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Abstract

Calcium signals play a major role in the control of all key stages of neuronal development, and in particular in the growth
and orientation of neuritic processes. These signals are characterized by high spatial compartmentalization, a property
which has a strong relevance in the different roles of specific neuronal regions in information coding. In this context it is
therefore important to understand the structural and functional basis of this spatial compartmentalization, and in particular
whether the behavior at each compartment is merely a consequence of its specific geometry or the result of the spatial
segregation of specific calcium influx/efflux mechanisms. Here we have developed a novel approach to separate
geometrical from functional differences, regardless on the assumptions on the actual mechanisms involved in the
generation of calcium signals. First, spatial indices are derived with a wavelet-theoretic approach which define a measure of
the oscillations of cytosolic calcium concentration in specific regions of interests (ROIs) along a cell, in our case developing
chick ciliary ganglion neurons. The resulting spatial profile demonstrates clearly that different ROIs along the neuron are
characterized by specific patterns of calcium oscillations. Next we have investigated whether this inhomogeneity is due just
to geometrical factors, namely the surface to volume ratio in the different subcompartments (e.g. soma vs. growth cone) or
it depends on their specific biophysical properties. To this aim correlation functions are computed between the activity
indices and the surface/volume ratio along the cell: the data thus obtained are validated by a statistical analysis on a dataset
of 15 different cells. This analysis shows that whereas in the soma calcium dynamics is highly correlated to the surface/
volume ratio, correlations drop in the growth cone-neurite region, suggesting that in this latter case the key factor is the
expression of specific mechanisms controlling calcium influx/efflux.
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Introduction

The growth, orientation and specification of neuritic processes

from developing neurons is a key event in the formation of the

correct connectivity of the nervous system and is tightly regulated

by a wide set of signalling mechanisms, among which complex

spatiotemporal patterns of changes in cytosolic free calcium

concentration, Ca2z
� �

i
, play a major role [1]. At the growth

cone, the leading edge of a growing neurite, both spontaneous and

agonist-induced changes in Ca2z
� �

i
have been described (see e.g.

[2,3]): often they show an oscillatory behavior [4,5], while somatic

signals have in most cases a more sustained time course and

oscillations, when present, are strongly attenuated [6–8].

Information coded by oscillations of Ca2z
� �

i
at the growth

cone has been known to be relevant in determining its motility and

morphology [2,4,5,9], even if, at least in some instances, also

signals generated at the soma, and propagated to neuritic/axonal

compartment, have been reported to be involved in these

processes [10]. The differences between signals at the soma and

at thin peripheral compartments (such as filopodia of neurites and

pre- and post-synaptic regions) have been ascribed, in most cases,

to differences in the surface to volume ratio [11–13], but a

contribution from spatial specificity in the calcium mobilizing

mechanisms, based on the different distribution of channels (and/

or transporters), may also be involved [14,15].

We have tried to address this problem by simultaneously

recording spontaneous calcium signalling activity from the soma,

neurites and growth cones of E7 chick ciliary ganglion (CG)

neurons in culture, and by generalizing a wavelet-based analytical

approach described in a previous paper [16] to perform a spatial

analysis of the oscillatory activity during a defined time interval in

the different compartments of the neuron. The aim was to

correlate the differences in oscillatory activity as a function of

space with the estimated surface to volume ratio, in order to

uncover any specificity of the different compartments in terms of

calcium mobilizing mechanisms.

Materials and Methods

Cell Cultures
Chick ciliary ganglia (CG) were dissected from E7 embryos and

maintained in a chemically defined N2 medium [17] as previously

described [8]. Briefly, ganglia were both enzymatically (0:06%
trypsin, in cation-free phosphate-buffered saline, for 5 min at

37 0 C ) and mechanically dissociated and resuspended in N2
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medium. Nearly 15,000 cells were plated in the middle area of

glass coverslips coated with poly-D-lysine (PL; 100 mg=ml ) and

laminin (LN; 1 mg=ml ) in N2 medium. If not otherwise specified,

all chemicals were purchased from Sigma Chemical Co. (St. Louis,

MO).

