ϵij ; (3) the probability of encounter 
between members of class  i  and  j  in a well- mixed popu-
lation,  Nj = N  . This probability can vary by modifying the 
visibility of a member of class  j  to a member of class  i,  
which we express with the matrix  ωij  and (4) the prob-
ability of becoming infected by individuals at specific 
stages of the disease (eg, for hospitalised individuals this 
is encoded in the term  βHHj/Nj  ) which can be modified 
by specific factors. Only the terms for individuals at the 
clinical symptomatic (I ) and hospitalised (H ) stages are 
modified in our interventions, through the parameters  ζI  
and  ζH , respectively. Following these considerations, the 
generic form of  λi  under the interventions becomes:

 

λi =
n∑

j=1
τξij����

i

ciϵij����
ii

ωij
Ni

N� �� �
iii

(
βPPj + βAAj + ζIβIIj + ζHβHHj

)

Nj� �� �
iv   

(10)

All interventions, self- distancing (see figure 2-1), self- 
isolation (see figure 2-2), safety zone (see figure 2-3) 
and evacuation (see figure 2-4) can be parameterised 
following this expression. The specific values of the 
parameters are presented in table 5 and their derivations 
in online supplemental materials.

Table 4 Proportion of symptomatic cases that become severe and critical

Parameter Description

Demographic class

Age 1 (0–12)

Age 2
(13–50) no 
comorbidities

Age 2 (13–50) 
comorbidities

Age 3
(>50) no 
comorbidities

Age 3 (>50) 
comorbidities

 q
H
i  ( hi )

Fraction of 
symptomatic 
cases severe

0.064 (0.064) 0.067 (0.066) 0.199 (0.191) 0.183 (0.178) 0.445 (0.406)

 q
D
i  ( gi )

Fraction of 
symptomatic 
cases critical

0.0065 (0.009) 0.020 (0.028) 0.094 (0.129) 0.063 (0.088) 0.222 (0.289)

Since the rates at which these cases become severe, critical or recover are different, we introduced three parameters  (hi,gi and li)  to 
distribute individuals according to the desired proportions (values between parenthesis). The proportion of individuals recovering is 

computed as  1− qHi − qDi   (see online supplemental materials for details).

https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
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Self-distancing
The first non- medical intervention that we modelled is 
a reduction in the mean number of contacts per indi-
vidual per day for the whole camp population (see 
figure 2-1). The average number of contacts of each 
class  ci  (see table 2) is reduced by a class- independent 
factor, hence the matrix  ϵij  is uniform for all classes, that 
is,  ϵij = ϵ, ϵ ∈

{
0.9, 0.8, 0.7, 0.6, 0.5

}
 . No further adjust-

ments are required for this intervention. Since the mean 
number of inhabitants per tent in a camp is 5.5 and sani-
tation facilities are shared,17 we inferred that the number 
of contacts per day cannot be reduced by more than 
50%  (ϵ = 0.5) . For a younger adult, this would mean 7.5 
contacts per day.

Self-isolation
Self- isolation is a challenge in informal settlements, 
where households consist of a single (often small) space, 
water is collected at designated locations, sanitation facil-
ities are communal and food supplies are scarce. We 
considered the possibility of those showing symptoms 
(i.e. in compartment I ) self- isolating in individual tents 
in dedicated parts of the camps. We excluded individuals 
with severe symptoms (H  compartment) from the inter-
vention since they require additional care not compat-
ible with self- isolation. Instead, we considered the possi-
bility of evacuating these individuals from the camp as 
an additional intervention (see below). We simulated 
self- isolation with various numbers of isolation tents per 
camp, ranging from 10 to 2000 for a camp of 2000 people 
(see figure 2- 2a). In addition, we modelled the role of 
carers dedicated to providing for isolated individuals (see 
figure 2- 2a). Carers are drawn from the younger adults’ 
class with no comorbidities who are not at a stage of the 
disease during which they display symptoms (i.e. not in 
compartments I  or H ), while isolated individuals may 

belong to any class. Since this intervention only modi-
fies the infectiousness of individuals in the I  compart-
ment and the exposure of carers, the consideration of 
additional behavioural classes is not required. Instead, 
the intervention can be encoded in  λi  by simply splitting 
the contribution of symptomatic individuals to the rate 
of exposure into two terms, one for the isolated individ-
uals and another for the remaining population. Hence, 
its implementation requires deriving the parameters  ϵij  
and  ωij  for interaction between healthy younger adults 
(from which carers are drawn), the remaining classes, 
and isolated and non- isolated individuals separately. In 
table 5, we present these terms and their derivation in 
online supplemental materials.

