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A B S T R A C T

Affinity (KD) optimization of monoclonal antibodies is one of the factors that impacts the stoichiometric binding
and the corresponding efficacy of a drug. This impacts the dose and the dosing regimen, making the optimum KD
a critical component of drug discovery and development. Its importance is further enhanced for bispecific anti-
bodies, where affinity of the drug needs to be optimized with respect to two targets. Mathematical modeling can
have critical impact on lead compound optimization. Here we build on previous work of using mathematical
models to facilitate lead compound selection, expanding analysis from two membrane bound targets to soluble
targets as well. Our analysis reveals the importance of three factors for lead compound optimization: drug affinity
to both targets, target turnover rates, and target distribution throughout the body. We describe a method that
leverages this information to help make early stage decisions on whether to optimize affinity, and if so, which arm
of the bispecific should be optimized. We apply the proposed approach to a variety of scenarios and illustrate the
ability to make improved decisions in each case. We integrate results to develop a bispecific antibody KD opti-
mization guide that can be used to improve resource allocation for lead compound selection, accelerating
advancement of better compounds. We conclude with a discussion of possible ways to assess the necessary levels
of target engagement for affecting disease as part of an integrative approach for model-informed drug discovery
and development.
1. Introduction

Selection and optimization of a lead molecule is one of the most
critical steps in early drug development, which can determine much of
the success of the compound in the long term, as well as affect the amount
of resources that will be required for its development. Therefore, finding
scientifically sound theoretical approaches to improve this process can
have a profound impact on drug development. While these approaches
are applicable for both large and small molecules, our focus here is pri-
marily on biologics.

The mechanism of action of currently developed biologics, like most
other drugs, begins with target engagement, with the assumption that
blocking or stimulating a particular target can interfere with or promote
the signaling cascade that drives pathogenesis. Examples of such mole-
cules include checkpoint inhibitors and T-cell engagers in immuno-
oncology [1, 2, 3], anti-inflammatory drugs for autoimmune diseases
[4, 5, 6, 7], anti-angiogenesis drugs [8], among others. In the cases when
clear understanding of the impact of target engagement is limited due to
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incomplete knowledge of the downstream biology, one aims to achieve
maximal target engagement (typically over 90 %), assuming that at this
level any potential effects on downstream signaling will be achieved.

Bispecific antibodies (BsAbs) are designed to bind two targets
simultaneously, presumably thereby augmenting the impact on each of
the targeted pathways; targets are often assumed to be expressed in the
same Site of Action (SoA), although this assumption is not mandatory for
a bispecific modality. An advantage of a bispecific is the ability to co-
localize the effect of target blockade to a single space, potentially
creating an additive or a synergistic effect. A challenge of this approach,
however, lies in ensuring sufficiently high levels of target engagement for
both targets, which may be affected by different levels of target expres-
sion, targets being expressed on different tissues, ubiquitous distribution
of one target but a localized distribution of the second target, avidity
effects or steric hindrance in the simultaneous binding of the two targets.
Each of these factors taken individually or in combination might
complicate the disposition and kinetic behavior of the bispecific
molecule.
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Given the importance of maximizing target engagement in the SoA,
several models have been developed to assist with lead molecule selec-
tion for both mono-specific [9] and bispecific antibodies [10, 11]. One of
the key aspects that can be controlled in the drug design and optimization
stage is the affinity (KD), i.e., the tightness of binding between the drug
and its target. KD is calculated as a ratio between rate of target release koff
and the rate of binding kon; numerically smaller values of KD indicate
tighter binding between the drug and its target. The process of selecting
the molecule with appropriate affinity is referred to as affinity
maturation.

