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Familial chylomicronemia syndrome is a rare autosomal recessive disorder of

lipoprotein metabolism characterized by the presence of chylomicrons in

fasting plasma and an important increase in plasma triglycerides (TG) levels

that can exceed 22.58 mmol/l. The disease is associated with recurrent

episodes of abdominal pain and pancreatitis, eruptive cutaneous

xanthomatosis, lipemia retinalis, and hepatosplenomegaly. A consanguineous

Syrian family who migrated to Lebanon was referred to our laboratory after

perceiving familial chylomicronemia syndrome in two children. The LPL and

PCSK9 geneswere sequenced and plasma PCSK9 levels weremeasured. Sanger

sequencing of the LPL gene revealed the presence of the p.(Val227Phe)

pathogenic variant in exon 5 at the homozygous state in the two affected

children, and at the heterozygous state in the other recruited family members.

Interestingly, PCSK9 levels in homozygous carriers of the p.(Val227Phe) were

≈50% lower than those in heterozygous carriers of the variant (p-value = 0.13)

and ranged between the 5th and the 7.5th percentile of PCSK9 levels in a sample

of Lebanese children of approximately the same age group. Moreover, this is the

first reported case of individuals carrying simultaneously an LPL pathogenic

variant and PCSK9 variants, the L10 and L11 leucine insertion, which can lower

and raise low-density lipoprotein cholesterol (LDL-C) levels respectively. TG

levels fluctuated concomitantly between the two children, were especially high

following the migration from a country to another, and were reduced under a

low-fat diet. This case is crucial to raise public awareness on the risks of

consanguineous marriages to decrease the emergence of inherited

autosomal recessive diseases. It also highlights the importance of the early

diagnosis and management of these diseases to prevent serious complications,

such as recurrent pancreatitis in the case of familial hyperchylomicronemia.
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Introduction

Genetic rare diseases usually require special care that could

be challenging and hardly achievable, especially in war crises or

migration situations. This is the case of type I

hyperlipoproteinemia (T1HLP).

T1HLP (OMIM 238600), also known as familial

hyperchylomicronemia, familial lipoprotein lipase deficiency

(Pingitore et al., 2016), or familial chylomicronemia syndrome

(FCS) (Caddeo et al., 2018), is a rare autosomal recessive disorder

of lipoprotein metabolism characterized by the presence of

chylomicrons in fasting plasma and an important increase in

plasma triglycerides (TG) levels that can exceed 2,000 mg/dl

(22.58 mmol/l) (Burnett et al., 1993). This condition is associated

with recurrent episodes of abdominal pain and pancreatitis, eruptive

cutaneous xanthomatosis, lipemia retinalis, and hepatosplenomegaly

(Brunzell andDeeb, 2019). Recurrent episodes of pancreatitis in these

patients can affect the functions of the pancreas and can, in severe

cases, lead to a multi-organ failure and an increase in morbidity and

mortality (Regmi and Rehman, 2021). The prevalence of the disease

in the general population is estimated to be one to two per million

(Abifadel et al., 2004; Rodrigues et al., 2016), however, it is higher in

some isolated ethnic groups (i.e., French Canadians, Afrikaner)

(Gagné et al., 1989; Henderson et al., 1992; Foubert et al., 1996;

Pingitore et al., 2016), and in populations with a high incidence of

consanguinity. T1HLP is caused in most cases by loss-of-function

variants in the lipoprotein lipase (LPL) gene (Langlois et al., 1989;

Caddeo et al., 2018). The latter encodes a secreted protein that plays a

crucial role in lipid metabolism and homeostasis through the

hydrolysis of TG transported by TG-rich lipoproteins [very low-

density lipoproteins (VLDL) and chylomicrons] to decrease plasma

TG and generate free fatty acids that are either stored in the adipose

tissue or oxidized by the muscles (Wion et al., 1987; Pingitore et al.,

2016; Rodrigues et al., 2016). In rarer cases, T1HLP is caused by

variants in the apolipoprotein C2 (APOC2) (Catapano and Capurso,

1986; Cox et al., 1988; Zanelli et al., 1994) and apolipoprotein A5

(APOA5) (Pennacchio and Rubin, 2003; Priore Oliva et al., 2005)