In addition, interactions between carers and isolated 
individuals were restricted to buffer zones, which we envi-
sioned as open spaces, with guidelines in place to limit 
occupancy to four individuals wearing masks with at least 
2 m of distance between them, where we assume trans-
missivity is reduced by 80%  

(
ξij = 0.2

)
 . In considering one 

carer per isolated individual with one contact per day, we 
do not neglect their probability of infecting the rest of 
the camp.

Safety zone
In this intervention, the camp is divided in two areas: a 
safety zone, in which more vulnerable people live (hereby 
referred to as a ‘green’ zone following previous studies),12 
and an exposed (‘orange’) zone with the remaining 
population. In our simulations, the first exposed indi-
vidual always belongs to the orange zone. The living 
conditions within both zones remain the same, so the 
overall contact rate does not change unless self- distancing 
is also implemented. A consequence of maintaining the 
overall contact rate is that reducing contacts with indi-
viduals living in a different zone implies an increase in 

Figure 2 Diagram of interventions.

https://dx.doi.org/10.1136/bmjgh-2020-004656
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contacts with individuals in the same zone (see online 
supplemental material). Although we do not expect this 
assumption to be true in general, it allows us to investi-
gate undesired side effects of this intervention, such as 
older adults having increased contacts among themselves 
if isolated together. Since proposals for partitioning the 
population may be received differently across camps, we 
considered several scenarios for allocating a camp popu-
lation to the two zones (see figure 2-3). Implementing 
this intervention thus requires the split of some demo-
graphic classes into two behaviour classes, depending 
on the scenario. For example, if some healthy younger 
adults are allocated into the green zone, we split the 
demographic class ‘healthy younger adults’ into ‘orange’ 
and ‘green’ behaviour classes, to model the different 
contact rates that these two subclasses of healthy younger 
adults will have among themselves and with other classes. 
In online supplemental table 2, we present the classes 
considered in each scenario.

Interactions between the two zones are limited to a 
buffer zone, reducing transmissivity (i.e.  ξij = 0.2 , see 
previous section). Individuals in the green zone cannot 
leave and thus need to be provided with supplies by indi-
viduals in the orange zone, which will take place in the 
buffer zone. In our simulations, we considered limiting 
individuals in the green zone to 10 or 2 contacts with indi-
viduals from the orange zone per week (see figure 2- 3a). 
Other variations of this intervention we explored include 
preventing symptomatic individuals from entering the 
buffer zone (incorporating health checks, see figure 2- 3b) 
and a ‘lockdown’ of the green zone, where the number 
of weekly contacts in the buffer zone is reduced by 50% 
or 90% (see figure 2- 3c). Although overall contact rates 
are conserved in this intervention, we modify the contact 
rates between  i  and  j  with  ϵij  and the probability of inter-
action between  i  and  j  with  ωij , where both parameters 
are determined by whether  i  and  j  are in the same or 
different zones (see table 5 for specific values and online 
supplemental materials for derivation).

Evacuation
The last intervention we simulated is the evacuation of 
severe cases (individuals in the hospitalisation compart-
ment). Since they require more intensive care that cannot 
be delivered while adhering to the guidelines of a buffer 
zone, severe cases were assumed to be fully infectious and 
not able to self- isolate. Once severe cases are evacuated, 
their infectivity is reduced to zero ( ζH = 0,  see figure 2-4). 
The fate of severe cases is not altered by this intervention 
since we assumed that hospitals are saturated and that 
evacuees are transferred to isolation centres instead.