Monoclonal antibodies generally act by interfering with native
signaling between a target and its native ligand. Optimal KD for a drug is
determined not only by the properties of the drug but also by those of its
target. Targets for monoclonal antibodies can typically be membrane-
bound and expressed on the cell surface (e.g., PD-1), or soluble and
expressed in the interstitial space and plasma (e.g., PD-L1). Membrane
targets can also shed into a soluble form that can also bind the drug.
Targets can be characterized by their expression and turnover levels.
Membrane targets that shed, where the latter is an undesirable entity, can
bind the drug and affect the eventual dose needed to achieve desired
pharmacology (sink effect). Therefore, to determine optimal KD it is
necessary to determine binding affinity of the drug to the soluble form of
the receptor, as well as membrane bound form, including the binding to
membrane bound target in its shed form.

In Tiwari et al. [9], the authors formalized the relationship between
KD and target properties for mono-specific monoclonal antibodies based
on maximizing predicted target engagement for either soluble,
membrane-bound and membrane shed targets. In [11], we extended this
work to develop a general model for KD optimization for a BsAb with two
membrane-bound targets. The model highlighted the existence of “sweet
spots” for membrane-bound targets with high turnover, demonstrating
that tighter binding does not necessarily lead to highest target engage-
ment or lowest dose. If the target turnover is very high, then
tighter-binding drug will be cleared at a higher rate; instead, a lower KD
may be optimal to ensure both high target coverage and lowest possible
dose (Figure 1).

Here we extend our previous work in two ways. Firstly, wemodify the
model introduced in [11] to describe the interactions of a bispecific
antibody with one soluble and one membrane-bound target to evaluate
whether and how the soluble nature of one of the targets impacts KD
optimization. Secondly, we extend our analysis to KD optimization for
lower target occupancy thresholds.

The strategy for maximizing target engagement is an excellent
approach for achieving a proof of pharmacology. However, striving to
achieve over 90 % engagement is not always necessary and may lead to
estimation of doses that are higher than needed to achieve a therapeutic
effect. Furthermore, the 90 % þ target occupancy level is typically
applicable for antagonists, or for drugs with good safety profiles. For
agonists (CAR-T or Bispecific T-cell engagers), or drugs with narrow
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safety margins, lower target engagement may be adequate [12, 13].
Finally, in some cases it may not be possible to engage both arms of the
bispecific drug at sufficiently high levels due to physiological restrictions
in the distribution or turnover of the target(s).

To explore these scenarios, we developed a bispecific antibody KD
optimization guide. Here we show how mathematical modeling can help
decide whether KD of a bispecific antibody needs to be optimized at all,
and if so, which arm and to what extent. We show application of the
method to several case studies, where conditions were chosen to illus-
trate all possible scenarios. We discuss what physiological properties may
be particularly important in different scenarios, providing a more general
guideline. We conclude with a discussion of applicability and limitations
of this approach for model informed drug discovery and development.

2. Methods

This section provides an overview of the proposed approach for KD
optimization in bispecific antibodies. We define optimal KD as the one
that allows reaching desired target occupancy (TO) with the lowest dose.
To achieve this goal, we need to model two aspects of drug-target
interaction: pharmacokinetics (PK) and pharmacobinding (PB).

Pharmacokinetic (PK) models describe change in drug concentration
over time as the drug travels through the body; here we assume that the
drug is administered into the plasma compartment and can distribute
into the target tissue, also referred to here as the site of action, and into
the peripheral compartment. SoA is the physiological space in which the
target(s) responsible for pharmacological signaling are present, while the
peripheral compartment is the rest of the tissues in the body, into which
the drug can distribute but where no pharmacological effect occurs.

Pharmacobinding (PB) refers to interactions of the drug with its tar-
gets. A bispecific antibody by definition can interact with two targets.
Here we assume that one of the targets is soluble (S target), and one is
membrane-bound (M target). Examples of soluble targets include TNF-
alpha, VEGF, and PD-L1; examples of membrane-bound targets include
HER-2, VEGF-R, and PD-1. A model with two membrane-bound targets
was studied in detail in [11].