Calcium Imaging
Calcium intracellular concentration was monitored using the

ratiometric Ca2z indicator dye Fura-2 acetoxymethylester (Fura-

2AM, Molecular Probes, Inc.). Cells were loaded for 45 min at

37 0 C with 2 mM Fura-2AM in N2 medium and subsequently

washed in Tyrode Standard solution (NaCl 154 mM, KCl 4
mM, CaCl 2 2 mM, MgCl 2 1 mM, HEPES 5 mM, glucose 5:5
mM, pH 7:34 with NaOH ). After dye loading cells were

transferred to a perfusion chamber (Bioptechs, USA) and mounted

on an inverted fluorescence microscope (Nikon TE-2000-S), a

Xenon lamp illumination system and a CoolSNAP CCD camera

(Roper Scientific/Photometrics, Germany). All experiments were

performed at 37 0 C . A gravity microperfusion system, regulated

by electrovalves, was employed to keep the cells under a Tyrode

solution laminar flow condition. Calcium measurements were

performed exciting the probe for 0:5 s alternatively at 340 nm and

380 nm, with a dark interval of 1 s (for a total sampling time of

Dt~2 s), and recording the corresponding emission intensities

(I340 and I380) at 510 nm; the ratio~I340=I380 is an uncalibrated,

quantitative measure of Ca2z
� �

i
. Images were visualized on a

computer with the dedicated acquisition software Metafluor

(Universal Imaging Corporation, PA). In order to obtain

simultaneous recordings from the soma and the growth cone,

experiments were performed after 6–7 h of culture, when neurite

extension was still limited and all the compartments could be

observed by means of a 100| objective. One or at most two cells

per dish could be recorded. Since at this short culture time cells

could still be recovering from the dissociation procedure and some

perturbation in the membrane could be expected, all cells were

challenged with 40 mM KCl at the end of each experiment, in

order to depolarize the membrane potential and elicit calcium

influx through voltage-dependent calcium channels; non respon-

sive cells were discarded.

Wavelet Analysis
Preliminaries. In order to provide a quantitative evaluation

of the spatial compartmentalization of oscillatory activity, we have

developed an extension of the wavelet analysis tool we described in

a previous paper [16]: the derivation is as follows.

The starting point is to draw over the surface of each cell a large

number of regions of interest (ROIs) as small as possible to cover

the entire length of the cell as shown in Fig. 1. This procedure is

repeated for each cell included into the database. All ROIs have

the same shape and size, namely a circle with a radius of 3 pixels,

that correspond to about 0:4 mm : this size represents a good

tradeoff between noise level and signal localization. The spatial

position of the ROIs is parametrized, starting from the growth

cone, by the discrete variable x~2 . . . m (x~1 is always drawn

outside the cell and used for the background subtraction); here

m~57. Each ROI x is associated to an oscillatory signal fx tð Þ
representing the local fluctuations of Ca2z

� �
i
.

Fourier transform represents a standard method to analyze

these signals, but, since it is obtained via integration over time, it

can provide information only on the frequencies making up the

signal, and not on the time at which they occur. A more localized

transform is needed to represent a signal in the time and frequency

domain simultaneously, thus providing a better insight into the

phenomena underlying the generation of the observed time

courses, especially in the case of non stationary signals. A typical

example is the windowed Fourier transform (or short time Fourier

transform) where a moving window is shifted along the signal and

the Fourier transform is computed just inside this window.

Formally this can be obtained by multiplying the kernel of the

Fourier transform by a window function ga t{bð Þ: the parameter a

measures the width of the window, and the parameter b moves the

window over the whole time domain. The resulting transform is

the so called Gabor transform [18]. In this approach the value of

a, and so the width of the window, is fixed and this implies a trade-

off between frequency and time resolution: small a values give

accurate information about the time course of the signal but they

may lead to a coarse frequency representation, whereas large a

values provide high resolution of frequency and low time

resolution, so that relevant events in the time course of the signal

may be missed. This problem is solved by the so called multiscale

analysis and, in particular, by wavelet transform, which takes the

windowing procedure a step forward by making a variable and

replacing a single windowing function with a family of functions. A

prototype function y tð Þ called ‘‘other wavelet’’is selected and next

the family y a,bð Þ tð Þ is constructed by means of translations and

dilatations of the mother wavelet, corresponding to variations of b

and a respectively.

For our purposes we chose Morlet wavelet as mother wavelet

[19]:

y tð Þ~ 1

p1=4
exp {

1

2
t2

� �
exp istð Þ, ð1Þ

where s is a constant parameter (in this application s~5). The

family of functions originating from Eq. (1) and forming our

wavelet basis is then

Figure 1. Image of a cell with ROIs superimposed to show
space parametrization. The image was obtained from a cell loaded
with the calcium indicator Fura-2 at 510 nm after excitation at 380 nm.
doi:10.1371/journal.pone.0075986.g001
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y a,bð Þ tð Þ~ 1

aj j1=2
y

t{b

a

� �
: ð2Þ

This set of functions defines the kernel of the wavelet transform

W :

W a,bð Þ~ 1

aj j1=2

ðz?