Computational implementation and statistical analysis
The specific values of the parameters shown in Eqs. 1-8 and 
of  R0  are independently drawn at each integration step from 
the probability distributions shown in tables 1, 3 and 4. We 
note that by generating transition rates from the empirically 
determined residence times, we are not reproducing these 

residence times for the simulated individuals. In our simu-
lations, individuals will experience exponentially- distributed 
residence times with a mean equal to the mean of the corre-
spondent distribution (to  1/κ  in the case of the symptomatic 
compartment, see online supplemental material 1 for the 
definition of κ ). The generation of random values around 
the mean following the empirical distribution at each time 
step is aimed at adding noise to the mean, to partially account 
for the empirical uncertainty.

The next- generation matrix is also computed at each 
integration step from the parameters drawn and τ   esti-
mated. In the code provided, it is possible to fix the seed 
to exactly reproduce the results presented. Our simu-
lations start with a completely susceptible population 
where one person in the younger adult population is 
exposed to the virus (who is also in the orange zone if 
the safety zone intervention is in place). We verified that 
a steady state was always reached before the end of each 
simulation. We did not consider migration, births, nor 
deaths due to other causes, since they are small enough 
in magnitude to not significantly impact the course of an 
outbreak, provided additional conflict does not erupt.

For each implementation of the interventions, we ran 
2500 simulations and compared results between them. The 
main variables considered are the fraction of simulations in 
which at least one death is observed (a proxy for the prob-
ability of an outbreak), the fraction of the population that 
dies and the time until the symptomatic population peaks, 
as well as the infection fatality rate (IFR), and the fractions of 
the population that have recovered and remain susceptible 
at steady state. For consistency, we only considered simula-
tions in which there was an outbreak when comparing the 
outcome of a variable between interventions. We used the 
Shapiro- Wilk test27 to verify that our results do not exhibit 
normally distributed residuals, and Conover- Iman test for 
multiple comparisons.28 We used the R package PMCMR-
plus.29 Confidence intervals for the probability of outbreak 
were computed with Wilson’s method30 implemented in the 
R package binom.31 The model and all statistical analyses 
were implemented in R.32

RESULTS
In the absence of interventions, the mean IFR is  ∼ 2.5%  
in simulations where all severe cases requiring hospi-
talisation recover (see online supplemental figure 1), 
and  ∼ 11%  in simulations where all severe cases die. We 
consider the latter scenario to evaluate the effect of non- 
medical preventive interventions. In this scenario, the 
probability of observing an outbreak is close to 0.84, in 
which  ≳ 10%  of the camp dies, the number of sympto-
matic cases peaks after 40 days,  ∼ 84%  of the population 
recovers, and  ∼ 5%  remain susceptible.

Self-distancing
Our results show that self- distancing has a notable 
effect on reducing the probability of an outbreak which 
decreases roughly linearly as the number of contacts 

https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
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is reduced (see figure 3A). A near- quadratic trend is 
observed for the fraction of the population dying, with 
a greater decrease for larger reduction in daily contacts, 
achieving a 34% reduction in mortality when the number 
of contacts is reduced by 50% (see figure 3B). Self- 
distancing also significantly extends the time until the 
peak of the outbreak, from ~40% days when no interven-
tions are in place to 72 days when contacts are reduced by 
50% (see figure 3C). The proportion of the population 
remaining susceptible after 12 months also increases to 
nearly 33% when a 50% reduction is considered, and the 
proportion of the population recovered after 12 months 
(which informs on the potential population level protec-
tion against future outbreaks) is reduced from 84% to 
60% (see online supplemental figure 2).

Self-isolation
With only 10 tents for a camp of 2000 people (i.e. 1 tent for 
every 200 people), self- isolation yields a marked decrease 
in the probability of observing an outbreak (~26%) (see 
figure 3D) and a low decrease in mortality (~7%) (see 
figure 3E), suggesting that with a low number of tents the 
intervention is mostly effective at isolating index cases 
and preventing the epidemic from starting. In order to 

observe a greater mortality reduction (~18%) and an 
increase in time (~6%) until the number of symptomatic 
cases peaks, further increasing the number of tents up 
to at least one tent for every eight people is required. 
Increasing the number of tents does not further reduce 
the probability of observing an outbreak. There is also 
an increase in the number of susceptible individuals at 
the end of the simulation when the number of tents is 
increased. We finally observed an artificial increase in the 
IFR explained by an increasingly large number of simu-
lations in which very few individuals are infected since, if 
at least one of them dies, we obtain a high IFR value (see 
online supplemental figure 3).

