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Synopsis

VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins
found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic ho-
moeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble
and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform di-
versity further enhances complexity of membrane protein assembly and function in signal transduction pathways that
control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR—
VEGF complexes with membrane trafficking along the endosome-lysosome network further modulating signal output
from multiple enzymatic events associated with such pathways. Balancing VEGFR-VEGF signal transduction with traf-
ficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events.
Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, athero-
sclerosis and blindness. This family of growth factors and receptors is an important model system for understanding
human disease pathology and developing new therapeutics for treating such ailments.
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INTRODUCTION

in signal transduction, membrane trafficking and proteolysis with
implications for normal and pathophysiological states.

The VEGF (vascular endothelial growth factor) superfamily and
its receptors are highly conserved in metazoan species [1]. In
lower eukaryotes, such as worms and flies, a hybrid PDGF
(platelet-derived growth factor) and VEGF system of ligands and
receptors mediates a range of biological responses. Many of the
VEGF genes and receptors play essential roles in animal develop-
ment and function. However, a recurring theme is the subversion

VEGF DIVERSITY AND
FUNCTIONALITY

The VEGF superfamily consists of five structurally-related mem-

of VEGF ligand and receptor function in a range of pathologies
including cancer, atherosclerosis, AMD (age-related macular de-
generation) and pre-eclampsia. In the present review, we will
consider how ligand and receptor diversity underpins complexity

bers of angiogenic and lymphangiogenic polypeptides: VEGF-A,
VEGF-B, VEGF-C, VEGF-D and PIGF (placental growth factor).
These growth factors are highly conserved with subtle differ-
ences in the distribution of charged residues determining receptor

Abbreviations: Akt, protein kinase B; AMD, age-related macular degeneration; CBL, Cas-Br-M murine ecotropic retroviral transforming sequence homologue; DAG, diacylglycerol; eNOS,
endothelial nitric oxide synthase; ERK1/2, extracellular signal-regulated kinase 1/2; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; Fit, fms-related tyrosine
kinase; Fyn, Fyn proto-oncogene, Src family tyrosine kinase; Grb2, growth factor receptor-bound protein 2; HDAC, histone deacetylase; HSR heat shock protein; HS, heparan sulfate;
HSPG, heparan sulfate glycoprotein; IP3, inositol-1,4,5-trisphosphate; MAPK, mitogen-activated protein kinase; Nck, Nck adaptor protein 1; NO, nitric oxide; NRR neuropilin; PDCL3,
phosducin-like 3; PDGF, platelet-derived growth factor; PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; PLCy 1, phospholipase Cy1; PIGF, placental growth factor; PTR protein
tyrosine phosphatase; Rab, Ras-associated protein; RCC, renal cell carcinoma; RTK, receptor tyrosine kinase; Shb, SH2-domain-containing adaptor protein B; sVEGFR, soluble VEGFR;
TACE, tumour necrosis factor « converting enzyme; TKI, tyrosine kinase inhibitor; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor tyrosine
kinase.
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Figure 1 Structural differences between VEGF-A, PIGF and VEGF-
C determine VEGFR binding

(A) Ribbon diagram depicting the structural similarities between VEGF-A
(blue; PDB ID: 3V2A), PIGF (green; PDB ID: 1RV6) and VEGF-C (cyan;
PDB ID 4BSK). (B) A model of VEGF-A binding to VEGFR2 using the
PIGF dimer as a template for VEGF-A binding to the Ig-like domains.
(C) Structures of VEGF-A (top), PIGF (middle) and VEGF-C (bottom) re-
veal that although the fundamental fold is similar, the distribution of
hydrophobic (purple) and polar (cyan) residues highlights differences
between VEGFR1-binding ligands, VEGF-A and PIGF and VEGFR3-binding
ligand, VEGF-C. (D) Structures of VEGF-A (top), PIGF (middle) and VEG-
F-C (bottom) rotated 90° with positive (blue), negative (red), aliphatic
(yellow) and aromatic (purple) residues highlighted. (E) Structures of VE-
GF-A (top), PIGF (middle) and VEGF-C (bottom) rotated 90° with positive
(blue) and negative (red) residues highlighted.

binding specificity (Figure 1). VEGFs regulate blood and lymph
vessel development in an isoform-specific manner through ac-
tivation of class III receptor tyrosine kinases (VEGFRs): VE-
GFR1 [Flt-1 (fms-related tyrosine kinase 1)], VEGFR2 [KDR
(kinase insert domain receptor)] and VEGFR3 (Flt-4) [2]. VEGF
polypeptides form homodimers but heterodimers of VEGF-A
and PIGF also occur [3]. Complexity in the VEGF family is
heightened by alternative splicing of VEGF-A, VEGF-B and
PIGF and proteolytic processing of VEGF-C and VEGF-D. This
allows multiple protein isoforms with distinct receptor and ex-
tracellular matrix-binding properties to be encoded by a single
gene [4]. Correct VEGFA gene dosage is essential for normal
mammalian health and development. Heterozygous VEGFA+/~
knockout mice die between embryonic days E11 and E12 due to
a deformed vascular network [5,6]. Dysfunction in the response
to VEGF-A can cause pathological angiogenesis and play pivotal
roles in chronic inflammatory diseases, ischaemic heart disease,
cancer and retinopathy [7-9].

