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Abstract
Radiology reports contain a diverse and rich set of clinical abnormalities documented by radiologists during their interpreta-
tion of the images. Comprehensive semantic representations of radiological findings would enable a wide range of secondary 
use applications to support diagnosis, triage, outcomes prediction, and clinical research. In this paper, we present a new 
corpus of radiology reports annotated with clinical findings. Our annotation schema captures detailed representations of 
pathologic findings that are observable on imaging (“lesions”) and other types of clinical problems (“medical problems”). The 
schema used an event-based representation to capture fine-grained details, including assertion, anatomy, characteristics, size, 
and count. Our gold standard corpus contained a total of 500 annotated computed tomography (CT) reports. We extracted 
triggers and argument entities using two state-of-the-art deep learning architectures, including BERT. We then predicted 
the linkages between trigger and argument entities (referred to as argument roles) using a BERT-based relation extraction 
model. We achieved the best extraction performance using a BERT model pre-trained on 3 million radiology reports from 
our institution: 90.9–93.4% F1 for finding triggers and 72.0–85.6% F1 for argument roles. To assess model generalizability, 
we used an external validation set randomly sampled from the MIMIC Chest X-ray (MIMIC-CXR) database. The extrac-
tion performance on this validation set was 95.6% for finding triggers and 79.1–89.7% for argument roles, demonstrating 
that the model generalized well to the cross-institutional data with a different imaging modality. We extracted the finding 
events from all the radiology reports in the MIMIC-CXR database and provided the extractions to the research community.
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Introduction

Radiology reports are the principal means for communicat-
ing and documenting radiological imaging [1]. The reports 
contain a diverse and rich set of information, including 
radiologic findings, diagnoses, and recommendations for 
follow-up tests. While there has been some limited explo-
ration of structured radiology reports that capture findings 
through semantic representations [2], radiologists’ findings 
are predominantly captured through unstructured text. Natu-
ral language processing (NLP) can automatically convert 
unstructured text, including radiology reports, to a structured 

semantic representation [3]. Structured semantic represen-
tations of the findings in radiology reports could facilitate 
many secondary use applications, including clinical deci-
sion-support systems [4], diagnostic surveillance of medical 
problems [5], identification of patient cohorts with specific 
phenotypes [6], tracking follow-up recommendations [7], 
image retrieval and data-mining [8], and simplification 
of report language for patients [9]. Large-scale and real-
time use of radiological finding information in these types 
of secondary use applications requires a detailed semantic 
representation of the findings that captures the most sali-
ent information. Since imaging tests are commonly used for 
cancer screening and diagnosis, semantic representations 
for findings associated with lesions and medical problems 
would be largely applicable to secondary use.

In this paper, we explored the extraction of comprehen-
sive representations of clinical findings from radiology 
reports, including the creation of a novel annotation schema, 
annotation of a new clinical data set, and the development 
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of state-of-the-art clinical finding extraction models. In our 
annotation schema, we categorized findings in radiology 
reports as Lesion findings and Medical Problem findings. A 
Lesion finding was defined as an abnormal space-occupying 
mass that was observable on the images. Lesions included 
primary tumors, metastases, benign tumors, abscesses, 
nodules, and other masses. A Medical Problem finding was 
a pathological process that was not a lesion, for example, 
cirrhosis, air-trapping, atherosclerosis, and effusion. Each 
finding category was represented through fine-grained 
event-based annotations. We presented a new annotated 
corpus of 500 computed tomography (CT) reports from 
the University of Washington (UW). To extract the finding 
events, we developed a deep learning extraction framework 
that fine-tuned a single Bidirectional Encoder Representa-
tion from Transformers (BERT) [10] model. We explored 
different contextualized embeddings through pre-training 
on different text sources. To assess the generalizability of 
the event extraction model, we annotated a subset of the 
MIMC-CXR radiology reports [11]. The extraction model 
achieved comparable performance on the MIMIC-CXR and 
UW data sets, despite the differences between the data sets. 
We extracted the clinical findings from the entire MIMIC-
CXR data set and made the extracted findings available 
to the research community.1 We also made the annotation 
guidelines and event extraction framework available.2 The 
extraction framework directly processes annotated event data 
from the brat rapid annotation tool (BRAT) [12] and can be 
readily used for event extraction without any deep learning 
coding experience.

Background

The development of NLP-based information extraction (IE) 
models that target important information in clinical text 
has increased in recent decades [13]. Radiology is a clini-
cal domain where NLP approaches, including IE, have been 
extensively applied [3]. Radiological finding information 
can be extracted by using named entity recognition (NER) 
to identify fine-grained details, such as anatomy, size, char-
acteristics and assertion, and subsequently linking related 
phenomena using relation extraction (RE). Several studies 
employed custom rule-based linguistic patterns to identify 
clinical finding observations in radiology reports, includ-
ing appendicitis indication, anatomy and assertion [14], 
adrenal observations and modifiers [15], and osteoporosis 
fracture categories and modifiers [16]. Due to the heteroge-
neity of writing styles, ambiguity of abbreviations, and pres-
ence of “hedging” statements [17], engineering linguistic 

and semantic rules to extract information from radiology 
reports requires substantial effort and clinical expertise. 
Furthermore, rule-based approaches produce brittle extrac-
tion models that do not generalize well. One example is the 
MedLEE system developed by Columbia University which 
incorporated comprehensive syntactic and semantic gram-
mars to extract information from chest radiograph reports 
[18]. The conceptual model comprised 350 semantic gram-
mar rules, 1720 single-word lexicons, and 1400 multi-word 
phrases. Development of the MedLEE semantic grammars 
required half a person-year [19, 20]. Sevenster et al. used 
MedLEE to identify finding observation and body location 
entities and establish relationships between entities through 
relations. However, the major drawback was that the recall 
of overall extraction (entities and relations) was less than 
46% due to the lack of comprehensive lexicons and gram-
matical rules [21].