Evacuation
We observe no significant effects when severe cases 
requiring hospitalisation are evacuated (see online 
supplemental figure 4). Since we considered that these 
individuals will not receive healthcare (they are evacu-
ated to isolation centres), their fate remains the same as 
if they were to stay in the camp. Hence, we expect evacu-
ation to only have an effect on their infectivity. Although 
these individuals are infectious for a longer period of time 
than those with milder symptoms ( ∼ 10  days longer), the 

Figure 3 Effect of interventions on outbreak probability, fatalities and time until symptomatic cases peak. (A) Self- distancing, 
probability of an outbreak. (B) Self- distancing, fraction of the population dying. (C) Self- distancing, time until peak symptomatic 
cases. (D) Self- isolation, probability of an outbreak. (E) Self- isolation, fraction of the population dying. (F) Self- isolation, time 
until peak symptomatic cases. (G) Safety zone, probability of an outbreak. (H) Safety zone, fraction of the population dying. 
(I) Safety zone, time until peak symptomatic cases. Triangles indicate the means and boxes IQRs. Note that in figures of 
the safety zone intervention (panels G–I), the mean of an outcome for the whole population is not the weighted mean of the 
exposed and safety zones, since outcomes are computed considering simulations in which at least one death was observed 
in the population class inhabiting the zone, that is, the number of simulations considered to compute each mean is different. In 
the safety zone figures (panels G–I) health checks are in place, in online supplemental figure 5) we show the effect of removing 
health checks.

https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
https://dx.doi.org/10.1136/bmjgh-2020-004656
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number of individuals under these conditions is only a 
small fraction of the total infectious population at any 
given time, explaining why we do not observe significant 
effects for this intervention.

Safety zone
In this section, we consider the scenario in which all 
older adults, younger adults with comorbidities and their 
family members up to 20% of the camp population live 
in the green zone, unless otherwise specified. Creating 
a green zone improves the effect of the previous inter-
ventions overall, but with sometimes opposite outcomes 
in the exposed and protected populations. For example, 
the probability of an outbreak decreases for the protected 
population, by around 11%, if only two contacts are 
allowed per week in the buffer zone (see figure 3G). 
Notably, most of this reduction is only achieved when 
health checks excluding symptomatic individuals from 
the buffer zone are in place (see online supplemental 
figure 5 for the effect of removing health- checks). On the 
other hand, the probability of an outbreak may slightly 
increase for the exposed population, a consequence of 
the relative increase in intra- zone contacts. By shifting 
the burden of an outbreak towards the less vulnerable 
population in the orange zone, another important 
outcome of this intervention is the notable increase in 
time (62%) until the number of symptomatic cases peaks 
for the vulnerable population, and a 36% increase in 
time for the whole population (see figure 3I). Neverthe-
less, this intervention only has a modest reduction on 
overall mortality (see figure 3H and online supplemental 
figures 6 and 7), possibly due to the high infectiousness 
of presymptomatic individuals.

Considering different scenarios for allocating people 
to the green zone, the lowest probability of an outbreak 
is achieved when only older adults or at most older adults 
and younger adults with comorbidities move there, with 
probabilities below 0.4 and 0.65, respectively (see online 
supplemental figure 8). Positive effects of the safety zone 
intervention are even more marked in camps with smaller 
populations, especially for probability of an outbreak in 
the green zone (which decreases by 55%) and overall 
mortality (which decreases by 20%) when the population 
is reduced from 2000 to 500. However, we also observe 
the adverse effect of a decrease in time until symptom-
atic cases peak (see online supplemental figure 9). The 
incorporation of a lockdown has the greatest effect on 
reducing the probability of an outbreak in the green 
zone, to under 0.25 when contacts in the buffer zone are 
reduced by 90%. While lockdowns show no positive effect 
on green zone fatalities in the few instances where an 
outbreak does reach there, they decrease overall IFR and 
fatalities by further concentrating outbreaks in the less 
vulnerable population (see online supplemental figure 
10).