The human VEGFA gene encodes a pre-mRNA with at least
eight exons and seven introns [10]. Alternative RNA splicing pro-

duces at least seven pro-angiogenic isoforms of human VEGF-A
which encode polypeptides of 121, 145, 148, 165, 183, 189 or
206 residues (a isoforms) and five anti-angiogenic isoforms of
121, 145, 165, 183 and 189 residues denoted VEGF-A,,,;,. Recent
work has shown that VEGFA mRNA also undergoes programmed
translational read-through to generate an anti-angiogenic VEGF-
Ay isoform containing a unique 22 amino acid C-terminus ex-
tension [11]. Each VEGF-A isoform contains exons 1-5 which
encode the signal sequence (exon 1), N-terminus dimerization
domain (exon 2), VEGFRI1-binding and N-glycosylation site
(exon 3), VEGFR2-binding site (exon 4) and a plasmin cleav-
age site (exon 5). Exons 6a, 6b, 7a and 7b encode the heparin-
binding domain and their variable inclusion significantly influ-
ences the biological properties of each VEGF-A isoform. Those
isoforms containing exon 6a, such as VEGF-A 45 and VEGF-
Ajsy, are weaker chemotactic cytokines and mitogens [12—14].
Exon 6a has a preponderance of basic amino acids which act to
directly reduce VEGFR2-VEGF-A binding [15]. Interestingly,
exon 6-containing isoforms do not inhibit VEGF-A-stimulated
VEGFRI activity and can promote VEGFR1-mediated vascular
permeability [14,16].

Signal transduction and protein kinase activity is implicated
in regulating proximal and distal splice site selection on the
primary RNA, e.g. specifying the C-terminus six amino acids
with either the pro-angiogenic CDKPRR (exon 8a) or anti-
angiogenic SLTRKD (exon 8b) sequence [17]. The C-terminus
SLTRKD sequence in the anti-angiogenic VEGF-A 45, isoform
cannot bind the co-receptor, NRP1 (neuropilin 1), leading to an
altered VEGFR2 protein complex which exhibits reduced tyr-
osine kinase activity [17]. Reduced co-receptor binding could
explain the anti-angiogenic properties of VEGF-A s, in combin-
ation with competition between VEGF-A 45, and pro-angiogenic
VEGF-A g5, isoforms for binding to VEGFR2 [13,17]. Down-
regulated VEGF-A j45, expression correlates with cellular switch-
ing to a pro-angiogenic phenotype that is associated with mul-
tiple pathologies including diabetic retinopathy and several adult
epithelial cancers [18,19]. Conversely, up-regulated VEGF-A j4s,
expression in skin and circulatory tissues of patients with sys-
temic sclerosis hinders angiogenesis and vascular repair [20].

Human VEGFB contains seven exons and encodes at least two
isoforms with alternative splice acceptor sites present in exon 6
[21,22]. The VEGF-B4; C-terminus contains the highly basic
NRP1/heparin-binding domain whereas the more freely diffus-
ible VEGF-B g6 isoform has a hydrophobic C-terminus which un-
dergoes O-linked glycosylation and proteolytic processing [21].

Within the VEGF family, VEGF-C and VEGF-D are unique
in being initially synthesized as precursor proteins containing
long N- and C-terminal propeptides [23,24]. Proteolytic removal
of both the N- and the C-propeptides releases mature, bioactive
VEGF-D containing the central VEGF-homology domain. Such
processing increases VEGF-D affinity for VEGFR3; furthermore,
only mature VEGF-D binds VEGFR2 [25]. Although two mouse
VEGE-D isoforms have been described [26], little is known about
alternate RNA splicing of human VEGF-C and VEGF-D.

Four PIGF isoforms with distinct properties are encoded by the
PGF gene. The most commonly expressed or major isoforms are
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PIGF-1 (131 amino acids) and PIGF-2 (152 amino acids) [27].
The PIGF-2 exon 6 heparin-binding domain facilitates binding
to heparin and NRP1. Contrastingly, PIGF-1 and PIGF-3 (203
amino acids) lack exon 6 so are unable to bind heparin [28].
PIGF-3 contains an additional 216 nt insertion between exons 4
and 5. PIGF-4 (224 amino acids) consists of the same sequence
as PIGF-3 plus the exon 6-encoded heparin-binding domain [29].
These larger isoforms may function similarly to VEGF-A g9 and
VEGF-Ayp [29].

Notably, crystal structures of VEGFs lack information on the
C-terminal portion of these proteins (Figure 1). This raises im-
portant functional questions as to how binding by the VEGF
carboxy proximal domain(s) ‘programs’ assembly of a functional
signalling complex with different molecular partners recruited
depending on the VEGF isoform and VEGEFR involved.

VEGFs bind to the extracellular domain of VEGFRs and addi-
tional cell surface-expressed co-receptors, e.g. HSPGs (heparan
sulfate glycoproteins), NRPs, integrins and ephrin B2 [30,31].
PIGF and VEGF-B specifically bind VEGFR1 and NRP1 whereas
VEGF-A binds both VEGFR1 and VEGFR2 (Figure 2) [32-
34]. VEGF-C and VEGF-D bind VEGFR2 and VEGFR3 (Fig-
ure 2) [35]. Distinct splice variants of VEGF-A assemble specific
receptor—co-receptor complexes. Spatial and temporal aspects of
VEGEFR signal transduction can be influenced by the restricted
diffusion of HS-binding VEGFs and is further modulated by
VEGF interactions with the extracellular matrix [36]. Binding of
VEGF-A 65, and VEGF-A ;39 to HSPGs and NRP1 promotes tern-
ary complex formation and VEGFR2 signal transduction. NRP1
binding to VEGF-A¢s, enhances VEGFR2-VEGF-A |45, com-
plex formation and tyrosine kinase activity. Optimal p38 MAPK
(mitogen-activated protein kinase) activation is achieved through
NRP1-enhanced VEGF-A¢s, signal transduction [13]. In con-
trast, VEGF-A |, is freely diffusible but NRP1 binding does
not promote ternary complex formation with VEGFR2, caus-
ing reduced signal transduction [37]. Despite PIGF only binding
VEGFRI, activation of VEGFR2 could occur indirectly through
VEGF-A displacement from VEGFR1, thus increasing VEGF-A
bioavailability for VEGFR2 [38]. Furthermore, PIGF/VEGF-A
heterodimers can induce VEGFR1/VEGFR2 dimerization and
downstream VEGFR2 activation [39].