genes encoding respectively ApoC2 and ApoA5 which are LPL

activators, the glycosylphosphatidylinositol-anchored high-density

lipoprotein-binding protein 1 (GPIHBP1) gene which encodes a

protein that plays a role in the transport and binding of LPL to the

endothelial cell wall and its entry into the capillaries (Beigneux et al.,

2009; Davies et al., 2010; Song et al., 2022), and in the lipase

maturation factor 1 (LMF1) gene encoding an endoplasmic

reticulum membrane protein, that plays a role in the

posttranslational folding, assembly and stabilization of active

homodimerized LPL (Péterfy et al., 2007; Péterfy, 2012).

An early diagnosis of the disease is important in order to instore

as early as possible a very low-fat diet consisting of reducing the

dietary fat to ≤20 g/day or 15% of the total daily energy intake to

prevent abdominal pain and recurrent pancreatitis. The goal is to

maintain plasma TG levels below 1,000 mg/dl (11.29 mmol/l). It is

noted that recurrent abdominal pain is prevented when TG levels

are maintained below 2,000 mg/dl (22.58 mmol/l) (Burnett et al.,

1993). However, the compliance to the diet is usually poor (Caddeo

et al., 2018), and its control is difficult, especially among migrants or

low-income populations.

Interestingly, patients with chylomicronemia syndrome

generally present low low-density lipoprotein cholesterol

(LDL-C) and high-density lipoprotein cholesterol (HDL-C)

levels besides high TG levels (Fojo and Brewer, 1992; Hegele,

2013; Blom et al., 2018; O’Dea et al., 2019). More recently, PCSK9

has been identified as a major protagonist in lipid metabolism

and familial hypercholesterolemia (FH) (Abifadel et al., 2003).

Many studies have reported a potential correlation between

plasma PCSK9 levels and LDL-C, but also TG, VLDL-C, and

intermediate-density lipoprotein cholesterol (IDL-C).

Investigations linking these actors of the lipid pathway are

being conducted (Lakoski et al., 2009; Druce et al., 2015;

Norata et al., 2016; Baragetti et al., 2018; Warden et al., 2020).

In this article, we report the case of a consanguineous family

of Syrian refugees in Lebanon with two children suffering from

familial hyperchylomicronemia. To our knowledge, this is the

first study to measure circulating PCSK9 levels in familial

hyperchylomicronemia and to identify individuals carrying

simultaneously variants in the LPL and the PCSK9 genes.

Materials and methods

Study participants

A Syrian family who migrated to Lebanon was referred to our

laboratory upon perceiving familial hyperchylomicronemia in two

children. The parents and four of their children were recruited. We

collected the clinical history and anthropometric data for the

recruited members. The parents signed the informed consent to

participate with their children in our study. The study was

conducted according to the guidelines of the Declaration of

Helsinki and approved by the Ethics Committee of Hôtel Dieu

de France Hospital and the Saint Joseph University of Beirut.

Laboratory and biochemical tests

Blood samples were obtained after overnight fasting, plasma,

and serum were prepared and stocked at −80°C. Lipid

measurements were determined on a COBAS INTEGRA®
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analyzer (Roche Diagnostics, Basel, Switzerland). Non-HDL-C

was calculated by subtracting HDL-C from total

cholesterol (TC).

DNA analysis and variant detection

Genomic DNAs of all the participants were extracted from

peripheral blood leukocytes using the illustra™ blood

genomicPrep Mini Spin Kit according to the manufacturer’s

instructions. The exons and the flanking exon-intron

boundaries of the LPL and PCSK9 genes were amplified by

polymerase chain reaction (PCR) and sequenced using the

Sanger method. PCR conditions and primers’ sequences are

available upon request. For DNA sequence assembly and

variant detection, the CodonCode Aligner® Software was used.

In silico analysis of the variant

The Genome Aggregation Database (gnomAD; http://

gnomad.broadinstitute.org/) was used for frequency

determination of the variant. The Polymorphism Phenotyping

version 2 (PolyPhen-2; http://genetics. bwh.harvard.edu/pph2/),

Protein Variation Effect Analyzer (PROVEAN; http://provean.

jcvi.org/index.php), Mutation Taster (http://www.

mutationtaster.org/), and the Combined Annotation

Dependent Depletion score (CADD score; https://cadd.gs.

washington.edu/snv) were used to predict the pathogenicity of

the variant.