To overcome the limitations of rule-based systems, more 
contemporary radiology extraction work used statistical 
machine learning approaches to extract finding information. 
There is a body of radiology IE work that utilized discrete 
modeling approaches. For example, Hassanpour et al. used 
conditional Markov and conditional random field (CRF) 
models to extract anatomy, observations, modifiers, and 
uncertainty entities from a corpus of 150 reports [22]. Yim 
et al. employed maximum entropy models to extract rela-
tions between tumor references and attributes from radiol-
ogy reports of hepatocellular carcinoma patients [23]. One 
challenge with statistical machine learning approaches is 
that manually engineered features are often tailored to solve 
a specific problem and are not easily adaptable to other 
domains.

Recent radiology extraction studies utilize neural net-
works, which offer improved modeling capacity, abstraction, 
and transfer learning than discrete modeling approaches. A 
commonly applied neural approach is the sequence-based 
recurrent neural network (RNN) model, which encodes 
sequences using an internal memory mechanism. The Bidi-
rectional Long Short-term Memory (BiLSTM) network is a 
popular RNN variant, which captures long-range sequential 
dependencies in the forward and backward directions. Cor-
negruta et al. extracted 4 different entities (body location, 
clinical finding, descriptor, and medical device) with an 
annotated corpus of 2000 radiology reports using BiLSTM 
[24]. Steinkamp et al. extracted clinical finding observations 
and their relations to modifier entities, such as location, size, 
and change over time using another RNN variant, the Gated 
Recurrent Unit [25].

Most state-of-the-art NLP classification work, including IE 
within the radiology domain, utilized pre-trained transformer 
models with over hundreds of millions of model parameters. 
The popular BERT [10] model offers several benefits over 
RNN variants, including the combination of self-supervised 

1 https:// github. com/ uw- bionlp/ MIMIC- CXR_ clini cal_ findi ngs
2 https:// github. com/ wilso nlau- uw/ BERT- EE

https://github.com/uw-bionlp/MIMIC-CXR_clinical_findings
https://github.com/wilsonlau-uw/BERT-EE
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pre-training and sub-token representation. BERT learns 
word relationships through a masked language modeling 
task and learns sentence dependency by predicting whether 
two sentences are adjacent. This pre-training process allows 
the model to develop deep representation of words in context 
through layers of multi-head self-attention. BERT intrinsically 
attends to certain types of syntactic relations [26], and the 
dependency information can be leveraged to increase rela-
tion extraction performance [27, 28]. Provided that the model 
is sufficiently pre-trained on unlabeled data in the target 
domain, the expressive contextual representations of BERT 
can be transferred to specific prediction tasks, including IE, 
and achieve state-of-the-art performance. Sugimoto et al. 
extracted 7 different clinical entities from a corpus of 540 
Japanese CT radiology reports by fine-tuning a pre-trained 
Japanese BERT model [29]. Other studies extracted breast 
imaging entities and relations from Chinese radiology reports 
[30, 31]. Datta et al. employed a similar BERT fine-tuning 
approach to extract relations for clinical finding with spatial 
indication, such as “within” or “near” [32].

We identified several gaps in prior work that limit the 
creation of comprehensive semantic representations of find-
ings in radiology reports, including (1) the limited scope 
of the annotation and extraction schemas, (2) the limited 
scope of diseases and anatomy explored, and (3) the lack of 
demonstrated generalizability. Findings in radiology reports 
can be relatively complex, and several attributes are often 
needed to fully capture all the finding information present 
(e.g., assertion, anatomy, size, and other characteristics) 
for meaningful secondary use. Many prior studies only 
focused on entity extraction, without identifying the rela-
tions between entities in order to fully represent the findings 
[15, 16, 22, 24, 29]. To address this gap, we introduced an 
event-based annotation schema that captured a majority of 
the finding information. Several studies focused on specific 
diseases and/or anatomical regions [14, 23, 30–32]. While 
this focus may improve performance for the target diseases 

and/or anatomy, it reduces the generalizability of the anno-
tated data sets and extraction models. To address this gap, 
we created the first general-purpose gold standard annotated 
with event-based schema on Lesion and Medical Problem 
findings without disease or anatomy constraints. The gold 
standard contained randomly sampled 500 CT reports. In 
comparison to the reports in other imaging modalities, such 
as chest X-ray reports, CT reports covered a wide range of 
anatomy, medical problems, lesion types, lesion character-
istics, and assertions. We trained and evaluated the event 
extraction framework on this gold standard of CT reports. 
No other previous studies evaluated the generalizability of 
extraction models across imaging modalities or institutions. 
To address this gap, we evaluated the extraction performance 
on an external validation set we created from chest X-ray 
reports from the publicly available MIMC-CXR data set.