We assume that interactions between a drug and both of its targets
occur in the SoA, where the latter are intrinsically expressed (synthesized
and degraded). Additionally, we assume that the soluble target can be
present in the plasma, where it has the same turnover as in the SoA, and
can bind to the drug, thereby acting as a drug sink. The detailed model
description and corresponding parameter values used in these simula-
tions are given in Appendix. A diagram of the model is shown in Figure 2.

TO is calculated as a ratio of target bound to the drug to the sum of
bound and free targets. Our goal is to find KD such that we reach desired
TO on both arms of the molecule with lowest possible dose (some con-
siderations about criteria for selecting a desired TO depending on target
properties are provided in the Discussion). To do so, we employ the
approach we developed in [11] for finding optimal KD for a bispecific
Figure 1. Law of diminishing returns in
resource allocation for affinity maturation in
compound development. (A) For targets with
low target turnover rate, there exists a “good
enough” point, beyond which additional
resource investment in affinity maturation
will not significantly lower the anticipated
dose. (B) For targets with high turnover rate,
there exists a KD “sweet spot” that allows
achieving desired target engagement with
lowest dose; further increasing affinity
would lead to higher drug clearance and
higher dose.



Figure 2. Diagram of a BsAb interacting with a membrane-bound and a soluble target, with interactions between BsAb and membrane-bound target occurring only at
the SoA, while interactions with the soluble target can occur both in SoA and in the plasma compartments. It is also assumed that the soluble target is synthesized both
in SoA and in plasma, and can diffuse between the two compartments, as can the drug-soluble target complex. The equations describing the dynamics of this case are
given in Appendix.
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antibody with two membrane-bound targets. We create a sample space of
possible physiologically reasonable KD values, run simulations and re-
cord the dose at which desired TO was reached for each KD; we then
select the KD that corresponds to the lowest dose.

This approach is most effective when all relevant physiological con-
ditions are known, i.e., when the concentrations of both targets are
known in the relevant physiological compartments (in this case, SoA for
both targets and plasma for S target). However, measuring these values
may be resource-intensive, or even unfeasible. To address this challenge,
we propose a method that allows performing scenario analysis through
sampling a wider set of conditions that may describe the physiological
space. This will help to determine whether KD needs to be optimized at
all and if so, which arm and under what conditions.

The approach can be applied to both agonists and antagonists. For the
former, typically only the membrane-bound arm is of relevance, since
signal amplification that can accompany excessive target engagement
occurs only for membrane-bound targets [14]. Therefore, for an agonist,
an optimal KD would typically correspond to a situation when M arm
reaches desired level of target engagement.
Figure 3. Summary of necessary inputs, which include tar
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For an antagonist, we can seek to guarantee a pre-specific minimum
level of target engagement on both arms of the molecule. For the pur-
poses of method illustration, we assume here that the same level of target
engagement needs to be reached for both targets; this assumption can be
relaxed and modified for specific cases. In what follows, we focus pri-
marily on antagonists that may require lower levels of target engagement
for sufficient efficacy, but the analysis can be applied to higher levels of
target engagement as well.
2.1. Model inputs

Since the proposed approach is intended to assist in lead compound
selection before specific PK properties are identified, we use PK param-
eter values that are generic but fall within physiological ranges for most
monoclonal/bispecific antibodies (see table with parameter values in
Appendix). At this stage target properties therefore become key in
enabling us to find optimal KD. These include target turnover rates, target
concentrations both at the SoA and in the plasma, as well as S target
transport rate between tissue and plasma. A summary of relevant inputs
get properties and desired level of target engagement.
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can be found in Figure 3. Notably, it is not critical to have exact values of
these parameters in order to apply the proposed approach; instead, we
can assume some general set of physiological conditions, and if the
simulations reveal the need to optimize KD under a subset of those, we
can conduct experiments to help identify more exact physiological
values. An example of such scenario will be demonstrated in Case 3.
Notably, here we are not including the analysis of target turnover rates,
which was done in [11]; conclusions reached in [11] apply for analysis
conducted here as well.