PCSK9 measurements

We measured PCSK9 levels in the plasma of the recruited

members using a commercial ELISA kit (Human Proprotein

Convertase 9/PCSK9 Duoset catalog no. DY3888; R&D Systems,

Minneapolis, MN, United States) and the Bio-Plex Pro assay

technology (Luminex Corporation, Austin, TX, United States) as

previously described (El Khoury et al., 2018).

Statistical analysis

The variables were analyzed using the GraphPad Prism

version 9. Results for quantitative variables were expressed as

median with its interquartile ranges (first quartile and third

quartile). Spearman correlation was performed to measure the

strength and direction of the linear relationship between

PCSK9 and other quantitative variables. The Mann–Whitney

U test was used to compare PCSK9 values between homozygous

and heterozygous carriers of the p.(Val227Phe) variant in the

LPL gene.

Results

Clinical characteristics and biochemical
analysis

In the recruited family, the parents were first-degree cousins

and two of their six children suffered from familial

hyperchylomicronemia confirmed by lipoprotein

electrophoresis and later by genetic sequencing (Figure 1).

The proband (III.6) was a girl aged 6 years at the time of

recruitment. She presented high TG levels (7.51 mmol/l) and low

LDL-C and HDL-C levels (0.38 and 0.33 mmol/l respectively). At

the age of 9 years, she was underweight with a BMI of 16.5 kg/m2.

She suffered from recurrent abdominal pain, vomiting, and diarrhea

almost every week, and the echography showed that she presented

splenomegaly. Infectious gastrointestinal causes were ruled out. She

suffered as well from chronic anemia. Thalassemia was excluded by

the normal results of hemoglobin electrophoresis. Mediterranean

fever was suspected and theMEFV gene (NM_000243), responsible

for the disease was studied by Sanger sequencing. Analysis of the

exons and the flanking intronic regions did not reveal the presence

of any pathogenic variant. However, this study does not preclude

large deletions. Recently, she had an outbreak of the disease with TG

levels reaching 54.33 mmol/l and they were rapidly reduced to

4.29 mmol/l following a very strict low-fat diet.

Her brother (III.5), aged 7 years at the time of recruitment, had

TG levels fluctuating between 33.22 mmol/l for the highest value and

3.175mmol/l for the lowest. At recruitment, he presented high TG

levels (4.99 mmol/l) and low LDL-C and HDL-C levels (0.51 and

0.36 mmol/l respectively). At the age of 10 years, he was also

underweight with a BMI of 14.6 kg/m2. Clinically, he presented

cutaneous xanthomatosis on his elbows and asthenia. He was

diagnosed with splenomegaly consecutive to echography. He

presented hemoglobin levels that fluctuated between normal and

low. The normal results of hemoglobin electrophoresis allowed to rule

out thalassemia. Recently, he presented moderately high levels of TG.

Curiously, TG levels fluctuated concomitantly between the

two children and were especially high following the migration

from a country to another. For example, the TG levels were the

highest upon the arrival of the family to Lebanon, and then they

were gradually reduced.

Both children were under fenofibrate but in a discontinuous

way, omega 3, vitamin D, folic acid, iron, and a low-fat diet.

Two of their siblings (III.1 and III.4) presented normal TG and

TC levels (Table 1). Their parents (II.3 and II.4) presented moderate

hypertriglyceridemia according to the 2018ACC/AHA classification

(Table 1) (Grundy et al., 2019). The father aged 45 years was obese.

PCSK9 measurements

Patients with T1HLP generally present low LDL-C levels

and HDL-C levels besides high TG levels (Fojo and Brewer,

Frontiers in Genetics frontiersin.org03

Ayoub et al. 10.3389/fgene.2022.961028

http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
http://genetics
http://provean.jcvi.org/index.php
http://provean.jcvi.org/index.php
http://www.mutationtaster.org/
http://www.mutationtaster.org/
https://cadd.gs.washington.edu/snv
https://cadd.gs.washington.edu/snv
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.961028


1992; Hegele, 2013; Blom et al., 2018; O’Dea et al., 2019).