Materials and Methods

Dataset and Annotation Schema

We used an existing clinical dataset of 706,908 computed 
tomography (CT) reports from the UW clinical repository 
from 2008 to 2018. We randomly sampled 500 CT reports 
from this dataset and annotated as our gold standard cor-
pus. Retrospective review of this dataset was approved by 
the UW institutional review board, and the dataset was de-
identified to preserve the privacy of the patients and ensure 
HIPAA compliance.

Our annotation schema is summarized in Table 1. We 
used an event-based representation to capture the details of 
two clinical finding types: Lesion and Medical Problem. 
Each event was characterized with a trigger and a set of 
connected arguments. The trigger was a required key phrase 
identifying the finding event, while the arguments provided 
fine-grained details about the event. The argument entities 

Table 1  Annotation schema of Lesion finding and Medical Problem finding

Argument Type Categorical labels Span examples

Lesion finding Lesion description (trigger) Span-only - “mass,” “lesion,” “nodule”
Anatomy Span-only - “left lower lobe”
Assertion Span-with-value Present (default), absent, possible “no,” “possible”
Characteristics Span-only - “hypodense,” “septal”
Count Span-only - “2,” “numerous,” “multiple”
Size Span-only - “4.1 × 3.1 cm,” “small”
Size trend Span-with-value New, increasing, decreasing, 

no-change
“stable,” “unchanged”

Medical Problem finding Medical problem (trigger) Span-only - “atherosclerotic calcifications”
Anatomy Span-only - “abdominal aorta,” “right kidney”
Assertion Span-with-value Present (default), absent, possible “no,” “possible”
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were linked to the corresponding triggers through argument 
roles, forming a detailed and nuanced semantic representa-
tion of the clinical findings. We defined two types of argu-
ments: span-only and span-with-value. The annotation of 
span-only arguments included the selection of the relevant 
phrase, assignment of an argument type label, and connec-
tion to the trigger, similar to most event annotation work. 
The annotation of span-with-value arguments included the 
selection of the relevant phrase, assignment of an argument 
type label with an additional categorical label that captures 
the clinical meaning of the selected phrase, as well as con-
nection to the trigger. The categorical labels normalized 
the contents of the annotated phrase, allowing the extracted 
information to more easily be incorporated into secondary 
use applications. For example, in the sentence “No trau-
matic abnormality in the abdomen or pelvis,” annotating 
the text span “no” as Medical-Assertion would also include 
the assignment of the categorical label absent. Because the 
presence of a lesion or medical problem could be implied 
rather than explicit, present was the default categorical label 
for Assertion, unless the report clearly indicated that the 
possible or absent labels were applicable.

Extraction of these findings was treated as a slot fill-
ing task by identifying the text spans that corresponded to 
the arguments (argument entities with roles) of the clinical 
finding events. Figure 1 presents example annotations for a 
Lesion event and a Medical Problem event. For span-only 

arguments, the slot values would be the identified text spans. 
For span-with-value arguments, the slot values would be the 
identified categorical labels, which capture the meaning of 
the annotated phrases. A finding event might include mul-
tiple arguments of the same type. For example, a medical 
problem could be linked to multiple anatomical locations, 
or a lesion could be described by multiple characteristics.

Scoring Criteria for Evaluation

Inter-annotator agreement and model extraction perfor-
mance were evaluated using the same scoring criteria. The 
annotated and extracted events include trigger and argument 
entities that are connected through argument roles. The pair-
ing of triggers and arguments (entities with identified roles) 
assembles events from the individual entities. The scoring 
criteria for trigger and argument entities and argument roles 
are presented below.

Trigger and Argument Entities

Trigger and argument entities scoring considered the span 
identification and labeling, without considering the roles 
linking trigger and argument entities. All trigger and argu-
ment entities were compared at the token-level (rather than 
span-level) to allow partial matches, since partially matched 

Fig. 1  Example annotations for Lesion and Medical Problem events
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text spans could still contain clinically relevant information, 
e.g., “mass lesions” vs “lesions.”

Argument Roles

Argument role scoring considered three annotated/extracted 
phenomena: (1) the trigger entity, (2) the argument entity, 
and (3) the argument role (linking the trigger-argument 
entity pair). Argument role equivalence required the trig-
ger entity, argument entity, and role label to be equivalent. 
In argument role scoring, the entity equivalence criteria for 
triggers, span-only arguments, and span-with-value argu-
ments were based on the semantics of the event represen-
tation, by considering the most salient information being 
captured by the entities [33].

Triggers Events were aligned based on trigger equivalence, 
and the arguments associated with aligned events (events with 
equivalent triggers) were compared based on the argument 
types. Triggers were considered equivalent if the spans over-
lapped by at least one token. Figure 2 shows an example of 
two Medical Problem annotations. Although the word “dis-
placed” is not part of the trigger in annotation #2, their over-
lapping text spans and connections to the Medical-Anatomy 
argument entities indicates that both argument entities belong 
to the same event and can be scored accordingly.

Span‑Only Arguments When evaluating argument role 
performance, span-only argument entity equivalence was 
assessed at the token-level rather than span-level, because 
partial matches can capture clinically relevant information. 
The example in Fig. 3 includes the same sentence with two 
sets of annotations for a Lesion event with multiple Lesion-
Anatomy arguments. The second Lesion-Anatomy entities 
in the annotation do not match exactly. The discrepancy 
between the Lesion-Anatomy annotations (“extending” in 
annotation #1) includes some clinical information; however, 
a majority of the clinically relevant information is captured 
by both spans (“posteriorly to the nasopharynx”). The token-
level equivalence criteria for span-only argument entities 
were intended to reward such partial matches.