Combined interventions
The effects of the interventions observed when we 
examine them individually build on each other when 

multiple interventions are implemented in tandem (see 
figure 4 and online supplemental figure 11). The protec-
tive effects of the safety zone intervention are most fully 
realised when paired with other interventions. They 
become so effective that outbreaks in the green zone 
become exceptionally rare, but so well controlled when 
they do happen, that the majority of outbreaks are small 
enough for us to observe an anomalous increase in IFR 
in some of the most effective interventions, driven by 
the discretisation of the values it can take (e.g. if there 
is only one case and this person dies, see online supple-
mental table 13). When all interventions are imple-
mented together: strict self- distancing (50% reduction 
in contacts), self- isolation of symptomatic cases (1 tent 
for every 40 people), a safety zone with 2 contacts per 
week in the buffer zone, health checks, a strict lock-
down (90%) and evacuation of severe cases, mortality is 
reduced by ∼ 94% and the probability of outbreak in the 
green zone is very small (~0.005). In other combinations 
with a higher probability of outbreak (e.g. considering in 
the previous combination a 20% reduction in contacts 
instead of 50%) the time to peak of symptomatic cases in 
the green zone is delayed by 48 days.

DISCUSSION
In this study, we propose a number of interventions of 
immediate applicability to informal settlements. We 
focused on IDP settlements in NW Syria, taking into 
account the interventions' feasibility, cultural accept-
ance and their need for low cost. When confronted with 
different possible scenarios, we generally considered the 
worst- cases, highlighting the interventions that are most 
effective in the direst conditions, but possibly resulting in 
an overestimate of mortality. This potential overestima-
tion does not change the qualitative picture of the results, 
which is built on the relative comparison of outcomes 
between different combinations of interventions, or the 
lack thereof.

Our results align with previous simulation studies of 
potential COVID-19 interventions in similarly densely 
populated, low- resource settings where informal settle-
ments are present, such as urban areas of sub- Saharan 
Africa. In these settings, social distancing is demonstrated 
to be an effective intervention, and even small changes 
are estimated to have large effects on outbreaks,33 in 
some cases determining whether or not already inade-
quate healthcare systems become overwhelmed.34 van 
Zandvoort et al show that similar measures to the ones 
we consider—self- isolation, physical distancing and 
‘shielding’ the vulnerable—may reduce mortality by 
60%–75% in African cities.12

Self- distancing proves to be an effective measure in 
our models as well; reducing contacts by 50% has the 
greatest effect across most outcomes of interest in any of 
the interventions we examined. However, the difficulty 
of achieving a reduction of this magnitude cannot be 
overlooked, especially considering the large proportion 

https://dx.doi.org/10.1136/bmjgh-2020-004656
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of the population composed of children, a group with 
an already high contact rate that may prove difficult to 
control.17 To illustrate the microdynamics of this inter-
vention, in online supplemental figure 12, we plot the 
maximum proportion of the population exposed at any 
given point in time in each simulation, against the time 
it takes for symptomatic cases to peak. We observe that 
until reaching approximately 60%, successive reductions 
in contacts reduce the maximum proportion of the popu-
lation exposed while increasing the time until symptom-
atic cases peak. Additional reductions in contacts beyond 
60% however abruptly decrease both the time until cases 
peak and overall mortality, suggesting that outbreaks 
die out before the virus spreads widely throughout the 
camp’s population. This suggests the existence of a crit-
ical threshold for the number of individuals exposed 

over which large outbreaks become established in the 
population, significantly increasing mortality.