Moreover, many studies have reported a potential correlation

between plasma PCSK9 levels and LDL-C, but also

triglycerides-rich lipoproteins and investigations linking

these actors are being conducted (Lakoski et al., 2009;

Druce et al., 2015; Norata et al., 2016; Baragetti et al., 2018;

Warden et al., 2020). For these reasons, we measured plasma

PCSK9 levels in the recruited members of the family. The

results are presented in Table 1 and Figure 2. Homozygous

carriers of the p.(Val227Phe) variant (III.5 and III.6)

presented a ≈50% decrease in PCSK9 levels compared to

heterozygous carriers (II.3, II.4, III.1, and III.4) [median

with its interquartile ranges (first quartile–third quartile) of

31.00 (26.70–35.30) ng/ml versus 62.45 (50.33–74.58) ng/ml,

respectively] without being significant (p-value = 0.13).

Moreover, using Spearman correlation PCSK9 levels were

positively correlated with age, ApoB levels and with BMI in

all family members (r = 0.94, p-value = 0.017; r = 0.89,

p-value = 0.033 and r = 0.94, p-value = 0.017, respectively).

Genetic analysis

We sequenced all the exons and the flanking exon-intron

boundaries of the LPL gene knowing that most cases of T1HLP

are caused by loss-of-function variations in it. Sequencing of this

gene revealed the presence of the c.679G > T variation in exon 5

(NM_000237.3) at the homozygous state in both affected

children (III.5 and III.6) (Figure 1). This nucleotide change

causes a valine to phenylalanine substitution at position

227 of the amino acid chain [p.(Val227Phe)]. The parents

(II.3 and II.4) and the two recruited siblings (III.1 and III.4)

were heterozygous for the p.(Val227Phe) variation (Figure 1).

In silico analysis revealed that the amino acid valine at

position 227 is well conserved among species. The variation is

not present in the gnomAD database and was predicted to be

disease-causing on Mutation Taster (Grantham Matrix score of

50), deleterious on PROVEAN (with a score of -4.549), with

probably damaging consequences on the functionality of the

protein according to Polyphen-2 (score of 0.960, sensitivity: 0.63;

FIGURE 1
Pedigree of the family. The arrow indicates the proband. Blackened symbols indicate affected homozygous carriers of the p.(Val227Phe) variant
in the LPL gene. Half-blackened symbols indicate heterozygous carriers of the p.(Val227Phe) variant. Only individuals with available and reported data
were included in the study. The * sign indicates TG value while the patient was under a very strict low-fat diet. The +/+ sign indicates that the
individual is homozygous for the p.(Val227Phe) variant in the LPL gene and the +/– sign indicates that the individual is heterozygous for the
variant. The L9 designates the normal allele in exon 1 of the PCSK9 gene, the L10 designates the p.Leu21dup or p.L15_L16insL and the L11 variant
designates the p.Leu21tri or p.L15_L16ins2L. Age at recruitment is given in years. TG levels are given in mmol/l, ApoB levels are given in g/l and
PCSK9 levels are given in ng/ml. ApoB: apolipoprotein B; LPL: lipoprotein lipase; PCSK9: proprotein convertase subtilisin/kexin type 9; TG:
triglycerides.
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specificity: 0.92), and presented a CADD score of 25.8 suggesting

that this variant is predicted to be among the top 1% of the most

deleterious variants in the human genome.

Interestingly, another LPL variant in the same codon

(p.Val227Ala) was also reported to be responsible for T1HLP

(Maruyama et al., 2004; Caddeo et al., 2018).

We also sequenced the PCSK9 gene to investigate the

presence of an eventual variant that might explain the low

levels of PCSK9 observed in some individuals of the family.

The sequencing revealed the presence of two types of variations

in exon 1 of the PCSK9 gene: the leucine insertion L10 also

designated p.Leu21dup or p.L15_L16insL and the leucine

insertion L11 also designated p.Leu21tri or p.L15_L16ins2L

(Abifadel et al., 2008). The father (II.3) was heterozygous for

the L11 variation while the mother (II.4) and one of the affected

children (III.6) were heterozygous for the L10 variation. One

child (III.4) carried the normal L9 alleles, and two children

(III.1 and III.5) were compound heterozygotes for the

L10 and L11 alleles. The results are presented in Figure 1.