Span‑with‑Value Arguments The categorical labels of span-
with-value argument normalized the contents of the annotated 

phrase, allowing the extracted information to more easily be 
incorporated into secondary use applications. When evalu-
ating argument role performance, the span-with-value argu-
ment entity equivalence was assessed based on the categorical 
labels only, without considering the spans. In Fig. 4, although 
the Lesion-Size-Trend argument entity in annotation #2 does 
not include the words “and number,” both Lesion-Size-
Trend annotations have the same categorical label and slot 
value (increasing). Hence, both annotations are considered 
equivalent.

Gold Standard Corpus Annotation

The annotation was performed by one medical student and 
one graduate student using the BRAT rapid annotation tool 
[12]. Annotation guidelines were provided describing the 
details of each clinical finding event. In the initial itera-
tions, the annotators were given the same samples to anno-
tate independently. After each iteration, the annotators met 
with the domain expert radiologist to discuss and resolve 
the disagreements. The annotation guidelines were updated 
accordingly. At each iteration, we calculated inter-annotator 
agreement using pair-wise F1 score [34], by holding one 
set of annotated samples as gold standard and calculating 
the F1 of the other annotated samples. After four iterations, 
the final inter-annotator agreement over 30 CT reports was 
93.0% F1 for triggers, 83.7% F1 for span-only arguments, 
and 86.9% F1 for span-with-value arguments, based on the 
argument role scoring in the “Argument Roles” section. 
The medical student single-annotated the remaining 470 
CT reports. The final corpus contained 2344 Lesion events 
(6337 argument entities and 6617 argument roles) and 8065 
Medical Problem events (5783 argument entities and 7406 
argument roles). The argument entity counts represented the 
number of annotated spans, and the argument role counts 
indicated the number of trigger-argument pairings. Since 
an argument entity could be linked to multiple triggers, the 
argument role counts could be greater than the argument 
entity counts. The distribution of the annotated argument 
entities and roles is shown in Table 2. As can be observed, 
the number of annotated Medical Problem events was more 
than three times higher than the number of Lesion events. 
In general, each argument type corresponded to a single 
argument role type (one-to-one mapping between argument 

Annotation #1

Annotation #2

Fig. 2  Two Medical Problem finding event annotations with equivalent triggers
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types and roles). One exception is Lesion-Size, which could 
be connected to a trigger through a Lesion-Size (Past) or 
Lesion-Size (Present) argument role.

Overall gold standard corpus statistics are presented in 
Table 3. On average, there were 16 Medical Problem events 
and 5 Lesion events annotated per report. Some CT reports 
in the gold standard were very dense and contained over 100 
Medical Problem events.

Event Extraction

The finding events were extracted in two separate steps: (1) 
the trigger and argument entities were extracted and (2) the 
argument roles were identified by connecting extracted trig-
ger and argument entities through relations. The pairing of 
the trigger and argument entities through the argument roles 
assembles events from the individual entity extractions. Our 
event extraction pipeline operated on sentences, which were 
treated as independent samples.

Trigger and Argument Entity Extraction

The extraction of trigger and argument entities was defined 
as a NER task. For the span-with-value argument entities, 
the categorical labels were appended to in the entity labels, 
for example, Medical-Assertion (absent). Predicting the 
labels of the argument entities would therefore predict both 
the argument type and the categorical labels. We evalu-
ated two state-of-the-art neural network architectures: (1) 
BiLSTM-CRF [35] and (2) BERT NER [10]. BiLSTM-CRF 
was considered a strong NER baseline by multiple studies 
[29, 31, 32]. We used the open source NeuroNER [36] for 

the BiLSTM-CRF implementation. Figure 5 presents Neu-
roNER’s BiLSTM-CRF architecture. Each token in the input 
sentence was represented by the concatenation of a pre-
trained word embedding and a character-aware word embed-
ding. The character-aware word embedding was generated 
by a BiLSTM operating on the individual characters asso-
ciated with each token. The character-aware word embed-
ding enabled the model to learn the morphological structure 
in each word and to encode out-of-vocabulary tokens. The 
sequence of word embeddings was then encoded using a 
second BiLSTM layer to create a contextualized representa-
tion of the sentence. The label of each word was predicted 
by a CRF output layer which took into account the condi-
tional dependencies across the neighboring labels. To create 
input labels for the NER model from our annotated corpus, 
we used the Begin, Inside, Outside (BIO) tagging schema, 
based on whether the token was at the beginning, inside, or 
outside of a label. For instance, consider the sentence “Prob-
able malignant pancreatic mass with no evidence of vascular 
encasement.” The labels would be classified as illustrated 
in Fig. 5.

The BERT NER model was implemented by adding 
a single linear layer to the BERT output hidden states 
and fine-tuning a pre-trained BERT model, as described 
by Devlin et al. [10]. Because BERT utilized WordPiece 
tokenization [37], rare words would be segmented into mul-
tiple sub-tokens. These sub-tokens, prefixed by “##” if not 
the first sub-token, allowed the segments of the words to be 
represented in a deterministic fashion. Rather than using 
a universal token like “[UNK],” the sub-token representa-
tion provided richer contextual embeddings for the model 
to generalize. During the BIO labeling, the sub-tokens 

Annotation #1

Annotation #2

Fig. 4  Two Lesion finding event annotations with the same value for Lesion-Size-Trend 

Annotation #1

Annotation #2

Fig. 3  Two Lesion finding event annotations with partially matched span-only arguments
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starting with “##” were assigned a special label #. In addi-
tion, the BERT input included the special tokens “[CLS]” 
and “[SEP]” at the beginning and end of a sentence 
respectively, to signify the sentence boundaries. Figure  
6 illustrates how the labels of an input sentence were clas-
sified by BERT NER.