{?
y�

t{b

a

� �
f tð Þdt, ð3Þ

where the asterisk denotes complex conjugation.

The critical point here is that b denotes the time at which W is

computed while variable a is related to the frequency through the

relation n~s=2pa; therefore W can be explicitly expressed as a

function of both time t and frequency n.

The literature on wavelets and their applications is huge: a clear

historical introduction can be found in [18] and an in depth

treatment is provided, for instance, by [10] and [21].

In this application then, for each ROI x, the wavelet transform

of Ca2z
� �

i
time course is computed:

Wx t,nð Þ~ 2pn

s

� �1=2ðz?

{?
y�

2pn(t{t)

s

� �
fx tð Þdt: ð4Þ

Here fx tð Þ represent the time course of the concentration

Ca2z
� �

i
recorded from the xth ROI, t is the time and n is the

frequency variable. Thus in conclusion

Wx t,nð Þ~

2p1=2n

s

� �1=2ðz?

{?
exp {

1

2

2pn t{tð Þ
s

� �2
" #

exp {i2pn t{tð Þ½ �fx tð Þdt:
ð5Þ

The modulus Wxj j of the wavelet transform can be used, in a

variety of ways, to describe the time evolution of the activity at

each ROI. An instance is the so called energy density Ex tð Þ (see

[22]),

Ex(t)~

ð
Wx t,nð Þj j2dn, ð6Þ

in which contributions from all frequencies are integrated to

provide a function of time. The time-averaged energy density of

the signal within a time interval Dt~tf {ti is

�EEx~
1

Dt

ðtf

ti

Ex tð Þdt: ð7Þ

Note that

Etot
x ~Dt �EEx ð8Þ

can be indeed regarded as the total energy of the signal recorded

from the xth ROI during Dt time interval, thus providing a suitable

representation of energy as a function of space. However, in most

cases of interest the main contributions to energy density, at every

time point, are concentrated around a few maxima [16], that

correspond to the most relevant events in the signal, such as sharp

peaks or oscillatory bursts; in turn these events are characterized

by the occurrence of high frequency components. Therefore

relevant changes in the signal can be highlighted by defining an

activity index taking into account only the maxima of Wx t,nð Þj j.
This can be done, for instance, by summing the contributions of

the maxima of Wxj j2 weighted by the frequencies [16], namely

Jx tð Þ~ 1

2E

ðtzE

t{E

Xn(t)

i~1

Wx t,nið Þj j2ni tð Þdt, ð9Þ

where ni tð Þf g is exactly the set of local maxima of W along the n
axis, at time t. Since the number of these maxima changes in time,

parameter n is expressed as a function of t. Integration simply

serves to smoothen the index, by avoiding abrupt variations due to

discontinuities of frequency paths.

For future use we define �JJx, the time average of Jx, as

�JJx~
1

Dt

ðtf

ti

Jx tð Þdt, ð10Þ

where Dt~tf {ti is the temporal window of observation. This new

index provides for every x value an integral measure of oscillatory

activity.

Spatial Trends of Activity
Dissociated CG neurons in short term (5–6 hours) culture

actively protrude (and in some cases retract) one or more neurites

[23]. During this process, a subpopulation (about 25% out of 128

cells) showed spontaneous oscillations in Ca2z
� �

i
, in the absence

of any exogenous signal. This behavior was in general more

evident at the growth cones, while the proximal neurites and the

soma were less involved.

Figure 2A shows the time courses of the change in Ca2z
� �

i

recorded from all ROIs of the neuron shown in Fig. 1 and

superimposed according to a color gradient from blue (corre-

sponding to the growth cone: low x values) to red (soma: high x
values). The same data are presented in Fig. 2B via a two-

dimensional map: the horizontal and vertical axes are, respective-

ly, time (t) and space (x) coordinates, while the concentration is

coded by colors, from blue (low ratio values) to red (high ratio
values). Even though traces from all ROIs exhibit an oscillatory

behavior, it appears to depend on the spatial index x, as can be

seen from Fig. 2B. This point is highlighted in Fig. 3 by

considering three traces extracted from the recordings of Fig. 2A,

respectively from the growth cone (A: ROI 6), the neuritic shaft (B:

ROI 18) and the soma (C: ROI 32). It is evident that at the growth

cone the oscillations in Ca2z
� �

i
are of greater amplitude and their

rising and decay phases have more rapid kinetics than in the other

two compartments: a quantitative evaluation of the differences in

the oscillatory activity of the three traces of Fig. 3 can be provided

by plotting the related scaleograms obtained by wavelet transfor-

mation (see Fig. S1), and information on spatiotemporal localiza-

tion of the most relevant oscillatory events can be extracted by

deriving from each scaleogram appropriate measures, such as

Jx tð Þ.
Figure 4A shows the trend of Jx tð Þ for all ROIs (x~2 . . . m),

superimposed according to a color gradient from blue (growth

cone) to red (soma). In Fig. 4B the same data are presented in a

color coded 2D map: the horizontal and vertical axes are,

respectively, time t and space x coordinates, while the J value is

coded by colors, from blue (low values) to red (high values). The

(5)
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map of Jx tð Þ demonstrates that this index can capture the most

relevant features of oscillatory activity: it shows clearly that such

activity is confined in a well defined spatiotemporal domain of

about 150 s in time duration and spatially restricted at the ROIs in

the growth cone. A spatial representation of activity is provided by

time-averaged index �JJx, whose graph is plotted in Fig. 5 and shows

that indeed oscillatory activity is large in the growth cone (up to

x~11) and then declines sharply along the neurite, while in the

soma it is small and nearly uniform.

Figure 2. Time courses of Ca2z
� �

i
recorded from all ROIs of the cell of Fig. 1. A: time courses superimposed according to a color gradient

from blue (growth cone: low x values) to red (soma: high x values). B: two-dimensional map of the same data. The horizontal and vertical axes are,
respectively, time (t) and space (x) coordinates, while the concentration is coded by colors, from blue (low ratio values) to red (high ratio values).
doi:10.1371/journal.pone.0075986.g002

Figure 3. Three prototypical traces, extracted from the plots of Fig. 2A. Growth cone (A: ROI 6), neuritic shaft (B: ROI 18) and soma (C: ROI
32).
doi:10.1371/journal.pone.0075986.g003
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These results do not depend on the particular index used here.

Similar maps and plots can be derived via the energy density Ex tð Þ
and its time average �EEx (see Fig. S2, S3).

Exploring the Influence of Geometry
Preliminaries. The variation of �JJx along the neuron, as

shown in Fig. 5, clearly points to a specificity of different neuronal

subcompartments as activity decreases from the cone to the soma.

The question is then whether these differences are solely ascribable

to scale factors in the geometry of the cells.

The idea that scale factors can, and indeed do, affect functions

of organisms dates back to Galileo [24] and scale laws have been

found to regulate a variety of biological mechanisms (see for

instance [25] and, for more recent references, [26] and [27]). In

particular surface to volume ratio has been long known to be

important for the life cycle of the cell [28,29], but also for other

functional processes such as information coding at the growth cone

of the extending neurites (see e.g. [11]).

To investigate further this point we computed the correlation

along the cell between �JJx (indexing the local oscillatory activity)

and Rx, the surface to volume ratio in a given ROI.

It is a very general rule [25] that volume and surface can always

be expressed as powers of some characteristic length l so that

S!l2 and V!l3: then the surface to volume ratio R~S=V scales

as R!l2=l3~l{1. In our case the characteristic length l is the

thickness of the cytosolic region under each ROI. Assume all ROIs

to be small circles of the same area, say A0, then the underlying

volume of a single ROI turns out to be a cylinder: this is a first

order approximation but, as shown later, it will not affect the

thrust of our analysis. The sum of the top and the bottom area of

this cylinder is coincident with the double area of each ROI and,

since we consider that influx/efflux of calcium occurs prevalently

at the plasmamembrane, S~2A0. On the other hand, the volume

is V~A0l for every single cylinder, then R~S=V!l{1 also holds

in our case. Clearly the thickness of the cell is a function of x, as it

varies from ROI to ROI: thus the characteristic length will be

labeled as Rx!l{1
x .

Surface to Volume Ratio Assessment
We have developed a simple approach to estimate cell thickness

lx under the surface of the single ROI as a function of space x,

using the same ROI parametrization already employed for the

computation of �JJx.

The method consists of two steps: first we need to identify one or

more time points at which the ratio~I340=I380 is the same for

each ROI of the cell, i.e. at which Ca2z
� �

i
is quite homogeneous

all over the cell (in our case see Fig. 2: t&45 s); then, under this

condition, we can plot, as a function of x, the fluorescence

intensity recorded just from one of the two Fura-2 excitation

wavelengths as a reliable estimation of the volume underlying the

surface of each ROI. In effect, if ratiox~I340=I380~const Vx over

the cell, then I340!I380 and both intensities are solely functions of

the volume of cytosol under the xth ROI. Because of the low

calcium concentration in basal conditions, typically the ratio is

v1 and then I380wI340: for this reason, although I340!I380 for

each ROI, fluorescence intensity emission after excitation at 380
nm is often a more suitable measure than I340.