Discussion

The p.(Val227Phe) pathogenic variant has been recently

reported by Caddeo et al. (2018) in a University Hospital in

Gothenburg (Sweden) at the homozygous state in a proband

aged 29 years who presented a mean TG level of 18.7 ±

3.2 mmol/l and recurrent pancreatitis episodes. His brother also

carried the pathogenic variant. They have likely migrated from the

Middle East to Sweden where the center received migrants from

Syria and Iran (Caddeo et al., 2018). Functional studies

demonstrated the pathogenicity of the p.(Val227Phe) loss-of-

function variant. These studies suggested that this variant

affects protein production and secretion, but not its

degradation. Results showed that the transfection of the HEK

293T/17 cells with the p.(Val227Phe) variant caused a reduction in

protein synthesis by 35%–40% and a decrease by at least 80% in the

secretion of the LPL in the media of these cells compared to the

wild type LPL. Moreover, LPL enzymatic assay showed that LPL

activity was absent in the media of the cells transfected with the

TABLE 1 Lipid measurements and characteristics of the recruited members.

Subject Age Gender BMI at
recruitment

TC TG LDL-C HDL-C Non-
HDL-C

ApoB Plasma
PCSK9
levels

p.(Val227Phe)
variant
in the
LPL
gene

Leucine
insertion
in the
PCSK9
gene(kg/m2) (mmol/l) (g/l) (ng/ml)

II.3 45 M 33.4 4.42 3.40 2.07 0.67 3.75 1.16 78.5 +/– L9/L11

II.4 43 F 25.4 4.92 2.57 2.69 0.93 3.99 1.28 62.8 +/– L9/L10

III.1 17 M 24.5 3.00 1.53 1.57 0.62 2.38 0.83 62.1 +/– L10/L11

III.4 9 F 14.8 4.32 0.80 2.69 0.93 3.39 1.13 46.4 +/– L9/L9

III.5 7 M 13.9 5.46 4.99* 0.51 0.36 5.10 0.41 26.7 +/+ L10/L11

III.6¥ 6 F 15.7 5.54 7.51* 0.38 0.33 5.21 0.55 35.3 +/+ L9/L10

¥sign indicates the proband.

*sign indicates TG value while the patient was under a very strict low-fat diet.

The +/+ sign indicates that the individual is homozygous for the p.(Val227Phe) variant in the LPL gene and the +/– sign indicates that the individual is heterozygous for the variant. The

L10 designates the p.Leu21dup or p.L15_L16insL in the PCSK9 gene and the L11 variant designates the p.Leu21tri or p.L15_L16ins2L.

Age at recruitment is given in years. BMI, is given in kg/m2. TC, TG, LDL-C, HDL-C, and non-HDL-C levels are given in mmol/l, ApoB levels are given in g/l and PCSK9 levels are given in

ng/ml.

ApoB, apolipoprotein B; F, female; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; LPL, lipoprotein lipase; M, male; PCSK9, proprotein

convertase subtilisin/kexin type 9; Non-HDL-C, non high-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides.

FIGURE 2
Levels of circulating PCSK9 in heterozygous and
homozygous carriers of the p.(Val227Phe) variant in the LPL gene
in the recruited family. The ¥ sign indicates the proband.
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variant. It is noteworthy that there was no difference in the

intracellular degradation rate between the wild type and the

mutant LPL transfected cells (Caddeo et al., 2018).