With this information, we can now implement the process, described
in Figure 4.

Model inputs are the PK model specific to the drug (Figure 2) and
anticipated target properties, such as target concentrations in SoA and
plasma, target turnover rates, etc (Figure 3). For all the cases described
below, we determine optimal KD for weekly dosing of the simulated
compound. However, the steps outlined here can be used for any dosing
schedule.

2.2. Process overview

For the purposes of introducing the method, we assume that the
concentration of M target is known, and concentration of S target is
known (perhaps) only in one of the compartments. If the concentration of
S target in any of the compartments is known, we can analyze scenarios
based on different ratios of S target concentrations in tissue vs plasma, a
metric we refer to sTPR (soluble target tissue to plasma ratio).

For various values of sTPR we calculate the dose necessary to achieve
desired TO for extreme values of KD for both arms, as well as for a range
of sTPR values in between. Here we chose KD¼ 0.01 nM as a low end and
KD ¼ 500 nM as the high end to capture a sufficiently broad range of
possible KDs; the range can be expanded or reduced as needed for a
specific project. We define Dose 1 as the dose necessary to achieve
desired KD when both targets have KD ¼ 0.01 nM; Dose 2 is the dose
necessary to achieve desired KD when both targets have KD ¼ 500 nM.
We then calculate the difference between Dose 2 and Dose 1, using it for
the first decision-making step.

If there is no difference between the doses predicted at both extremes,
then KD optimization is unnecessary, and other criteria should be used
for lead compound selection. If the difference is positive, i.e., Dose 2 >

Dose 1, then the dose is larger when KD is higher (the most typical sce-
nario), and therefore lower KD is going to be optimal. If the difference is
negative, i.e., Dose 2<Dose 1, then the dose is larger when KD is smaller,
Figure 4. Overview of bispecific an
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and weaker binding will in fact allow reaching desired TO with a lower
dose. The latter is more likely to occur with targets that have high
turnover, as discussed in [9, 11].

An important note should be made about decision-making at Step 1.
In a vast majority of cases, the largest dose differential is obtained at KD
extremes as specified in Figure 5 (dose when both targets have high KD or
dose when both targets have low KD). However, if the analysis reveals
that the difference between two maximum doses is below some decision
threshold (specific criteria for determining such a threshold will be dis-
cussed below), we recommend sampling the intermediate KD space to
evaluate whether a larger or smaller dose could be possible. This extra
step will allow to increase confidence in the decision of Step 1.

If at Step 1 we identified that KD does need to be optimized, we can
then determine which arm of the molecule needs to be prioritized. At
Step 2, we run simulations for different levels of sTPR, obtaining a dose
and corresponding levels of target engagement on each arm. The decision
is then made as follows: for an antagonist, we select the arm that is last to
reach desired TO; this is the “limiting” arm that needs to be optimized.
For an agonist, we typically optimize the M arm of the molecule, since
only the engagement of the M arm and not the S arm can lead to over-
stimulation. The specific steps necessary to enable decision making at
each stage are summarized in Figure 5.
2.3. Decision thresholds

Different criteria can be used to make the ultimate decision about
whether the KD needs to be optimized. The simplest criterion is proposed
in Step 1 of Figure 5, i.e., calculating whether there exists any difference
in predicted dose for different KD values. However, this approach does
not provide information on the magnitude of said difference, and
therefore there may exist additional criteria that one may consider for
making the decision on whether KD needs to be optimized at this step.

Decision thresholds can be determined by a variety of factors that
determine the tradeoffs of obtaining a potentially marginal improvement
in dose vs financial or temporal investments. While for antagonists these
may be the primary considerations, for agonists, where marginal increase
in receptor engagement can lead to unacceptable level of risk for the
patient (e.g., a cytokine storm), the “zero dose differential” criterion may
be the most acceptable one. For these cases, Step 2 becomes particularly
critical in ensuring that no more than the acceptable level of target
engagement is achieved.
tibody KD optimization guide.