Argument Role Extraction

Once the trigger and argument entities were extracted, 
the argument roles were identified by predicting the links 
between trigger and argument entities. Identifying the roles 
of the argument entities filled the slots of the clinical find-
ing events, similar to Fig. 1. Each event included a trigger 
that anchored the event, with zero or more argument con-
nections. Each argument role was represented by a unidi-
rectional relation where the head was the trigger entity and 
the tail was an argument entity. We predicted the argument 
roles, by decomposing each event into a set of relations, 
predicting the relations, and then assembling events from 
the predicted relations.

Relations were extracted using BERT by adding a linear 
layer to the pooled output state (encoded in the “[CLS]” 
token) and fine-tuning the model. Figure 7 presents the 
BERT relation extraction (RE) model with an example 
input sentence. A unique input sentence was created for 
each candidate trigger-argument relation. The trigger and 
argument entity locations were marked with two pairs of 
special tokens, namely (“[unused0],” “[unused1]”) and 

(“[unused2],” “[unused3]”), which provided positional 
information about the entities and the direction of the rela-
tion (disambiguate head and tail). These special tokens were 
part of the BERT vocabulary designed for introducing new 
domain specific samples for fine tuning purposes. Consider 
the aforementioned example where the word “Probable” is 
the Lesion-Assertion of the Lesion trigger “mass.” The trig-
ger would be marked as “[unused0] mass [unused1]” and the 
Lesion-Assertion would be marked as “[unused2] Probable 
[unused3].” In addition, we introduced a new relation called 
“No_relation” for negative instances indicating the absence 
of relations between some argument entities and triggers.

A single BERT model was fine-tuned for both the NER 
and RE tasks. In each training epoch, the NER and RE 
batches were alternated randomly, minimizing the cross-
entropy loss for the applicable target (NER or RE), and 
thereby effectively allowing the model to learn from the 
two different tasks.

We performed fivefold cross-validation (CV) for all 
experiments using the same data split ratio (80% for training, 
10% for validation, 10% for testing). The validation set was 
used for applying early stopping in order to avoid overfitting 
the training data [38]. The training was stopped when the 
validation results no longer showed improvement.

For the entity extraction baseline (BiLSTM-CRFrad), 
we used the word2vec embeddings pre-trained on a radi-
ology report dataset from our previous work [39]. This 
dataset contained over 3 million reports covering a wide 
range of imaging modalities and were collected from four 

Table 2  Event annotation 
statistics

Trigger/argument entities Frequency Argument role Frequency

Lesion-Description 2344 -
Lesion-Anatomy 2039 Lesion-Anatomy 2187
Lesion-Assertion 945 Lesion-Assertion 1008
Lesion-Characteristic 1931 Lesion-Characteristic 1968
Lesion-Count 235 Lesion-Count 237
Lesion-Size 816 Lesion-Size (Past) 94

Lesion-Size (Present) 736
Lesion-Size-Trend 371 Lesion-Size-Trend 387
Medical-Problem 8065 -
Medical-Anatomy 2990 Medical-Anatomy 3952
Medical-Assertion 2793 Medical-Assertion 3454

Table 3  Gold standard corpus 
statistics

Minimum Mean Median Maximum

Number of words per report 50 327 288 1383
Number of events per report 2 21 18 130
Number of Medical Problem events per report 0 16 13 129
Number of Lesion events per report 0 5 3 36
Number of arguments per Medical Problem event 0 1 1 5
Number of arguments per Lesion event 0 3 3 16
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institutions including the University of Washington Medical 
Center, Northwest Hospital and Medical Center, the Seattle 
Cancer Care Alliance, and Harborview Medical Center. In 
terms of the model hyperparameters, the embedding dimen-
sion and the hidden state dimension of the character and 
sequence LSTM layers were 25 and 100. We used the Adam 
Optimizer with a learning rate of 0.005, as suggested by 
NeuroNER.

We experimented with three different pre-trained BERT 
models  (BERTbase,  BERTclinical, and  BERTrad).  BERTbase 
was pre-trained on Wikipedia and BookCorpus, and made 
available by Google [10].  BERTclinical was pre-trained 
on 2 million clinical notes, including over 500,000 radi-
ology reports, from the MIMIC-III database [40, 41]. 
 BERTrad was pre-trained on over 3 million UW radiol-
ogy reports and was initialized from the  BERTclinical. We 

pre-trained  BERTrad for 150,000 steps with a batch size of 
32, maximum sequence length of 128, and a learning rate 
of 2e − 5. In our experiments, both entities and relations 
were extracted by fine-tuning the same BERT model. We 
used the same set of hyperparameters in all the extraction 
experiments, based on the recommended values suggested 
by Devlin et al., with a learning rate of 3e − 5, a drop-out 
rate of 0.1. Early stopping was also employed using the 
validation set.

To better assess the general performance of the models 
with different subsamples, we repeated the cross validation 
10 times. For each run, the cross-validation data splits were 
created with a different random seed [38]. We reported the 
average precision, recall, and F1 scores across these 50 dif-
ferent runs and included the 95% confidence intervals.