In conclusion, we can assume I380 to be proportional to the

cytosolic volume under each ROI and, being the area of all ROIs

identical, the single wavelength plot gives an estimation of

cytosolic thickness lx as a function of space, while its reciprocal

l{1
x , for the same reasons, is proportional to the cellular local

surface to volume ratio Rx. Fig. 6A shows the result for the cell of

Fig. 1.

Note that by adopting this procedure we have done some

assumptions that deserve to be addressed explicitly:

Figure 4. Activity index Jx tð Þ computed for all ROIs. A: trends of Jx tð Þ for all ROIs, superimposed according to a color gradient from blue
(growth cone) to red (soma). B: two-dimensional map of Jx tð Þ. The horizontal and vertical axes are, respectively, time (t) and space (x) coordinates,
while values of J are coded by colors, from blue (low) to red (high).
doi:10.1371/journal.pone.0075986.g004
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N Fura-2 is a cytosolic probe: in our work the term volume (as well

as thickness) refers only to the compartment actually occupied

by the probe, that is the cytosol, net of any possible organelle;

N all ROIs are drawn small enough (3 pixels &0:4 mm of radius)

to be coincident with the underlying portion of cellular

membrane: in this work the term surface refers only to the

plasmalemma patches delimiting, on the upper and lower side,

those cylindrical volumes defined by each ROI;

N we do not keep into account the possible contribution of

subcellular organelles to the changes in Ca2z
� �

i
. When

addressing the problem of the dependence of changes in

Ca2z
� �

i
from the surface/volume ratio, it is usually implied

that the surface is that of the plasmamembrane, and that

changes in Ca2z
� �

i
are dependent on influx form the

extracellular medium (see e.g. [11,14]). In our case, it has

been already shown [6,8] that release from the endoplasmic

reticulum plays only a minor role in the signals elicited by a

typical agonist such as basic Fibroblast Growth Factor (FGF-

2); moreover, spontaneous calcium signals, both at the growth

cone and at the soma, are completely suppressed in a calcium

free extracellular solution (unpublished data). Therefore, we

will assume that the relevant mechanism is calcium influx and

the relevant parameter is the ratio between the cytosolic

volume and the plasmamembrane surface, even if some

contribution from calcium release cannot be excluded in

principle.

In conclusion, even though Fura-2 is not an actual volumetric

probe, our approach allows, at least on a first approximation, a

Figure 5. Spatial trend of time-averaged activity index. Graph of �JJx as a function of ROI position, from the growth cone to the soma.
doi:10.1371/journal.pone.0075986.g005

Figure 6. Cellular thickness and surface to volume ratio compared with oscillatory activity in space. A: profile of the thickness of the cell
as derived with the procedure outlined in ‘‘urface to Volume Ratio Assessment’’ subsection. Inset: confocal image of a CG neuron cultured for 6 h in
N2 medium and loaded for 45 min with the fluorescent probe Fluo4-AM. Upper panel: 3D image reconstructed from XYZ scan; lower panel: virtual
section along the horizontal white line in the upper panel. B: traces of the normalized activity index jx (blue trace) and surface to volume ratio rx

(green trace) along the cell. r~0:49 is the value of the correlation coefficient computed over the entire cell (global r).
doi:10.1371/journal.pone.0075986.g006
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reliable estimate of cellular thickness: its validity can be tested by

comparing the plot in Fig. 6A with the information that can be

obtained by confocal imaging. The inset of Fig. 6A shows a

representative image of a cross section of a neuron cultured in the

same experimental conditions and loaded with the cytosolic

calcium indicator Fluo-4; the similarity of the two profiles is

evident.

If on one hand the points mentioned above represent somehow

the limits of the approach described here, on the other hand it

turns to be a very practical approach because it allows to quantify

calcium cytosolic concentration and cellular volume at once and

with a single probe loading.

Results

The influence of geometry on the oscillatory changes in

Ca2z
� �

i
should be mirrored by the degree of agreement between

Rx and �JJx. To asses such agreement quantitatively it is useful to

resort to adimensional normalized indices derived from �JJx and Rx,

respectively:

jx~
�JJx

maxx
�JJx½ �

, rx~
Rx

maxx Rx½ �
, ð11Þ

where the max operator runs over all ROIs.