Figure 5. Process summary for KD optimization of bispecific antibodies.
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Next, we present examples that showcase the use of this method.
Summary of conditions for each case and the corresponding outcomes are
given in Table 1. For this set of case studies, we assume that initial
concentration of membrane-bound target in the SoA is MT(0) ¼ 10, an
assumption that can be relaxed as necessary.

3. Results
Case 1. No need to optimize KD; low KD gives lowest dose.
In the first case, we considered an antagonist with a necessary min-

imum of 60 % level of target engagement on both arms. These values are
chosen arbitrarily to illustrate the different outcomes that can be
revealed using this methodology. We took concentration of S target in the
SoA to be ST(0) < 10 and determined whether KD needs to be optimized,
which arm, and whether any additional information about distribution of
the target is necessary to make this decision.
Table 1. Conditions used for case studies. (concentrations are in arbitrary

5

Implementing first step in Figure 5, we calculated the difference in
predicted doses for simulated KDs ranging from 0.01 nM to 500 nM for
both arms of the molecule. In this case, the resulting difference was al-
ways 3.2, regardless of concentration of S target in the plasma (Figure 6);
therefore, no additional experiments to calculate concentration of target
in other compartments are necessary, since there will be no difference in
projected optimal KD or the final dose. This result also suggests that low
KD will result in lowest dose. In this case, the “dose differential” is
relatively small, and thus investment of additional resources into affinity
maturation may be unnecessary.

Case 2. Always optimize the M arm; high KD gives lowest dose.
Here we considered an antagonist that is assumed to require a min-

imum 30 % target occupancy for both targets. Initial concentrations were
the same as the previous cases, with MT(0) ¼ 10 and ST(0) < 10. In this
case, the first step revealed that the difference between doses necessary
to achieve a minimum of 30 % target engagement on both targets at the
units).



Figure 6. Case 1: no need to optimize KD. According to Step 1 of Figure 5, the
difference between predicted doses at selected KD extremes (KD for both targets
varied between 0.01 to 500 nM) is the same regardless of concentration of S
target in tissue vs plasma compartments; in this case, it is below decision
threshold (green region of the figure). Therefore, no additional experiments to
calculate S target concentration in different compartments is necessary.
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two KD extremes is negative; therefore, it is the high KD that will result in
lowest dose (Figure 7A).

Next, we evaluated which arm is the last to reach minimum necessary
concentration of 30 % and observed that regardless of other conditions,
M arm is always the one to be optimized (Figure 7B).

Case 3. Switch point.
In the third case, we considered an antagonist that is assumed to

require a minimum of 60 % level of target engagement on both arms.
Concentration of M target was held fixed at MT(0) ¼ 10; however, in this
case we assumed that the concentration of S target in the tissue is much
larger, with ST(0) ¼ 103.

As in the previous cases, we calculated the difference between pre-
dicted doses for low and high KD for both arms (Step 1 of Figure 5), and
observed that the difference is above the threshold only for some values
of sTPR (soluble target tissue to plasma ratio), and therefore, a closer look
at specific physiological conditions was warranted to make a decision
(Figure 8A). Next (Step 2 of Figure 5), we saw that there exists a “switch
point” with respect to sTPR: below sTPR <0.4, S target needs to be
optimized but for sTPR>0.4, M target needs to be optimized (Figure 8B).
6

Therefore, additional experiments are required to determine sTPR in
order to make the most appropriate decision about KD optimization.

Notably, when sTPR ¼ 0.01, the predicted dose for optimized KD is
prohibitively high (in this case 600 mg/kg). For these conditions, a bis-
pecific modality may not be appropriate for targets with these properties.