Fig. 6  Architecture of the BERT NER model

Fig. 5  Architecture of the NeuroNER BiLSTM-CRF model
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Results

Trigger and Argument Entity Extraction Results

All of the trigger and argument entities were extracted first 
before their relations were identified. Trigger and argument 
entity extraction performance was evaluated at the token-
level, as described in the “Trigger and Argument Entities” 
section. The results are shown in Table 4.

All of the BERT implementations outperformed BiLSTM-
CRFrad. The BERT model with radiology-specific pretraining, 
 BERTrad, generally performed better than the other variants, 

 BERTbase and  BERTclinical, achieving the highest overall aver-
age F1 of 85.5%. In Lesion-Count prediction,  BERTclinical is 
slightly higher than  BERTrad. In Lesion-Size-Trend prediction, 
the decreasing label had relatively low extraction performance 
due to the small sample size. For the Assertion extraction, the 
absent label was easier to predict since most of the annotated 
text spans comprised a single word “no,” which constituted 
70% of the Medical-Assertion and 84% of the Lesion-Assertion 
entities.

We conducted statistical significance tests using the overall 
F1 to access whether the difference in model results were due 
to randomness or sampling variability. In cross-validation, the 

Fig. 7  Architecture of the BERT RE model

Table 4  Entity extraction results (average precision, recall, and F1 in %), based on 10 runs of fivefold cross-validation. The numbers in brackets 
are 95% confidence intervals of the averages. The best F1 values are in bold

Entity BiLSTM-CRFrad BERTbase BERTclinical BERTrad

P R F1 P R F1 P R F1 P R F1

Medical-Problem 88.8 84.9 86.7 
(± 0.45)

89.1 83.9 86.4
 (± 0.37)

90.5 83.6 86.8 
(± 0.37)

91.3 85.0 88.0 (± 0.34)

Medical-Anatomy 79.1 79.9 79.3 
(± 0.92)

82.3 77.9 79.9
 (± 0.87)

83.8 77.3 80.3
 (± 0.84)

85.7 78.5 81.8 (± 0.75)

Medical-Assertion 85.6 84.5 84.9 
(± 0.79)

86.9 85.7 86.3
 (± 0.70)

87.8 84.7 86.1
(± 0.63)

88.5 86.3 87.3 (± 0.78)

Lesion-Description 87.2 87.9 87.5 
(± 0.71)

89.1 86.8 87.9
 (± 0.66)

89.0 87.6 88.2
 (± 0.62)

90.0 88.4 89.1 (± 0.63)

Lesion-Anatomy 80.2 78.6 79.0 
(± 0.92)

85.5 76.5 80.6
 (± 0.94)

85.8 76.8 80.8 
(± 0.89)

86.8 80.7 83.5 (± 0.86)

Lesion-Assertion 81.3 72.1 76.2 
(± 1.55)

86.0 70.0 76.8
 (± 1.60)

85.6 70.5 77.1
 (± 1.48)

86.5 73.6 79.3 (± 1.26)

Lesion-Characteristic 76.6 72.6 74.1 
(± 1.36)

81.8 70.5 75.4 
(± 1.22)

82.8 71.3 76.3
 (± 1.11)

84.2 73.6 78.3 (± 1.14)

Lesion-Size 84.1 85.8 84.4 
(± 1.88)

91.1 84.2 87.3 
(± 1.37)

89.1 84.4 86.4 
(± 1.56)

90.7 88.2 89.3 (± 1.43)

Lesion-Count 89.1 85.6 86.7 
(± 2.20)

90.9 86.6 88.0 
(± 2.15)

92.0 88.0 89.3 
(± 2.07)

91.0 87.5 88.7 (± 2.16)

Lesion-Size-Trend 69.0 63.2 65.5 
(± 3.20)

78.0 60.7 67.6 
(± 3.14)

75.2 59.5 65.5
 (± 2.98)

77.3 63.6 68.9 (± 3.06)

Overall 84.2 82.1 83.1 
(± 0.37)

86.7 80.9 83.7 
(± 0.36)

87.7 80.6 84.0
 (± 0.28)

88.8 82.4 85.5 (± 0.28)
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training sets overlap between different folds. As a result, the 
classification performance from each fold is not completely 
independent, and can lead to misleading statistical results 
when applying standard paired t-tests [42]. Hence, we applied 
the corrected resampled t-test, as suggested by Nadeau and 
Bengio [43], to better estimate the sample variance. The 
test results showed that the overall performance of  BERTrad 
was better than the other architectures with significance 
(p-value < 5e − 6).

Argument Role Extraction Results

In this section, we present the end-to-end argument role 
extraction results. Specifically, we predicted the argument 
roles using the extracted triggers and argument entities rather 
than the gold standard entities. Table 5 shows the extraction 
results based on the scoring criteria described in the “Argu-
ment Roles” section. In general, the in-domain contextualized 
representations helped the  BERTrad model achieved higher 
performance (except Lesion-Count).

Overall Trigger and Argument Role Extraction 
Results

Table 6 presents the overall trigger and argument role extrac-
tion performance, evaluated with the scoring described in the 
“Argument Roles” section. The  BERTrad model achieved the 
highest average F1 of 92.9% for triggers (93.4% for Medical-
Problem and 90.0% for Lesion-Description), suggesting very 
high overlap between the extracted findings and the gold 

standard. The highest average F1 for span-only arguments and 
span-with-value arguments were 75.0% and 84.8% respectively. 
The performance of  BERTbase was comparable to  BERTclinical. 
While  BERTclinical performed slightly better than  BERTbase on 
triggers and span-only arguments,  BERTbase performed slightly 
better on span-with-value arguments.