The substantially different functions of VEGFR1-specific lig-
ands, VEGF-B and PIGF, raise the possibility that VEGFR1
function is regulated by co-receptor recruitment and/or cell-
specific intracellular signalling events [40]. VEGF-B-stimulated
fatty acid synthesis in endothelial cells is crucial in organs
which experience high metabolic stress, such as the heart,
and involves both VEGFR1 and NRPI1 activation [41]. Such
therapeutic aspects are highlighted in cardiac endothelial cells
where VEGF-B promotes physiological angiogenesis and re-
vascularization of the ischaemic myocardium [42]. In contrast,
PIGF expression is associated with cancer progression and re-
quired for inflammation-associated angiogenesis [38]. PIGF pro-
motes pathological angiogenesis in several inflammatory disease
states in which VEGFR1-regulated recruitment of bone marrow-
derived monocytes precedes deposition of angiogenic growth
factors [38]. Tumours that exhibit increased PIGF secretion sug-
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gest a functional link between VEGFR1 activity and cancer
progression.

VEGFR DIVERSITY AND
FUNCTIONALITY

The RTK (receptor tyrosine kinase) subfamily containing VE-
GFRs is denoted as class V. These membrane-bound RTKSs
comprise VEGFR1, VEGFR2 and VEGFR3. VEGFRs exhibit
structural and sequence homologies and comprise an extracel-
lular ligand-binding domain consisting of seven Ig-like repeats,
a transmembrane domain, a juxtamembrane domain, a split tyr-
osine kinase domain and a C-terminal tail.

VEGFR1

The VEGFRI gene contains 30 exons and encodes an estim-
ated 151 kDa transmembrane receptor which undergoes post-
translational modifications to produce a ~180 kDa mature gly-
coprotein [43,44]. VEGF-A has highest affinity for VEGFR1 [44]
but the activated complex exhibits relatively weak tyrosine kinase
activity and forms a non-productive signalling complex [10,45].
This poor tyrosine kinase activity of VEGFRI is thought to arise
from structural properties of the activation loop, a repressor se-
quence in its juxtamembrane domain and a lack of positive reg-
ulatory tyrosine residues [46—48]. VEGFR1 is expressed in vari-
ous cell types including both quiescent and actively proliferating
endothelial cells, haematopoietic stem cells, monocytes, mac-
rophages and tumour cells [2,10,40]. VEGFRI1 is essential for
mammalian development as homozygous VEGFRI ~" knockout
mice die between embryonic days E8.5 and E9.5 after endothelial
hyperproliferation leads to blood vessel obstruction [49]. The VE-
GFRI primary RNA transcript also undergoes alternative splicing
to generate a soluble VEGFR1 isoform (sFlt-1; sVEGFR1) of
~110 kDa. This sVEGFR1 isoform comprises Ig-like domains
1-6 of the VEGFR1 ectodomain but also includes a unique 31
residue sequence (encoded by intron 13) at the C-terminus [50].
This sVEGFRI1 can be a potent inhibitor of VEGF-A, VEGF-B
and PIGF signal transduction [51]. In leukaemia cells, PIGF and
VEGF-A induce tyrosine phosphorylation of VEGFRI1 and in-
crease ectodomain shedding. This occurs via PKC (protein kinase
C) activation and metalloproteases such as TACE [tumour nec-
rosis factor o (TNFa) converting enzyme] [52]. TACE activity
generates sSVEGFRI1 and an intracellular cytoplasmic fragment;
plasma membrane detachment of this cytoplasmic fragment re-
quires y-secretase/presenilin activity [53].

One view is that VEGFRI1 has positive or negative regulat-
ory roles in angiogenesis depending on biological conditions. A
VEGFRI1 negative regulatory role is thought to arise from sVE-
GFR1 acting as a decoy receptor to sequester VEGF-A away from
VEGFR?2 or by formation of non-signalling VEGFR1-VEGFR2
heterodimers [54]. A VEGFRI1 positive regulatory role could
occur under pathological conditions of tumour growth; here, ab-
normally high expression of VEGFR1-specific ligands leads to
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elevated VEGFRI1 tyrosine kinase activity and promotes an-
giogenesis [55].

VEGFR2

Immature VEGFR2 has an estimated molecular mass of
~152 kDa and undergoes translocation to the endoplasmic re-
ticulum and N-linked glycosylation along the secretory pathway
to produce a mature glycoprotein with an approximate mass of
200-230 kDa [36,45]. Only mature fully glycosylated VEGFR2
undergoes efficient trans-autophosphorylation following VEGF
stimulation [56]. Alternative splicing generates sSVEGFR2, which
is present in plasma, as well as in multiple tissues, including the
heart, spleen, skin, ovary and kidney. This sSVEGFR2 can se-
quester free VEGF-C, thus preventing VEGFR3 activation and
inhibiting lymphatic endothelial cell proliferation [57]. VEGFR2
is essential for healthy mammalian development as homozygous
VEGFR2~'~ knockout mice die at embryonic day E8.5, exhib-
iting impaired haematopoietic and endothelial cell development
leading to formation of an insufficient vascular network [58]. This
also mimics the VEGFA */~ knockout mice phenotype [5,40,59].