We identified the p.(Val227Phe) variant in the LPL gene

causing T1HLP in a consanguineous Syrian family who migrated

to Lebanon. Indeed, this is the first study to measure

PCSK9 levels in T1HLP. In this family, homozygous carriers

of the p.(Val227Phe) variant presented lower levels of

PCSK9 than heterozygous carriers [median (first

quartile–third quartile) of 31.00 (26.70–35.30) ng/ml versus

62.45 (50.33–74.58) ng/ml, respectively]. PCSK9 levels were

positively correlated with age, ApoB levels and with BMI in

all family members (p-values = 0.017, 0.033, and

0.017 respectively).Compared to a cohort of 279 Lebanese

children of approximately the same age group (8–11 years) in

whom PCSK9 levels were measured using the same method

[median (first-third quartile) of 64.30 (46.95–93.38) ng/ml]

(Azar et al., 2022), the two homozygous children (III.5 and

III.6) presented PCSK9 levels that were approximately

between the fifth (30.40 ng/ml) and the 7.5th percentile

(33.25 ng/ml) of PCSK9 levels in the group, while their

heterozygous sibling (III.4) presented PCSK9 levels (46.40 ng/

ml) that were approximately within the 25th percentile

(46.95 ng/ml). The sibling (III.1) presented PCSK9 levels of

62.1 ng/ml, which is normal compared to a group of

159 Lebanese adolescents aged 15–18 years [median (first-

third quartile) of 60.55 (44.51–93.96) ng/ml] (Azar et al.,

2022). The presence of loss-of-function variants in the PCSK9

gene has been studied by sequencing the whole gene.

Interestingly, this is the first report of a family with an LPL

pathogenic variant also carrying variants in PCSK9, more

precisely two types of leucine insertion variants in the exon

1 of the PCSK9 gene (Table 1). These polymorphisms occur in the

signal peptide region of the PCSK9 protein and are characterized

by the insertion of one or two leucines into a stretch of nine

leucines (Chen et al., 2005; Yue et al., 2006; Abifadel et al., 2008).

They might lead to a structural change in the signal peptide

causing an impairment in its cleavage and processing in the

endoplasmic reticulum (Yue et al., 2006; Pisciotta et al., 2012;

Benito-Vicente et al., 2022). In a study conducted on

1,745 apparently healthy individuals, plasma PCSK9 levels

were significantly lower in individuals carrying a leucine

insertion in exon 1 of the PCSK9 gene (Awan et al., 2013).

Moreover, the insertion of two leucines in the signal peptide has

been reported in a family with familial combined hyperlipidemia

and two patients with FH (Abifadel et al., 2008) and in vitro

studies have shown that it causes a reduction in the secretion of

the mature form of PCSK9 compared to the wild type PCSK9

(Benito-Vicente et al., 2022). However, these variations might

not alone explain the very low levels of PCSK9 observed in

homozygous carriers of the LPL variant in our study.

Moreover, homozygous carriers of the p.(Val227Phe) variant

in this family presented low levels of LDL-C and HDL-C. This

was also observed in the study conducted by Caddeo et al. (2018),

as well as in patients suffering from T1HLP described in the

literature (O’Dea et al., 2019; Susheela et al., 2021). The low levels

of LDL-C in our studied family cannot be explained by the

presence of the leucine insertions in the signal peptide of PCSK9.

On one hand, the leucine insertion L10 also designated

p.Leu21dup or p.L15_L16insL is a common variation

associated with lower levels of LDL-C in populations with

normal to low LDL-C levels, but also in patients suffering

from FH carrying the same p.(Cys681X) mutation in the LDL

receptor (LDLr) gene (Abifadel et al., 2009). On the other hand,

the leucine insertion L11 also designated p.Leu21tri or

p.L15_L16ins2L is a rare variant that has been associated with

familial combined hyperlipidemia and was found at a low

frequency in subjects presenting LDL-C levels of

2.96–4.90 mmol/L and coronary lesions in the American

population (Chen et al., 2005; Abifadel et al., 2008; Benito-

Vicente et al., 2022). In fact, low levels of LDL-C and HDL-C

in T1HLP may be explained by the disruption in the activity of

the LPL (Hegele et al., 2018). Variations in LPL activity in

humans result in changes in lipoproteins metabolism

(Goldberg et al., 1990). Indeed, low or absent activity of LPL

results in an impairment in the conversion of TG-rich particles to

their remnant lipoproteins, including chylomicron remnants,

VLDL, VLDL remnants, intermediate density lipoprotein and

LDL. The subsequent decrease in the available cholesterol from

VLDL, LDL, and peripheral tissues causes a decrease in HDL-C

levels (Hegele et al., 2018). Other studies attribute the low levels of

LDL-C and HDL-C to an increase in their catabolism, besides the

decrease in their synthesis (Fojo and Brewer, 1992). Interestingly,

the low levels of LDL-C might explain the observed low levels of

plasma PCSK9. In fact, many studies have shown a positive

correlation between circulating plasma PCSK9 and LDL-C

(Shapiro et al., 2019). It is suggested that this correlation is

due to the fact that PCSK9 acts as an important regulator of

LDL metabolism through targeting the LDLR for lysosomal

degradation, but also due to a direct interaction between

PCSK9 and LDL (Abifadel et al., 2010; Tavori et al., 2015).