We conducted the same statistical tests on the event argu-
ment extraction results using the overall performance scores 
presented in Table 6.  BERTrad achieved the best overall per-
formance with significance (p-values < 1.6e − 4).

Extracting Findings from MIMIC‑CXR 
Radiology Reports

We used the chest X-ray reports in the MIMC-CXR data-
base, to explore the generalizability of the event extraction 
model that was trained on CT reports. The MIMIC-CXR 
database consists of 337,110 images in 227,835 radiographic 
studies performed at the emergency department of the Beth 
Israel Deaconess Medical Center from 2011 to 2016. Each 
study is associated with a single radiology report [11]. The 
dataset was made publicly accessible to support independ-
ent research, such as predicting pulmonary edema severity 
[44], predicting COVID-19 pneumonia severity [45], and 
evaluating FDA approved AI devices [46].

To evaluate the generalizability of our extraction model, we 
manually annotated 50 randomly selected chest X-ray reports 
from the MIMC-CXR database using the same finding event 
annotation schema. This validation set included 257 Medical 

Table 5  End-to-end argument role extraction results (average precision, recall, and F1 in %), based on 10 runs of fivefold cross-validation. The 
numbers in brackets are 95% confidence intervals of the averages. The best F1 values are in bold

Argument type Argument role BERTbase BERTclinical BERTrad

P R F1 P R F1 P R F1

Span-only Medical-Anatomy 78.4 67.1 72.1 (± 1.12) 80.0 66.6 72.5 (± 1.02) 81.4 68.3 74.2 (± 1.00)
Span-with-value Medical-Assertion 86.8 82.3 84.5 (± 0.54) 87.5 81.7 84.4 (± 0.43) 88.6 83.0 85.6 (± 0.45)
Span-only Lesion-Anatomy 83.6 67.7 74.7 (± 1.15) 84.2 68.1 75.1 (± 0.98) 84.7 71.3 77.3 (± 1.06)

Lesion-Characteristic 80.4 65.2 71.6 (± 1.32) 81.5 66.0 72.6 (± 1.21) 82.6 67.9 74.2 (± 1.28)
Lesion-Count 87.0 81.6 83.4 (± 2.11) 89.8 83.6 86.0 (± 2.18) 88.1 83.3 85.1 (± 2.09)
Lesion-Size 85.1 59.9 69.9 (± 2.56) 85.5 60.6 70.5 (± 2.10) 86.4 62.5 72.0 (± 2.25)

Span-with-value Lesion-Assertion 85.4 79.7 82.4 (± 0.69) 84.9 80.0 82.3 (± 0.76) 86.1 81.2 83.5 (± 0.61)
Lesion-Size-Trend 82.1 71.4 76.0 (± 1.94) 80.3 70.4 74.4 (± 2.21) 81.9 74.1 77.4 (± 2.28)

Table 6  Overall extraction 
performance for each type of 
arguments (average precision, 
recall, and F1 in %)

Argument type BERTbase BERTclinical BERTrad

P R F1 P R F1 P R F1

Trigger 90.9 92.1 91.5 (± 0.24) 91.5 92.2 91.8 (± 0.26) 92.6 93.2 92.9 (± 0.25)
Span-only 79.8 67.1 72.8 (± 0.71) 81.1 67.0 73.3 (± 0.66) 82.3 69.0 75.0 (± 0.66)
Span-with-value 86.3 81.2 83.6 (± 0.46) 86.3 76.3 83.5 (± 0.41) 87.6 82.1 84.8 (± 0.39)
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Problem finding events (141 argument entities and 313 roles) 
and 7 Lesion finding events (9 argument entities, 15 roles). 
The overall F1 scores on this validation set were 95.6% for 
triggers, 79.1% for span-only arguments, and 89.7% for span-
with-value arguments, evaluated using the same argument role 
scoring criteria in the “Argument Roles” section. The extrac-
tion performance was comparable to our repeated fivefold 
cross-validation performance, despite the fact that the MIMC-
CXR reports were from a different institution and based on 
a different imaging modality. The MIMC-CXR radiology 
reports were generally shorter than the reports in our training 
corpus. The statistics of word count per report had a mean 
of 87, and a median of 79, in comparison to the mean and 
median of 327 and 288 in our corpus. We found that the event 
extraction model was able to identify clinical concepts that 
were unseen in our training corpus. For instance, the words 
“plasmacytoma” and “fibroadenomas” were correctly identi-
fied as lesions and “acute respiratory distress syndrome” was 
correctly identified as medical problem, even though these 
lesion and medical problem mentions did not appear in any 
radiology reports in the training corpus. This could be attrib-
uted to the pre-training of  BERTrad with 3 million UW radiol-
ogy reports covering a wide range of modalities.