VEGFR?2 expression is predominantly restricted to endothelial
cells and haematopoietic stem cell precursors, with peaks in ex-
pression during embryonic development [60].

VEGF-A binds VEGFR2 with a relatively high affinity (K4
~ 150 pM); however, this parameter is ~10-fold lower than
that for VEGFR1 (K4 ~ 15 pM) [61]. Nonetheless, the ma-
jority of VEGF-A-regulated angiogenesis effects are attributed
to interaction with VEGFR2. One view is that VEGFR2 is a
more potent tyrosine kinase which targets numerous substrates
including membrane proteins, cytoplasmic enzymes and regu-
lators [2,62]. VEGFR?2 is thus considered to be the major pro-
angiogenic switch which regulates blood vessel development and
homoeostasis in response to circulating VEGFs [2,62]. VEGFR2
expression is down-regulated in quiescent adult vascular network
[63], probably reducing the magnitude of VEGFR2-regulated
pro-angiogenic responses [64].

VEGFR3
VEGFR3 is an essential regulator of lymphoendothelial func-
tion and lymphangiogenesis. Upon co-translational insertion of
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newly synthesized VEGFR3 into the endoplasmic reticulum, this
~195 kDa precursor protein undergoes N-linked glycosylation
and proteolytic cleavage within the fifth Ig-like domain. This
generates an N-terminal polypeptide which forms a stable disulf-
ide linkage with the carboxy half of the VEGFR3 precursor [65].
VEGFR3 complexity is further increased by alternative splicing
to produce both long and short isoforms [66,67]. The VEGFR3
short isoform lacks 65 residues proximal to the C-terminus; this
is only present in humans and probably arose through a retroviral
integration event during human speciation [68]. Furthermore, the
VEGFR3 short isoform lacks two carboxy proximal cytoplas-
mic phosphorylation epitopes which are detected in VEGFR3
homodimers but not in VEGFR2-VEGFR3 heterodimers [69].
VEGFR3~/~ knockout mice die during embryogenesis between
E10to E11 caused by impaired hierarchical formation of the peri-
pheral blood vasculature and defects in cardiac remodelling [70].
The role(s) of VEGFR3 in lymphatic endothelial cell responses is
well-studied; however, VEGFR3 expression is also up-regulated
in vascular endothelial cells during angiogenesis [40,71]. VE-
GFR3 expression is also detected in non-endothelial cells, such
as macrophages, neuronal progenitors and osteoblasts, whereas
its functional presence in tumours is much debated [40]. Mice
expressing kinase-deficient VEGFR3 maintain normal physiolo-
gical blood vessel development but exhibit impaired lymphatic
development [72]. VEGFR3 mutations which perturb tyrosine
kinase activity are associated with variants of hereditary lymph-
oedema, reinforcing the pivotal role of VEGFR3 in lymphatic
endothelial cell function [73].

SIGNAL TRANSDUCTION

Most parenchymal cells express and secrete VEGF-like lig-
ands such as VEGF-A. These ligands act in a paracrine manner
on neighbouring endothelial cells to regulate VEGFR-mediated
signal transduction and influence endothelial, lymphatic, epi-
thelial and neural cell responses [1,74,75]. Notably, autocrine
VEGF-A-induced signal transduction is considered essential for
maintaining endothelial cell survival [76]. VEGF-stimulated sig-
nal transduction regulates a host of endothelial cell responses
including proliferation, migration, permeability and cell-cell
interactions.

Activation of the cytoplasmic tyrosine kinase domain by
ligand-induced VEGFR2 homo- or heterodimerization causes
conformational changes that expose the ATP-binding site within
the tyrosine kinase domain [77]. The exchange of ADP for
ATP initiates trans-autophosphorylation of key tyrosine residues
on the receptor dimer which create docking sites for SH2-
domain-containing signal adaptor molecules and trigger waves
of intracellular signal transduction [78]. VEGFR tyrosine kinase
activity is tightly regulated by ubiquitination, internalization,
dephosphorylation and degradation by PTPs (protein tyrosine
phosphatases) such as PTP1B and VE-PTP (vascular endothelial
PTP) [79].

Review Article

VEGFR1-regulated signal transduction

A highly postulated model is that VEGFR1 acts as a ‘“VEGF
trap’ [54]. Nonetheless, VEGF-A binding to VEGFR1 Ig-like
domains 2 and 3 (Figure 1) can trigger relatively low levels of
trans-autophosphorylation on specific VEGFR1 cytoplasmic tyr-
osine residues Tyr’*, Tyr!16%, Tyr!213, Tyr!242 Tyr3% Tyr!327 and
Tyr!'333 (Figure 2) [80-82]. Patterns of VEGFRI1 tyrosine phos-
phorylation are ligand-dependent, e.g. VEGFR1-pY 1309 epitope
is caused by PIGF binding and linked to downstream activation
of Akt (protein kinase B) and effects on cell physiology [83].