Case 4. Target combination is unsuitable for a bispecific
Finally, we considered an agonist, where a maximum of 30 % target

engagement was assumed to be acceptable; for other parameters, ST(0)¼
1, and as in the previous cases, MT(0) ¼ 10. Our analysis showed that
regardless of sTPR and KD, by the time S arm reaches maximum
acceptable level of target engagement (here 30 %), the maximum TO of
the M arm will not exceed 2.4 %. This level of engagement like likely to
be pharmacologically ineffective, and therefore for these physiological
conditions, a bispecific modality may not be appropriate.
3.1. What makes a target limiting?

As one can see in Case 3, there can exist a “switch point”, where one
or the other target becomes limiting. We wanted to evaluate conditions
that affect when such a “switch point” may occur. For that, we ran nu-
merical experiments for various values of ST(0), sTPR and desired TO.

In Figure 9, we plotted the conditions under which the “switch point”
occurred with respect to sTPR for different levels of desired target oc-
cupancy. We ran situations when MT(0) ¼ 1, 10 and 20, and the results
were consistent for each case (only results for MT(0) ¼ 10 are shown
here), indicating that it is relative rather than absolute target concen-
trations that impact this value.

More broadly, for antagonists, membrane-bound targets are limiting
largely due to higher internalization rates. Soluble targets become
limiting when higher TO needs to be achieved, and when the concen-
tration of soluble targets relative to membrane-bound ones is high at the
site of action. In these cases, membrane-bound targets “saturate” first.
Additionally, since target engagement is calculated as (bound targets)/
(bound targets þ free targets), large concentrations of the S target rela-
tive to M mean that more drug will be necessary to cover it, making S
target limiting under these conditions.

Notably, while shed targets were not explicitly covered in the
described case studies, the proposed approach can be applied to shed
targets as well through model modification. Specifically, to incorporate
shed target dynamics, an additional clearance rate, or shedding rate, to a
membrane-bound target needs to be introduced, which will serve as the
synthesis rate for the soluble shed target; the shed target is then cleared at
its own clearance rate, which may be same or different from that of its
membrane-bound counterpart, depending on the specific target's
biology. The shed target may then distribute into other compartments as
Figure 7. Case 2: always optimize M arm;
high KD gives lowest dose. (A) Step 1 of
Figure 5 reveals that one of the arms needs to
be optimized, and that lowest dose will be
achieved with high KD because the calcu-
lated difference between projected doses for
extreme values of KD is negative and below a
decision threshold (red region); threshold is
to be chosen based on project-specific con-
siderations. (B) Step 2 of Figure 5 reveals
that under these conditions, M arm is always
limiting and thus should be optimized; M
arm is always last to reach desired TO, so no
additional experiments to evaluate tissue to
plasma ratio of the S target are necessary.



Figure 8. Case 3, antagonist: existence of switch point. (A) Step 1 of Figure 5 suggests that one of the arms needs to be optimized for sTPR <0.3, and that lowest dose
will be achieved with low KD on both arms. (B) Step 2 of Figure 5 reveals that for sTPR <0.4, S arm needs to be optimized, while for sTPR >0.4, M arm needs to be
optimized. Therefore, additional experiments are required to determine relevant sTPR.

Figure 9. Conditions under which one or the other target become limiting. Here
MT(0) ¼ 10; ST(0) ¼ 103; results are the same for MT(0) ¼ 1 and 20 (not shown).
Other parameters are held constant at values reported in Appendix.
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well. While analysis of dynamics of specific cases of shed targets is
beyond the scope of this work, with this minor modification to the un-
derlying model equations, the proposed methodology can now be fully
applied to shed targets as well.

4. Discussion

Mathematical modeling has become an increasingly important tool
for helping advance drug discovery and development into the clinic [15,
16, 17, 18, 19]. While little data is typically available at the earliest
Figure 10. Receptor engagement efficacy model. Underlying assumption of this pa
sufficient target engagement can translate into efficacy.
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stages of drug discovery, it can still be used to help with a logical and
meaningful approach to drug candidate selection.