Traces of jx and rx, presented in Fig. 6B, show that in several

ROIs the level of correspondence between surface to volume ratio

and oscillatory activity is quite low. The global correspondence

can be quantified by computing the correlation coefficient

(Pearson product-moment) between jx and rx defined as

r~
1

m{1

Pm
x~2 jx{jð Þ rx{rð Þ

sjsr

, ð12Þ

where j, r are the means of jx and rx averaged on all ROIs and sj ,

sr are the standard deviations. In the case of the cell used in our

example r~0:49. The use of jx and rx helps in understanding the

plot, and hence the relation between activity and surface to

volume ratio, but it is straightforward to show that the results of

the correlations do not depend on the normalization and the same

values for correlation coefficients would have been obtained by

using �JJx and Rx.

To ensure that this result is not due to the particular index used

here, we have computed the correlation between �EEx, as defined in

(7), and Rx obtaining a similar value, r~0:44.

For statistical purposes correlation coefficients rk have been

calculated between normalized indices jx and ratios rx of

k~1 . . . N cells, where N~15 is the size of our sample. The

mean correlation of our sample is �rr~0:69 and the standard error

of the mean (SEM) s�rr~sr=
ffiffiffiffiffi
N
p

~0:04. The relative standard

error is RSE~s�rr=�rr~0:06 and this small value indicates that our

estimate of �rr is quite reliable and our sample is large enough.

More relevant for our purposes is the fact that the agreement

between the trends of jx and rx varies along the neuron (see

Fig. 6B). To investigate this point we have considered two

compartments of the cell: the first comprises the cone and the

neurite and the second the soma of the neuron. We have then

computed, again for each of the N cells under consideration, two

separate correlation coefficients rc and rs for the two compart-

ments (growth cone/neurite complex and soma respectively): let

mc, and ms be the number of ROIs belonging to each

compartment (in general being mczmsƒm) and let

xc~1 . . . mc, xs~1 . . . ms index the ROIs for each compartment,

then

rc~
1

mc

P
xc

jxc{jcð Þ rxc{rcð Þ
sjc src

,

rs~
1

ms

P
xs

jxs{jsð Þ rxs{rsð Þ
sjs srs

,

ð13Þ

where means and standard deviations are computed for each

compartment of the cell. For the same cell as above,

mc~23,ms~25 and rc~0:23, rs~0:88. This first result shows

that the effects of surface to volume ratio on the activity differ

sharply in different subcompartments of the cell: in the soma the

activity appears to follow closely the trend of Rx, whereas they are

quite independent in the growth cone-neurite complex. In

particular consider the differences Djx~jxz1{jx and

Drx~rxz1{rx: from Fig. 6B it is apparent that DjxwDrx at the

growth cone, whereas along the neurite DjxvDrx showing that the

oscillatory activity in the growth cone is more sustained than what

one could have expected just on the basis of the local surface to

volume ratio. The change of sign in the previous inequality occurs

at a point between the end of the cone and the beginning of the

neurite and this is not an isolated case, but it represents a recurring

scenario in the cells we have examined: growth cone likely exhibits

a wide set of calcium mobilizing mechanisms that allows it to have

great amplitude signals in spite of the fact that here the volume is

greater than in the neurite, that seems instead to behave like a

passive element.

Statistics of r, rc, rs, computed on the three data samples rkf g,
rck

� �
, rsk

� �
, clearly show the differences between correlations in

the two compartments:

�rr~0:69 sr~0:16 s�rr~0:04 ð14Þ

�rrc~0:46 src~0:31 s�rrc~0:08 ð15Þ

�rrs~0:89 srs~0:09 s�rrs~0:02: ð16Þ

Notice once again that the results obtained with �JJx do not

depend on its particular functional form, but they are consistent

with other measures of activity. To enable a comparison we also

report the statistics of the correlation coefficients computed using
�EEx instead of �JJx for the measure of the oscillatory activity:

�rr~0:62 sr~0:17 s�rr~0:04 ð17Þ

�rrc~0:35 src~0:31 s�rrc~0:08 ð18Þ

�rrs~0:75 srs~0:20 s�rrs~0:05: ð19Þ

We can conclude that correlations are robust with respect to the

choice of the activity index, but �JJx provides a slightly better result

in terms of discrimination between somatic and neuritic compart-

ment because Jx tð Þ, and hence �JJx, amplify the contribution of the
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high frequency components of the signal, thus highlighting the

differences in oscillatory behavior.

Next the statistical analysis of these results is presented.

Statistical Analysis
A bootstrap procedure was applied to the three sets of data

( rkf g, rck

� �
, rsk

� �
) to draw sampling distributions and related

confidence intervals. For each data set 106 bootstrap samples of

size N~15 were generated and the histograms representing the

distributions of their means were derived and plotted over 103 bins

spanning from 0 to 1.