Computational modelling suggests VEGFR1-VEGFR2 het-
erodimers comprise 10 %—-50 % of activated VEGFR complexes
inresponse to VEGF-A; such modelling predicts low incidence of
VEGFR1 homodimers when VEGFR2 levels are relatively high
[84]. Functional coupling of VEGFR1 and VEGFR2 through
heterodimerization and trans-autophosphorylation could modu-
late endothelial cell responses [36]. Surprisingly, transgenic mice
bearing a modified VEGFRI-TK~’~ locus expressing a VE-
GFR1 truncated protein lacking tyrosine kinase activity are viable
and exhibit normal blood vessel formation during development;
however, such mice exhibit defects in VEGF-A-dependent mac-
rophage migration [85]. Other studies on heterozygous VEGFRI-
TK*/~ transgenic mice suggest that VEGFR1 tyrosine kinase
activity is required for angiogenesis during tumour metastasis,
in some inflammatory diseases, stroke, liver repair, gastric ulcer
healing and various carcinomas and glioblastomas [85]. Although
VEGFRI1 is considered to be a ‘poor’ tyrosine kinase, therapeut-
ics aimed at this RTK could be an attractive option for specific
disease states [86].

VEGFRI1 is functionally linked to endothelial cell migration
and actin re-organization through RACK1 (receptor for activ-
ated C kinase 1) activation [87]. Additionally, activated VE-
GFR1 up-regulates uPA (urinary-type plasminogen activator)
and PAI-1 (plasminogen activator inhibitor-1) levels which influ-
ence p38 MAPK regulation of actin dynamics, extracellular mat-
rix degradation and cell migration [7,88]. VEGFR1-dependent
activation of PI3K (phosphoinositide 3-kinase) is linked to en-
dothelial cell proliferation and tubulogenesis [89]. Other targets
of VEGFR1-mediated signal transduction include PLCy 1 (phos-
pholipase Cy 1), Grb2 (growth factor receptor-bound protein 2)
and PTPN11 (PTP non-receptor type 11)/SHP2 (SH2 domain-
containing tyrosine phosphatase 2) [48]. VEGFRI activation
produces the cytoplasmic pY 1169 and pY794 epitopes that pro-
mote PLCy 1 recruitment, leading to PIP, (phosphatidylinositol-
4,5-bisphosphate) cleavage and production of DAG (diacylgly-
cerol) and IP; (inositol-1,4,5-trisphosphate) [2,80]. IP; bind-
ing to the membrane-bound IP;R (IP; receptor) in the endo-
plasmic reticulum facilitates Ca?>* ion translocation into the
cytosol. One consequence of such activity is engagement of the
calmodulin-calcineurin pathway which causes dephosphoryla-
tion of NFAT (nuclear factor of activated T-cells) family members
leading to their activation, nuclear translocation and stimulation
of gene transcription at specific loci [36]. This pro-angiogenic
pathway promotes an inflammatory response [90]. VEGFR1-
specific ligands such as PIGF and VEGF-B bind to monocytes
and stimulate intracellular signalling events including ERK1/2
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(extracellular signal-regulated kinase 1/2), Akt and p38 MAPK
pathways [91].

VEGFR2-regulated signal transduction
VEGFR2-specific signal transduction influences endothelial pro-
liferation, migration, survival and tubulogenesis. Ligand binding
to the VEGFR?2 extracellular domain triggers cytoplasmic tyr-
osine kinase activation and frans-autophosphorylation at residues
Tyr$!, Tyr®!, Tyr'0, Tyr!®%9, Tyr!!75, Tyr!214, Tyr!223, Tyr!305,
Tyr'3% and Tyr'*"° (Figure 2). The VEGFR2—pY951 epitope
provides a binding site for SH2 domain-containing TSAd (T-
cell-specific adaptor molecule) which is functionally linked to
endothelial cell migration and vascular permeability [92]. Gener-
ation of the VEGFR2-pY 1059 epitope enables recruitment of the
proto-oncogene and soluble tyrosine kinase Src (proto-oncogene
c-Src) which can further promote phosphorylation of residue
Tyr!!'”>, VEGFR2-pY 1175 recruitment of PLCy 1 causes DAG
release and activation of PKC and MAPK enzymes (e.g. ERK1/2)
which influence gene expression and cell proliferation [93]. Fur-
thermore, VEGF-A stimulates both membrane and sVEGFR1 ex-
pression through VEGFR2 and PKC-dependent pathways [94].
VEGF-A-stimulated ERK1/2 activation leads to the hyperphos-
phorylation of ATF-2 (activating transcription factor 2), causing
elevated expression of VCAM-1 (vascular endothelial cell adhe-
sion molecule 1) and promoting endothelial-leucocyte interac-
tions [95]; this now provides a MAPK-regulated gene expression
mechanism that links angiogenesis and inflammation.

VEGFR2-pY1175 recruitment of PLCy 1 and adaptor protein
Shb (SH2-domain-containing adaptor protein B) facilitates in-
teraction with FAK (focal adhesion kinase) and contributes to
endothelial cell migration and attachment [96]. Shb activation
of PI3K results in sequential activation of Akt and eNOS (en-
dothelial nitric oxide (NO) synthase) which promote cell survival
and NO-induced vascular permeability respectively [2,51]. The
VEGFR2-pY 1214 epitope recruits the adaptor protein Nck (Nck
adaptor protein 1) and a cytoplasmic tyrosine kinase, Fyn (Fyn
proto-oncogene, Src family tyrosine kinase) Nck—Fyn complex
formation regulates phosphorylation of PAK2 (p21-activated pro-
tein kinase 2), which in turn activates Cdc42 (cell division cycle
42) and p38 MAPK [97]; impacting on cell migration through
increased actin remodelling. VEGF-regulated PI3K activation
mediates cell survival through sequential PDK1 (PI-dependent
protein kinase 1) and Akt activation. Akt is a multi-functional
regulator that can target BAD (Bcl-2-associated agonist of cell
death) and caspase 9, thus blocking apoptosis [98].