Model-driven lead compound selection process for mono-specifics
was presented in [9, 20], highlighting the importance of both KD and
intrinsic target properties for decision making. The calculus underlying
lead compound selection for bispecifics becomes significantly more
complex and non-intuitive, since each target can have different turnover
and distribution within the body. Our analysis, started in [11] and
continued here, reveals that there are 3 main properties that impact lead
compound selection: affinity (KD) of the compound to the target, target
turnover and target distribution.

In [11], we looked at target turnover and KD for optimizing lead
bispecific compound selection with two membrane-bound targets. Here
this analysis was extended to investigate the impact of differences in
target distribution throughout the body. We showed that it can signifi-
cantly impact both the feasibility of engaging two targets using a bispe-
cific modality, and the properties of an optimal compound, defined here
as a compound that can achieve a sufficient level of target engagement
with the lowest dose. The question of what constitutes a “sufficient level
of engagement”warrants further discussion, even at the earliest stages of
drug optimization.
4.1. Receptor engagement efficacy model

As was mentioned in the introduction, one of the central assumptions
underlying the considered paradigm is the receptor occupancy model,
which is based on the premise that receptor engagement can translate to
downstream biology and affect disease. Within this paradigm, sufficient
receptor engagement is necessary to observe efficacy. In cases when
disease is driven by abnormal, often elevated, native signaling, such as in
radigm is that receptor engagement can normalize native signaling, and thus



Figure 11. Impact of target turnover on potential dosing strategies. (A) We propose that within the receptor engagement efficacy model, fast target turnover implies
need for Cmin driven dosing strategy to maintain a minimum of necessary target coverage above an efficacy threshold.
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cancer, sufficient receptor engagement is assumed to result in its
normalization (Figure 10).

The extent of receptor engagement necessary to affect disease is a
question that warrants discussion. Complete engagement is not always
necessary and can potentially result in toxicity, especially for agonists or
drugs with suboptimal safety profiles, such as CD3 bispecific constructs
[12]. Conversely, insufficient engagement may insufficiently test the
underlying biological mechanism, resulting in insufficient proof of
pharmacology.

We propose that initial assessments, even at the earliest stages of drug
development, can be made from minimal information about target
turnover rates. Specifically, we propose that if a target has a fast turnover
rate, then in order to effectively interfere with native signaling, contin-
uous engagement may be necessary; this can be interpreted as a “Cmin
driven mechanism”, where a minimum drug concentration is maintained
through a dosing interval, resulting in a minimal level of continuous
engagement being necessary for efficacy. This is an approach that is often
used for cytotoxic cancer therapies, where continuous target coverage is
necessary to interfere with abnormal signaling observed in tumors
(example of such drugs include cetuximab, which interferes with EGFR
signaling [21], or anti-angiogenesis drugs that interfere with tumor
vascularization [22, 23, 24, 25, 26]). For these targets, insufficient
engagement can result in underdosing the patient and suboptimal effi-
cacy. With regards to KD optimization, less tight binding might in fact
result in higher levels of engagement; this was discussed in more detail in
[9, 11].

In contrast, for a target with a slow turnover, once the target is
engaged, additional dosing might not translate into additional efficacy.
This can be interpreted as a “Cmax driven efficacy”. The theoretical
predictions for these two cases are summarized in Figure 11.

These considerations are of course not firm guidelines for decision
making, and full analysis revealing more precise ranges of “fast” vs
“slow” target turnover rates needs to be conducted. Furthermore, there
exist additional considerations, such as clock- and counterclockwise
hysteresis, which may impact selection of necessary criteria. Neverthe-
less, they do highlight a need for systematically assessing multiple as-
pects that go into decision making for lead compound selection, beyond
8

solely drug affinity for its target. With multiple factors at play, mathe-
matical modeling is critical for helping decide whether and what com-
bination of compound and target properties makes it feasible to take a
compound to the next stage of drug development, whether for a mono-
specific or a bispecific compound, and how to maximize success moving
forward.
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Appendix

Model description

The proposed model describes the interactions of a bispecific antibody with a membrane-bound target M(t) and a soluble target S(t). We assume the
presence of three distinct compartments in the body: plasma, where the drug is administered, the site-of-action (SoA) compartment, where interactions
occur between a BsAb and its targets in a relevant kinetic space, usually considered to be a part of the tissue interstitium (Chudasama et al. 2015), and
the peripheral compartment, which represents the other spaces in the body where the drug can distribute.