We extracted lesion and medical problem findings from 
all 227,835 chest X-ray reports in the MIMIC-CXR dataset 
with our event extraction framework. A total of 1,420,604 
medical problem findings and 31,706 lesion findings were 
extracted using the fine-tuned  BERTrad model. To contribute 
to the core aim of the MIMIC-CXR project and facilitate 
future research studies in medical imaging, we are releas-
ing the finding extraction results for all 227,835 radiology 
reports. The extracted data are in BRAT’s standoff format 
and follow the same subject IDs, study IDs, and folder struc-
ture, such that they can be readily used to augment the exist-
ing images and reports.3

Discussion

We presented a new schema for representing lesion and med-
ical problem findings in radiology reports. In trigger and 
argument entity extraction, the BERT-based NER models 
outperformed the BiLSTM-CRF baseline. In both the entity 
extraction and argument role prediction tasks, the BERT 
model with the most domain-specific pre-training,  BERTrad, 
achieved the best performance. Pre-training  BERTrad on 3 
million UW radiology reports allowed the model to learn 
better contextual representations and transfer the knowledge 
of clinical concepts that are absent in the training corpus. 
 BERTrad achieved an end-to-end performance of 92.9% F1 
for triggers, 75.0% F1 for span-only arguments, and 84.8% 
F1 for span-with-value arguments.

Among the finding entities, Medical-Problem and Medical-
Anatomy had relatively long text spans. Over 25% of Medical-
Problem spans and 35% of Medical-Anatomy spans contained 
at least 5 words. We found that some entities with lengthy 
spans were extracted into multiple separate entities, particularly 
before and after a conjunctive word. About 4% of all Medical-
Problem entities and 7% of all Medical-Anatomy entities were 
split into multiple entities by the entity extraction models. Fig-
ure 8 presents an example of each case.

In our annotation schema, the same entity could be 
assigned multiple labels. For example, the same anatomy 
span could possibly be annotated as both Lesion-Anatomy 
and Medical-Anatomy. Our NER models could only assign a 
single label to each token, so a text span cannot be extracted 
as multiple argument entities. Approximately 1% of all 
entities in our annotated corpus had multiple labels, so this 
limitation does not fundamentally impact extraction perfor-
mance. One way to circumvent this single-label limitation 
is by having a single entity for both findings. Although a 
single anatomy entity no longer carries any clinical finding 
connotation, its association with the finding events can still 
be identified by the RE model.

Gold

Prediction

Gold

Prediction

Fig. 8  Examples of long text spans being extracted into multiple entities

3 https:// physi onet. org/ conte nt/ mimic- cxr/2. 0.0/

https://physionet.org/content/mimic-cxr/2.0.0/
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Our extraction framework employed multi-task learning 
to optimize the parameters of a single BERT model. We 
did not explore other fine-tuning approaches, such as using 
graph structures to jointly model the span relations in the 
different tasks [47] or using entity aware markers to encode 
input sentences in a relation extraction model, which was 
shown to outperform joint modeling architectures [48]. Our 
 BERTrad model was pre-trained using the common transfer 
learning paradigm by initializing its weight from another 
BERT model in relevant domain. This approach is particu-
larly advantageous when the target data is scarce. However, 
a recent study showed that pre-training the language model 
from scratch in a domain with abundant unlabeled text could 
derive better in-domain vocabulary and result in substan-
tial performance improvement [49]. Since our UW data set 
contained more than 3 million radiology reports, this pre-
training approach could potentially improve the contextual 
representation of the  BERTrad model and possibly lead to 
better event extraction performance.

Deep learning has gained tremendous adoption in medical 
imaging in the past decade, due to its state-of-the-art per-
formance in detection, segmentation, and classification [50]. 
Current supervised machine learning approaches in image 
recognition tasks require large datasets for model training. 
Manual labeling can be costly, complex, and time-consuming, 
particularly when it requires a large volume of images for a 
single cross-sectional examination with many clinical findings 
associated with each examination [51]. Therefore, creating a 
large dataset of labeled images remains the primary barrier 
for developing image-based (computer vision) deep learning 
models. At present, most radiology reports are composed of 
unstructured free text. Extracting clinical findings from radi-
ology reports using NLP provides a scalable and automated 
way to label image data for machine learning algorithms and 
overcome this barrier [51–53]. The focus of our research was 
on clinical findings extraction from radiology reports which is 
a key step in order to scale incorporation into images.

Conclusion

In this paper, we presented a new schema for extracting 
lesion and medical problem findings from radiology reports. 
The event representation of each clinical finding comprised 
a trigger and different arguments, capturing the fine-grained 
semantic information of the finding. A total of 2344 lesion 
findings and 8065 medical problem findings were annotated 
in 500 CT radiology reports. For argument entity extraction, 
we evaluated two state-of-the-art neural architectures using 
BiLSTM-CRF and BERT. The  BERTrad model pre-trained 
on 3 million radiology reports achieved an overall average 
F1 score of 85.5%, based on token-level evaluation. We then 

extracted the clinical finding events by predicting the argu-
ment roles for the extracted entities. The overall average F1 
scores for end-to-end event extraction were 92.9% for trig-
gers, 75.0% for span-only arguments, and 84.8% for span-
with-value arguments. To demonstrate the generalizability 
of the  BERTrad model, we extracted the clinical findings 
(1,420,604 medical problem findings and 31,706 lesion 
findings) from all the radiology reports in the MIMIC-CXR 
database. Based on the evaluation with a manually labeled 
validation set of 50 chest X-ray reports, the overall average 
F1 scores for the extraction were 95.6% for triggers, 79.1% 
for span-only arguments, and 89.7% for span-with-value 
arguments. The extraction performance was comparable to 
the repeated fivefold cross-validation performance with the 
UW corpus. We are releasing both our deep learning event 
extraction framework as well as the MIMIC-CXR extracted 
clinical findings to the research community.
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