Other post-translational modifications, such as methylation,
are involved in VEGFR?2 activation. VEGFR?2 methylation takes
place at multiple lysine and arginine residues, such as residue
Leu'™! which is proximal to the kinase domain activation loop.
Although methylation is ligand-independent, it enhances tyr-
osine phosphorylation and kinase activity in response to lig-
and [99]. In addition, VEGFR2 is acetylated at a dense cluster
of four lysine residues in the kinase insert domain and at a
single lysine within the kinase activation loop [100]. The acet-
yltransferase p300 and two deacetylases, histone deacetylase 5

(HDACS) and HDACS6, regulate VEGFR?2 acetylation in a pro-
cess essential for controlling sustained ligand-dependent RTK
trans-autophosphorylation and downstream signal transduction
[100].

VEGFR3-regulated signal transduction

VEGF-C or VEGF-D binding to VEGFR3 stimulates tyrosine
kinase activation and phosphorylation of VEGFR3 cytoplasmic
domain residues Tyr®3, Tyr®33, Tyr®>3, Tyr!'063, Tyr!008 Tyr!230,
Tyr!'23!, Tyr'295 Tyr'333, Tyr'*7 and Tyr'3%® (Figure 2) [69]. The
VEGFR3-pY 1063 epitope facilitates interaction with CRK /I
(adaptor protein C10 regulator of kinase) which in turn activates
the JNK (c-Jun N-terminal kinase) pathway and promotes cell
survival [101]. PI3K activation is crucial for lymphatic develop-
ment by mediating lymphoendothelial migration [102]. Ligand-
induced phosphorylation of VEGFR3 residues Tyr'?*® and Tyr!?*
regulates cell migration, apoptosis and lymphoendothelial cell
DNA synthesis [101]. The VEGFR3-pY 1230 and —pY 1232 epi-
topes recruit the Shc and Grb2 adaptor proteins which promote
signal transduction through ERK1/2 and Akt/PI3K pathways
which are important for lymphatic endothelial cell migration
[101,103]. Formation of VEGFR2-VEGFR3 heterodimers is re-
quired for VEGF-C-induced Akt activation. In contrast, ERK1/2
is activated by VEGFR3 homodimers [103]. VEGFR2-VEGFR3
heterodimers are common in endothelial cells engaged in active
angiogenesis, particularly at tip cell filopodia. Although VEGF-A
does not bind VEGFR3, it is possible that VEGFR3 contributes to
VEGF-A mediated blood vessel sprouting through heterodimer
formation [77].

VEGFR TRAFFICKING AND TURNOVER

VEGFRI1 was initially postulated solely as a plasma membrane
resident RTK but work has revealed that ~80 % is located within
a stable pool in the Golgi apparatus along the secretory pathway
[104]. VEGF-A stimulation of endothelial cells causes transient
redistribution of VEGFRI1 to the plasma membrane via a trans-
Golgi network-to-plasma membrane route that is regulated by
cytosolic calcium flux [104] (Figure 3). Calcium ion-regulated
trafficking involves activation of VEGFR?2 at the plasma mem-
brane; this feedback model explains how VEGF-A-stimulated
cellular responses are linked to VEGFR1 and VEGFR2
trafficking and turnover [105]. VEGFR1 levels are relatively in-
sensitive to VEGF-A stimulation and endosome-lysosome traf-
ficking, unlike VEGFR2 [88,104]. Activated VEGFR1 is intern-
alized through clathrin-mediated endocytosis by ternary complex
formation with CBL (Cas-Br-M murine ecotropic retroviral trans-
forming sequence homologue) [106] and adaptor protein CD2AP
(CD2-associated protein), followed by association with clathrin
[107].

VEGFR2 is localized to the Golgi, plasma membrane, early en-
dosomes and perinuclear caveolae in non-stimulated endothelial
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ization, trans-autophosphorylation and ubiquitination. Following internalization into early endosomes, both activated and
quiescent VEGFR2 can undergo recycling back to the plasma membrane via short- or long-loop recycling pathways. Alternat-
ively, ubiquitinated VEGFR2 undergoes 26S proteasome-regulated cleavage of its C-terminus in early endosomes followed
by trafficking to late endosomes and lysosomes for terminal degradation. VEGF-A-stimulated VEGFR2 signal transduction
promotes increased calcium-dependent plasma membrane translocation of VEGFR1 thus creating a negative feedback

loop to attenuate VEGFR2 activity.

cells [105,108-110]. Resting VEGFR2 is distributed between
the plasma membrane (~40%) and an internal early endo-
somal pool (~60%), with constitutive recycling between the
two compartments [108,111,112]. Recent work has revealed
requirement for syntaxin 6 [109] and the kinesin motor pro-
tein KIF13B (kinesin family member 13B) [113] in biosyn-
thetic VEGFR2 trafficking through the Golgi apparatus en route
to the plasma membrane. Resting VEGFR?2 undergoes a relat-
ively fast rate of ligand-independent, constitutive internaliza-
tion [111,114] which does not require tyrosine kinase activity
[108]. Phosphorylation of residues Tyr'®* and Tyr'® is re-
quired for clathrin-dependent internalization of activated VE-
GFR2 [115]. Chaperone proteins such as HSP70 (heat shock
protein 70) have been linked to VEGFR2 ubiquitination and
trafficking [116]. HSP70 is associated with VEGFR2 degrada-
tion following clathrin-mediated endocytosis. In contrast, HSP90
stabilizes VEGFR2 levels [116]. Thus, the HSP70-HSP90
axis is essential for regulating VEGFR2 homoeostasis. An-
other chaperone protein involved in VEGFR2 stabilization is
PDCL3 (phosducin-like 3). Receptor ubiquitination and degrad-

ation is inhibited by PDCL3 binding to the juxtamembrane do-
main of VEGFR?2 thus increasing VEGF-A-stimulated tyrosine
phosphorylation [117].