The mean and the standard deviation of the so obtained

bootstrap distribution should estimate respectively the mean and

the standard error of the mean (SEM) of the original data and

indeed the bootstrap distribution of �rr has mean and standard

deviation that agree very well with mean and SEM of the sample

rkf g. This distribution is shown in Fig. 7A and similarly Fig. 7B

presents the bootstrap distributions of �rrc (blue bars) and �rrs (red

bars), respectively; even in this case the agreement between

empirical and bootstrap statistics is very high.

Fig. 7B also shows a clear difference between the standard

deviation of the two distributions: in particular the inequality

s�rrc
ws�rrs

suggests that the main contribution to the standard

deviation of the global correlation comes from the growth cone/

neuritic compartment while the soma shows a more homogeneous

behavior. In turn this may reflect the fact that while at the soma

the surface to volume ratio is the most determinant feature

influencing Ca2z
� �

i
dynamics, neuritic shaft and growth cone

markedly can express a large variety of behaviors independent

from S/V ratio, and instead dependent on other biophysical

properties of the cell.

The statistical significance of the difference between the mean

correlations in the two regions was estimated by considering the

new statistical variable rdk
~rsk

{rck
with k~1 . . . N . By this way

we also keep into account the pairing of the two samples rck

� �
,

rsk

� �
. The resulting bootstrap distribution of �rrd is shown in

Fig. 7C, and the related 99% confidence interval is

CI 99%~½0:26,0:60�: the lower bound of CI 99% is well above

zero and then we can conclude that �rrc and �rrs differ significantly

with a significance level of av0:01. This significance level has also

been confirmed by the result of a Wilcoxon signed-rank test.

It should be noted that the first order approximation we

adopted may underestimate the ratio R at ROIs whose diameter is

comparable to the linear dimension of the cellular structure, as it

may happen in the neurite. However, with higher order

approximations one should expect for the cone-neurite compart-

ment rc values lower than found here. This point has been verified

by using on a cell a second order approximation, that takes

membrane curvature into account. Thus first order approach

produces the most conservative estimate of the difference between

�rrc and �rrs and yet this difference results to be statistically

significant. The computational cost of using non-linear approxi-

mations is then not justified in this case.

Computational Considerations
Wavelets are nowadays a standard tool in the analysis of many

different types of signals, and many related software packages are

readily available. However, we have chosen to further develop an

original software tool, specifically tailored to our aims, called

KYM ver.0.5, an early version of which has been first presented in

[16].

KYM is fully compatible with both GNU Octave and

MATLAB environment and it has been tested with the latest

releases of these two environments (Octave 3.6.2 and MATLAB 8

(R2012b)).

Wavelet transform computation is here implemented as a

product in the Fourier transformed domain and this ensures a

relatively low computational complexity of n log n order, n being

the length of the signals. A standard code for this algorithm can be

Figure 7. Bootstrap distributions, obtained by means of 106 iterations and bootstrap samples of size N~15. A: bootstrap distribution of
�rr. B: bootstrap distributions of �rrc (blue bars) and �rrs (red bars). C: bootstrap distribution of �rrd .
doi:10.1371/journal.pone.0075986.g007
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found, for instance, in WaveLab850 (http://www-stat.stanford.

edu/wavelab/). Peak detection uses a technique that is based on

image dilation (see, for instance, localMaximum.m m-file by

Yonathan Nativ, http://www.mathworks.com/matlabcentral/

fileexchange/authors/26510/). The rest of the code has been

written and developed ad hoc to perform the analysis presented

here.

KYM ver.0.5 can be freely downloaded from the well-established

public-domain repository SourceForge (http://sourceforge.net/

projects/kym/).

To our knowledge this is the first open source tool specifically

dedicated to the analysis of the time course of cellular calcium

signals and, more generally, of oscillatory signals recorded by

means of fluorescent dyes from biological systems.

Discussion

Calcium signalling in cells, and particularly in neurons, is

characterized by high spatial compartmentalization, and this

property has a strong relevance in the different roles of specific

neuronal regions in information coding: see e.g. the contribution

of dendritic subcompartments (spines, dendritic shaft, proximal vs.

apical dendrites) as compared to somatic signals [12,30]. This is

true not only in mature neurons, but also during development: the

involvement of calcium signals in the control of elongation,

orientation and arrest of the growth cone of extending neurites,

leading to the establishment of neuronal networks [4,5,9,11,31], is

one relevant example. These signals usually have a marked

oscillatory pattern, and their frequency has been shown to affect

neurite growth.