We also propose self- isolation using individual tents 
which can be located in a dedicated zone or next to the 
tents of relatives, where contact with non- isolated indi-
viduals is mediated by a buffer zone. This intervention is 
effective in preventing an outbreak in the camp with even 
a small number of isolation tents, as low as 5–10 tents 
per 1000 camp residents. But it requires at least 125 tents 
per 1000 camp residents to substantially reduce mortality. 
After conversations with camp managers, we found that 
this intervention is more likely to be accepted in NW Syria 
than evacuation to community- based isolation centres. 
Community- based isolation not only poses cultural chal-
lenges; the capacity required to implement it has hardly 
been met,23 and it is still one of the main challenges in 

Figure 4 Combinations of interventions. Probability of an outbreak (top), fraction of the population dying (middle) and time 
until peak symptomatic cases (bottom) for different combination of interventions. For combinations of interventions including a 
safety zone, we distinguish between the population living in the green zone, in the orange zone and the whole population. Evac 
= evacuation of severely symptomatic; lock = lockdown of the buffer zone; safety = safety zone; self = self- distancing; tents = 
number of available self- isolation tents.

https://dx.doi.org/10.1136/bmjgh-2020-004656
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the region.8 We note that in our simulated intervention 
individuals become isolated as soon as they have symp-
toms. Recognising symptoms, however, may require some 
time and we should expect this intervention to be less 
effective unless systematic checks for symptomatic indi-
viduals are put in place.

Setting up a safety zone has two positive effects that 
most stand out: a reduction in the probability of an 
outbreak in the vulnerable population, and an increase 
in the time until the number of symptomatic cases peaks. 
Much of the success or failure of the safety zone interven-
tion hinges on the functioning of the buffer zone. The 
number of interzone contacts per week, the implemen-
tation of health checks, and potential lockdowns all have 
notable effects. Also important is the portion of the popu-
lation that is protected; protecting only the vulnerable 
may have the most beneficial effects, but it is precisely 
these vulnerable individuals, older adults, and people 
with comorbidities, who may most need family members 
to care for them. While safety zone scenarios with more 
family members accompanying their vulnerable relatives 
may confer greater epidemiological risk, they may also 
engender greater well- being and social cohesion.

Despite these benefits, we do not observe a clear 
decrease in IFR with this intervention, although it is 
possible that our model may overestimate mortality 
from an outbreak in the green zone in the few instances 
when there is one. Since it is unlikely that the camps 
have the economic means to increase the number of 
tents when implementing this intervention, we assumed 
that individuals do not reduce their contacts when 
moved to the green zone since household sizes will not 
decrease, which implies an increase in the number of 
contacts between vulnerable individuals. Despite this 
increase in contacts, we do not observe an increase in 
mortality in the vulnerable population when the safety 
zone is implemented. These results address concerns 
raised around this type of intervention from previous 
experiences with large numbers of fatalities registered 
in nursing- homes in developed countries.35 While 
nursing- homes in developed countries may be seen as 
analogous to the safety zone intervention, the alter-
native to nursing homes in developed countries for 
the elderly population typically involves remaining at 
home with few contacts with younger individuals (in a 
scenario of lockdown), while in the camps the alterna-
tive is living in tents shared with younger individuals 
with high contacts rates (especially children). This may 
explain why we observe a positive effect from this inter-
vention despite a relative increase in contacts among 
the most vulnerable subpopulation.

An instrumental consideration for our models is the 
fraction of the population recovered from COVID-19 
after a steady state is reached. Although the duration for 
which SARS- CoV-2 infection confers immunity is uncer-
tain, the proportion of the population recovered after 
an outbreak should play a role in its protection against 
future ones. For all interventions except self- distancing 

>30%, we observed that the fraction of the population 
recovered meets or exceeds 50%.