Further studies of PCSK9 levels in patients with

hyperchylomicronemia would be interesting in order to verify

if all homozygous patients with T1HLP have low PCSK9 levels, or

if it is specific to the patients in the studied family, and to decipher

the causes of this decrease, as well as the mechanism, the role of

PCSK9, and its correlation with ApoB levels (Ayoub et al., 2021).

It is noteworthy that anemia has been described as a clinical

sign of T1HLP that occurs in some cases (Rahalkar and Hegele,

2008; Brahm and Hegele, 2013). In a case series of infants with

T1HLP, 7 out of 16 infants presented normocytic anemia which

cause was unknown, and both males and females were affected

(Feoli-Fonseca et al., 1998). In another study conducted to

determine the phenotype-genotype relationships between

different subgroups of T1HLP, all the female participants (n =

7) suffered from anemia (Chokshi et al., 2014).
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Although the parents (II.3 and II.4) were heterozygous carriers

of the p.(Val227Phe) variant, they presented moderately high

levels of TG. The phenotypic expression of heterozygous LPL

deficiency is not clinically and biochemically well described yet. It

has been reported that heterozygous carriers of one defective allele

in the LPL gene do not present chylomicronemia nor other

manifestations of the disease. They may present normal or

moderately increased fasting TG levels, especially when fed a

high-calorie, high-fat diet (Miesenböck et al., 1993; Hölzl et al.,

2000; Abifadel et al., 2004). The presence of precipitating factors

such as age, obesity, pregnancy, hyperinsulinemia, and lipid-

raising drugs would contribute to the phenotypic expression of

heterozygous LPL deficiency (Wilson et al., 1990; Abifadel et al.,

2004).

The identification of heterozygous carriers of an LPL

mutation is of major importance, especially in countries with

a high frequency of consanguineous marriages (Abifadel et al.,

2004). It is also necessary for the prevention of precipitating

factors knowing that the lipoprotein phenotype in heterozygous

carriers of a defective LPL allele has been considered atherogenic

(Reymer et al., 1995; Bijvoet et al., 1996; Wittrup et al., 1997;

Hölzl et al., 2000).

The high prevalence of consanguineous marriages in Middle

Eastern countries increases the risk of autosomal recessive

genetic diseases (Al-Herz and Al-Mousa, 2013) such as

hyperchylomicronemia.

A study conducted to determine the prevalence of

consanguineous marriages in Syria showed that the overall

frequency was 30.3% in urban areas and 39.8% in rural ones,

with an overall rate of 35.4%. In some provinces, the frequency

could reach 67.5%. Among this type of marriage, first cousins’

marriages were the most common with a rate of 20.9% (Othman

and Saadat, 2009). It is noteworthy that the natality rate increases

in refugees’ camps or migrant populations, as well as the risk of

consanguineous marriages.

To date, more than 200 pathogenic variants in the LPL gene

have been reported to cause T1HLP (Caddeo et al., 2018).

However, rare cases have been described in the Middle East

and the Mediterranean regions. A summary of the described

mutations in this region is presented in Table 2.

TABLE 2 Summary of the described variations in the LPL gene in the Middle East and the Mediterranean regions.

Region Amino acid variation
in the LPL
gene according to
the article

Case presentation References

Lebanon, 2004 Homozygous for the p.(Asp174Val)/p.(Asp201Val) variant
(according to the original/present nomenclature)

A 34-year-old male with TG levels of 34.3 mmol/l lowered to
6.37 mmol/l under medication and a low-fat diet.