VEGF-A-activated VEGFR2 undergoes endocytosis and tar-
geting for either recycling or degradation [118] (Figure 3).
VEGF-A stimulation promotes ~40%-60% degradation of
plasma membrane and endosomal VEGFR2 pools [111]. Lig-
and binding causes a redistribution of VEGFR2 from early to
late endosomes depending upon VEGF-A concentration and dur-
ation of stimulation; nonetheless, a significant early endosomal
pool of VEGFR?2 is maintained [111]. It has been proposed that
the small Rab (Ras-associated protein) GTPase family mem-
bers, Rab5a and Rab7a, have regulatory roles in VEGFR?2 traf-
ficking and signal transduction in early and late endosomes re-
spectively [119,120] (Figure 3). Following VEGF-A stimula-
tion, phosphorylated and ubiquitinated VEGFR2 is transported
to early endosomes after recognition by the ubiquitin-linked re-
ceptor complex, ESCRT-0 (endosomal sorting complex required
for transport) [121]. Early endosomal localization of VEGFR2
is essential for maximal activation of Akt and ERK1/2 signal
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transduction pathways [122,123]. In contrast, p38 MAPK signal
transduction is linked to cell surface VEGFR2 [31,114,124].

Recycling of activated VEGFR2 occurs through Rab4a- or
Rab11a-positive endosomes and follows a short loop (Rab4a) or
long loop (Rablla) pathway [112,125] (Figure 3). Long loop
recycling occurs in co-ordination with NRP1 trafficking follow-
ing transition from Rab4a-postive vesicles. Rab4a—Rab11a trans-
ition is co-ordinated by interaction between the C-terminal PDZ-
binding motif of synectin, myosin VI and the NRP-1 C-terminal
motif, SEA (serine-glutamic acid-alanine) [125-128]. Receptor
recycling via Rabl1a-positive endosomes is VEGF-A isoform-
dependent. For example, VEGF-A¢s;, isoform is unable to bind
NRP1 and fails to promote Rab11a-dependent recycling [125].

Internalized VEGFR2 continues to signal from multiple cel-
lular compartments until it is committed for recycling or de-
gradation [129]. Internalized VEGFR?2 is directed for lyso-
somal degradation as a result of ubiquitination by E3 ligases
c-Cbl (Cbl proto-oncogene E3 ubiquitin protein ligase) or B-
TrCP1 (B-Transducin repeat containing E3 ubiquitin protein li-
gase) [106,130,131]. VEGF-A-stimulated ubiquitination or ac-
tivation of non-classical PKC isozymes promotes increased traf-
ficking and proteolysis of VEGFR2 in the endosome-lysosome
system [88,119,130,132]. VEGFR2 proteolysis is tightly regu-
lated; at least two distinct proteolytic steps have been postulated
for processing within the endosome-lysosome system. A 26S
proteasome-regulated step is associated with early endosomes
and cleavage of the C-terminal domain prior to lysosomal pro-
cessing of the extracellular/luminal domain [88,130] (Figure 3).
Proteasome-mediated VEGFR2 proteolysis regulates VEGFR2
signal transduction through the Akt, eNOS and MAPK pathways
[130].

DRUGS AND DISEASE

Pathological angiogenesis is associated with multiple dis-
eases. Neurodegenerative disorders, pulmonary hypertension and
ischaemic events are associated with inadequate angiogenesis.
In contrast, excessive angiogenesis occurs in disorders charac-
terized by abnormal vascular growth and remodelling such as
cancer, infectious and inflammatory diseases and AMD [133].
Anti-angiogenic therapy has been targeted towards members of
the VEGF family and associated VEGFRs due to their essen-
tial role in angiogenesis [134] (Figure 4). Bevacizumab (Avas-
tin) is a humanized monoclonal antibody to VEGF-A approved
to treat RCC (renal cell carcinoma), metastatic colorectal can-
cer, metastatic breast cancer, advanced non-squamous, non-small
cell lung cancer and recurrent glioblastoma multiforme [135].
Aflibercept (Zaltrap, VEGF Trap-Eye) is a recombinant fusion
protein consisting of the extracellular VEGF-A-binding domains
of VEGFR1 and VEGFR2 fused to an Fc domain. This new anti-
angiogenic molecule acts as a decoy receptor to block VEGF-A,
VEGF-B and PIGF activity and has been approved for the treat-
ment of metastatic RCC [136] (Figure 4).