Other important considerations for interpreting our 
results are the modelling assumptions we made. One 
important parameter in our model is the relative trans-
missibility of the different infectious stages, whose specific 
values still have large margins of variability.18 36 37 This is 
particularly relevant for non- medical interventions that 
rely on the identification of symptomatic individuals 
because the higher the relative infectivity of presymp-
tomatic and symptomatic individuals, the lower the effec-
tiveness of such interventions. For instance, Bullock et al 
assumed a higher infectiousness of the presymptomatic 
stage and hence self- isolation of symptomatic individuals 
had little effect.38 Self- isolation also becomes ineffective 
under the assumptions made by Hernandez- Suarez et al 
when they considered isolating only severe symptomatic 
cases (whose fraction is small), hence mildly symptom-
atic individuals were effectively considered asymptom-
atic.39 On the other hand, Gilman et al showed that 
self- isolation was effective when considering individuals 
at different stages to be equally infectious.40 We assumed 
that presymptomatic individuals have the highest relative 
infectivity, consistent with the most recent estimations,37 
and the interventions we proposed are still effective. 
Considering a different scenario in which all compart-
ments are assumed to be equally infectious, our interven-
tions become even more effective (see previous version 
of our manuscript).41

It is also important to acknowledge the benefits and 
limitations of different possible computational imple-
mentations. For instance, there are interventions that 
do not have a natural implementation within our frame-
work, such as those requiring interventions targeting very 
specific interactions between individuals (as opposed 
to large groups of individuals), or the reproduction of 
empirically observed residence times. An example might 
be the isolation of an individual and his/her family, as 
proposed by Gilman et al40 which, since we do not explic-
itly model interactions at the family level, would require 
the creation of as many classes as families. When this level 
of detail is required, individual based models (IBMs) 
may be more appropriate.38 40 However, IBMs require a 
rich amount of data for their parameterisation which, 
although increasingly available, is scarce for informal 
IDPs camps. Our framework is powerful enough to simu-
late a large number of scenarios with little computational 
cost, which would be an optimal strategy as a first approx-
imation in the design of interventions to narrow down 
the most relevant scenarios (for a reference, in <24 hours 
with just 12 cores we model 75 scenarios requiring quarter 
million simulations). The scenarios selected could then 
be further investigated with more detailed interventions 
using IBMs, if data is available.

A key limitation of our approach is that it simulates an 
outbreak started by one infectious individual in a single 
camp with a closed population. We acknowledge that this 
approach does not fully capture the complexities of the NWS 
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region, where IDPs live interspersed throughout the region 
in several hundred camps. The dynamics of an outbreak in 
the region are undoubtedly influenced by inter- community 
contacts, and the dynamics of an outbreak in a single camp 
by these region- wide dynamics, as it has been demonstrated 
in other countries.10 42 We expect our results to be robust to 
changes in population, as long as these changes are relatively 
small compared to the total population size in the camp, 
implying sporadic inputs of infected individuals. This is the 
expected behaviour in informal IDP camps, which are often 
small and located in rural areas, where substantial popula-
tion movements such as those observed in large camps, are 
infrequent. This fact, in addition to the relatively young 
population in IDP camps, may help limit the damage done 
by an outbreak, as observe in some rural areas in sub- Saharan 
Africa.43

Other unaccounted for social and cultural dynamics will 
undeniably complicate the feasibility of our proposed inter-
ventions. One example we have not addressed here is the 
unlikeliness of children under 13 self- isolating. Although the 
number of challenges to implementing our proposed inter-
ventions are potentially endless, the community- based nature 
of our approach may make it more robust to such challenges 
than approaches relying on healthcare system, which often 
depend on complex political decisions and may take years to 
build the required capacity for an effective response. If the 
dynamics of the virus are well understood by local commu-
nities and at least some of the interventions we propose are 
implemented, the impacts of COVID-19 can be mitigated 
even in an environment as challenging as NW Syria.

CONCLUSION
Given a rapidly changing environment and slow responses 
of local and international authorities in conflict regions 
where political control is disputed, with international 
authorities often leaving these communities aside in their 
priorities,44 empowering local communities themselves 
is perhaps the best, if not the only way, to help them 
avoid the worst consequences of the pandemic. Such 
an approach may achieve greater compliance with non- 
medical interventions, especially where there is a mistrust 
of external authority. This not only applies to IDP camps 
in NW Syria, but more generally to refugee camps in 
conflict- torn regions, and potentially other informal 
settlements and vulnerable communities around the 
world: the low cost, effective interventions we present are 
feasible, needed and urgent.
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