Abifadel et al.
(2004)

A 7-year-old boy with a TG peak of 30.45 mmol/l during an
episode of pancreatitis and recurrent abdominal pain since
3 years old

Greece, 2004 Compound heterozygous for the p.(Gly188Glu) and
p.(Met301Arg) variants (according to the original
nomenclature)

A 32-day-old girl with TG levels of 169.3 mmol/l at the time
of admission to the hospital and rapidly lowered to
11.2 mmol/l 10 days after the administration of medium-
chain triglycerides enriched milk

Kavazarakis et al.
(2004)

Middle East, 2013 Homozygous for the p.(Arg270His) variant (according to the
present nomenclature)

A 2-month-old Arab infant with a TG peak of 276.6 mmol/l
rapidly lowered to 4.93 mmol/l at the time of discharge from
the hospital after the administration of a medium-chain
triglycerides-rich diet.

Hegele et al.
(2018)

Morocco, 2015 Homozygous for the p.(Ser286Arg) variant (according to the
present nomenclature)

A 19-year-old girl with TG levels of 199 mmol/l lowered to
14.15 mmol/l 2 months after the administration of an
appropriate diet, a maximal dose of fenofibrate and
simvastatin along with heparin and insulin

Bouabdellah et al.
(2015)

Middle East, 2016 (p.Gly256Thrfs*26) (according to the present nomenclature) A 19-year-old female with TG levels of 60.7 ± 7 mmol/l and
a 32-year-old male with TG levels of 31.7 ± 7.8 mmol/l

Pingitore et al.
(2016)

(p.Met404Arg) (according to the present nomenclature) A 28-year-old male with TG levels of 45 ± 26.9 mmol/l

Some of them from the
Middle East, 2017

Compound heterozygous for the p.(Trp113Arg), the
p.(Gly215Glu), and the p.(Met404Arg) variants (according to
the present nomenclature)

A 49-year-old female with TG levels of 39.7 ± 13.6 mmol/l Caddeo et al.
(2018)

Heterozygous for the p.(Ser220Arg) variant (according to the
present nomenclature)

A 69-year-old male with TG levels of 19.6 ± 9.4 mmol/l Caddeo et al.
(2018)

Homozygous for the p.(Val227Phe) variant (according to the
present nomenclature)

A 29-year-old male with TG levels of 18.7 ± 3.2 mmol/l Caddeo et al.
(2018)

The original nomenclature considers the amino acid numbering of the mature protein [without the signal peptide of 27 amino acids (Deeb and Peng, 1989)], while the present international

nomenclature considers the initiator methionine as the first amino acid of the LPL (NP_000228.1).
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Conclusion

This is the first study to measure plasma PCSK9 levels in

T1HLP. We found that homozygous affected patients presented

low levels of PCSK9 compared to heterozygous non-affected

members of the family and to children from the same age

group. Further studies of PCSK9 levels in patients with

hyperchylomicronemia would be interesting in order to verify

if all homozygous patients with T1HLP have low PCSK9 levels.

This would help decipher the causes of this decrease, as well as

the mechanism and the role of PCSK9 in this disease. It might

also be interesting to elucidate pathways linking PCSK9 to

apolipoprotein B or eventually to triglycerides-rich

lipoproteins metabolism.

The identification of the same mutation in the LPL gene in

two distinct families with T1HLP originated most probably

from the same region in Syria and that migrated to either

Lebanon or Sweden, should lead us to search for this mutation

as the first cause of hyperchylomicronemia in patients

originated from Syria. A founder effect could be

hypothesized but needs further investigation and cases to

be confirmed.

Public awareness and education concerning the medical risks

of consanguineous marriages are important and should be

included in the international effort and politics that provide

care, birth control, and genetic counseling when needed. They

might help in decreasing the emergence of inherited autosomal

recessive diseases.

Finally, handling a metabolic disease that needs specific

care and compliance to a drastic regimen or treatment to

prevent some fatal complications is not easy, especially in a

crisis. The main solution is to prevent the emergence of these

diseases by raising awareness of the risks of consanguineous

marriages.

It is more and more urgent to address genetic lipid disorders

and more generally genetic diseases that need special treatment,

diagnosis, management, and prevention especially in refugee

populations or in war or economic crisis countries.
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