A relevant issue in this context is the understanding of the

structural and functional basis of this spatial compartmentaliza-

tion: is the peculiar oscillatory behavior at the growth cone a

passive consequence of the specific geometry of this subcellular

region or a specificity of the spatial localization of calcium influx/

efflux mechanisms can be evidenced? Davenport et al. [11], in a

pioneering paper on the sensing machinery at the filopodia of the

growth cone, ascribed it to ‘‘urely physical dimensions’’, mainly

the surface to volume ratio; while this parameter is without doubt

relevant, others, mainly the inhomogeneity of distribution of

membrane proteins, such as channels and transporters, may

explain the specificity of these signals during the development and

stabilization of neuronal networks.

The specific contribution of subcellular compartments to

calcium signalling has been addressed mainly through two

approaches: I) experimental manipulation of the signal by means

of local application of specific agonists and blockers of different

channel types (see e.g. [9]) and II) modeling of the influx/efflux

mechanisms and of the buffering properties of the cytosol (see e.g.

[32,33]). Here we have developed a new and different approach,

independent on assumptions on the actual mechanisms involved in

the spatial specificity, that can be used as a predictive tool to

separate functional differences from geometrical ones.

First, we defined a spatiotemporal index Jx(t) whose time

average �JJx provides a spatial measure of the oscillatory events in

calcium concentration, and shows that different neuronal sub-

comparments are characterized by different oscillatory activities.

How this inhomogeneity can be attributed just to geometrical

factors, namely the surface to volume ratio, has been investigated

by computing correlations between the normalized versions of �JJx

and Rx, the local surface to volume ratio. The results show that the

oscillatory activity is specifically localized at the growth cone, and

its spatial distribution along the whole neuron is poorly related to

the surface/volume ratio: along the neuritic shaft, where the ratio

is high, activity drops. A statistical analysis on a dataset of N~15
cells, has confirmed that in the soma calcium dynamics are

correlated to the surface/volume ratio, whereas correlation drops

in the growth cone-neurite complex, suggesting a spatial segrega-

tion of the properties of the growth cone and of its sensing

machinery.

Apparently, signals at the growth cone maintain their local

nature and are not fully propagated to the other compartments.

Other works (see e.g. [34] for cerebellar granule cells) have shown

that calcium signals elicited at the growth cone by an extracellular

cue can propagate to the soma by means of a mechanism based on

calcium-induced calcium release (CICR). This does not seem to be

true in our case. As discussed above, calcium release does not play

a major role in our experimental model.

Evidence that the oscillatory pattern of calcium signals is

dependent on spatial specificity of membrane properties (and not

exclusively on geometrical parameters) has been given by [8], for

signals activated by a neurotrophic factor in the same experimen-

tal model: the growth cones of two neurites of the same neuron, of

comparable morphology, showed markedly different oscillatory

behaviors. A similar observation can also be found in Fig. 6 of the

present paper, in which the second neurite does not show a

marked oscillatory activity in spite of its high surface to volume

ratio.

It must be remarked that our results refer uniquely to the

spontaneous activity of the somatic, neuritic and growth cone

compartments; while these signals have been reported to be

relevant in the decisions the neuron and its processes have to take

(see e.g. [31]), their behavior is strongly affected by a wide set of

extracellular signals and their modulation of calcium signalling at

the different subcompartments [1,8]. In this regard, it should be

noted that the method discussed here is not restricted to the

present application, but it can be used to analyze spatial specificity

of calcium signals in a variety of cases, such as agonist-elicited

responses in a wide set of cellular models.

Supporting Information

Figure S1 Scaleograms: maps of wavelet transform
modulus ( Wxj j) computed for the same three traces
shown in Fig. 3. Growth cone (A: ROI 6), neuritic shaft (B: ROI

18) and soma (C: ROI 32). The horizontal and vertical axes are,

respectively, time (t) and frequency (n) coordinates, while Wxj j
amplitude values are coded by colors, from blue (low) to red (high).

High frequencies (representing the most rapid events, i.e. the

sharpest peaks) are confined into the growth cone and they

disappear moving toward the soma. The middle range frequencies

are still present at the neurite, but at the soma only a weak

component of the low frequency range has survived.

(EPS)

Figure S2 Energy density computed for all ROIs. A:

trends of Ex tð Þ for all ROIs, superimposed according to a color

gradient from blue (growth cone) to red (soma). B: two-

dimensional map of Ex tð Þ. The horizontal and vertical axes are,

respectively, time (t) and space (x) coordinates, while values of E

are coded by colors, from blue (low) to red (high).

(EPS)

Figure S3 Spatial trend of time-averaged energy densi-

ty. Graph of �EEx as a function of ROI position, from the growth

cone to the soma.

(EPS)
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