TKIs (tyrosine kinase inhibitors) constitute another class of
anti-angiogenic drugs approved for cancer therapy. These in-
hibitors disrupt VEGFR1 and/or VEGFR2 signal transduction
and often interfere with the activity of other receptor tyrosine
kinases such as FGF (fibroblast growth factor) and PDGF re-
ceptors [137,138]. The most successful VEGF-related therapies
which provide greatest improvement in progression-free survival
in cancer patients include Sorafenib and Sunitinib [139] (Fig-
ure 4). Sorafenib (Nexavar) is a TKI approved for the treatment
of metastatic RCC and hepatocellular carcinoma [140]. The anti-
cancer drug Sunitinib (Sutent) is a member of the indolinone fam-
ily of compounds and is approved to treat RCC and gastrointest-
inal stromal tumour [140]. Although providing short-term be-
nefits, the activity of these drugs is limited by the introduction
of compensatory pathways or resistance mechanisms [138,141].
For example, increased hypoxia as a consequence of VEGF-A
inhibition up-regulates pro-angiogenic factors, such as FGFs and
PIGF, and promotes recruitment of pro-angiogenic bone marrow-
derived cells to induce tumour revascularization [ 142]. Maintain-
ing the correct balance of inhibition of a select group of receptor
tyrosine kinases including VEGFRs and FGF receptors (FGFRs)
thus appears clinically important [138,141]. One strategy to com-
bat drug resistance to VEGF inhibitors is the development of
multi-targeted TKIs. For example, Nintedanib (Vargatef) is a
small molecule multi-target TKI of FGFR, PDGFR and VEGFR
used in the treatment of non-small-cell lung cancer [143]. JK-31is
a multi-kinase inhibitor that targets VEGFR2 and CDK1 (cyclin-
dependent kinase 1) to simultaneously inhibit pro-angiogenic
signal transduction and cell cycle progression in endothelial cells
[144]. Another multi-targeted TKI JK-P3 inhibits the intrinsic
catalytic activity of VEGFR2 (Figure 4), FGFR1) and FGFR3
[145]. The ability of multi-targeted TKIs to simultaneously in-
hibit multiple signal transduction pathways enables them to over-
come redundant angiogenic factors considered to be a key mech-
anism underlying resistance to anti-VEGF therapy [146].

The importance of anti-angiogenic drugs in cancer therapy
has been highlighted by their use to treat nine distinct solid
tumours. Emerging anti-angiogenic agents that selectively in-
hibit VEGFR2 and VEGFR2-related signalling include Ramu-
cirumab, a fully humanized monoclonal antibody targeting the
extracellular domain of VEGFR?2 and Apatinib, a small molecule
inhibitor of the intracellular domain [140]. Advancement in anti-
angiogenic therapies is necessary since they currently prolong
survival of responsive patients by months rather than providing
long-term progression-free survival and are often only effective
in combination with chemotherapy [142].

High levels of VEGF-A found in ocular fluid are associated
with AMD, diabetes and ischaemic central retinal vein occlusion
[142]. Interestingly, the levels of different VEGF-A isoforms in
extracellular fluids could be associated with disease states [17].
In this context, increased expression of the VEGF-A ¢s;, isoform
is associated with altered risk of prostate cancer and peripheral
arterial disease [147,148]. Current treatments that directly tar-
get circulating VEGF-A in diseases such as wet AMD include
Pegaptanib (Macugen), a pegylated 28-base ribonucleic aptamer
that selectively binds the heparin-binding domain of VEGF-A 5
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and inhibits bioactivity (Figure 4). Ranibizumab (Lucentis) is
a recombinant, humanized anti-VEGF-A antibody fragment de-
rived from Bevacizumab, also approved to treat AMD. Ranibizu-
mab is smaller than Bevacizumab and is thought to deliver more
effective retinal penetration [142]. The use of anti-VEGF drugs
as monotherapy for the treatment of AMD has proved success-
ful with increased visual acuity experienced by 30 % of patients
[142].

VEGF-C-induced VEGFR3 activity has been linked to cancer
metastasis and disease progression in lung cancer patients [149].

Peptides developed to inhibit the kinase activity of VEGFR3
suppress VEGF-C-mediated cancer cell invasiveness and VEGF-
C-induced drug resistance by inhibiting VEGFR3-linked signal
transduction [149]. In addition to anti-angiogenic agents, it is
desirable that pro-angiogenic drugs will be developed as high
impact therapies for cardiovascular diseases.

Current VEGFR therapies target cancer or AMD however
future research directions for VEGFR-targeted therapeutics are
emerging for other diseases. VEGF plays a crucial protective role
in the nervous system. Reduced levels of VEGF and other growth
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factors are associated with neurodegenerative diseases. VEGF
has been identified as a causative factor in several motor neuron
degenerative diseases [150] and epilepsy [151]. VEGF is of par-
ticular interest due to its role in cross-talk between the nervous
and vascular systems. These multi-tasking effects of VEGF make
it a promising therapeutic target.

CONCLUDING REMARKS

The VEGF-VEGFR axis is essential for the maintenance of
endothelial and vascular homoeostasis and function. A switch
to pro- or anti-angiogenic outcomes is associated with diseases
ranging from cancer to chronic inflammation and diabetes mel-
litus. The VEGF-VEGFR system generates a diverse array of
responses in different cell types and tissues through VEGF
isoform-mediated RTK dimerization and co-receptor recruit-
ment. Emerging research is uncovering essential roles for VEGF—
VEGFR signal transduction in non-vascular tissues including
the epithelium, brain and immune system. Complexity in the
response of cells and tissues to VEGF isoforms highlights the
therapeutic potential of manipulating this receptor-ligand axis.
A challenge is to target specific VEGF or VEGFR isoforms using
antibody, protein or gene-based strategies to shed light on mech-
anistic principles. Such work could also lay the foundations for
more selective drug targeting in disease therapy. VEGF-VEGFR
biology is an exciting and expanding area of biology and medi-
cine that is generating new insights into molecular and cellular
mechanisms that are being translated into the next generation of
therapeutics for major diseases.
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