Notably, SoA models allow for a mathematical representation of the various physicochemical and biochemical processes associated with a drug's
distribution, binding to the target and dissociation of the drug-target complex, as well as elimination of the drug and interacting species. SoAmodels also
integrate the physiology of the target in the healthy vs. diseased state. Mathematical details of the SoA models can be found in (Tiwari et al. 2016;
Brodfuehrer et al. 2014).

We track the kinetics over time of free drug concentration in the plasma DPðtÞ, free drug in the peripheral compartment DPhðtÞ, and free drug at the
SoA DTðtÞ, as well as the dynamics of membrane bound target MðtÞ and soluble target SðtÞ, and the corresponding drug-target complexes DMðtÞ and
DSðtÞ. Here we assume no distribution of the soluble target into the plasma compartment and hence no kinetic interactions in that compartment; this
assumption can be relaxed as necessary.

The drug is assumed to be administered via intravenous bolus. Once distributed in the plasma compartment, free drug DPðtÞ can be eliminated at a
rate kel, can partition into the SoA at a rate kPT , or partition back from the SoA at a rate kTPVT

VP
, where VP is the volume of plasma compartment, and VT is

the volume of the SoA compartment. Free drug in plasma can also partition into the peripheral compartment at a rate kPPh, or partition back at a rate
kPhPVPh

VP
, where VPh is the volume of the peripheral compartment. Free drug in the SoA DTðtÞ is distributed from the plasma at a rate kPTVP

VT
. Following

distribution, free drug DTðtÞ can bind to a membrane-bound target MðtÞ with a second order rate constant konM and dissociate with a first order rate

constant koffM , where the affinity of the drug to the target is defined as KD ¼ koff
kon
. In a similar sequence the drug DTðtÞ in the SoA can also bind to the

soluble target SðtÞ with a second order rate constant konS and dissociate with a first order rate constant koffS .
The dynamics of the membrane drug-target complex DMðtÞ is determined by previously described association and dissociation rates konM and koffM .

The complex can also be internalized at a rate kintM . Similarly, the soluble drug-target complex DSðtÞ, both in the plasma or in the SoA, is determined by
previously described association and dissociation rates konS and koffS , and can be cleared at a rate kdegS . It is assumed that the complex DSðtÞ can also
transport between plasma compartment and SoA at the same rates as DTðtÞ.

Finally, target MðtÞ is synthesized at a zero order rate ksynM , internalized at a first order rate kintM , and can bind to either the free drug, or the drug-
target complex DSðtÞ to form the trimeric complex DSMðtÞ. Similarly, the target SðtÞ is synthesized at a zero order rate ksynS , cleared at a first order rate
kdegS , and can bind to either the free drug, or the drug-target complex DMðtÞ to form DSMðtÞ. Furthermore, we assume that the soluble target SðtÞ can
diffuse between plasma and SoA at rates kPTS and kTPS , respectively. In the plasma compartment, it can bind to the drug DPðtÞ at a rate konS and dissociate
at a rate koffS , as in the SoA.

These interactions are captured by the following system of ODEs:

dDP

dt
¼ � kel ⋅ DP � kPT ⋅ DP þ VT

VP
⋅ kTP ⋅ DT � kPPh ⋅ DP þ VPh

VP
⋅ kPhP ⋅ DPh � konS ⋅ DP ⋅ SP þ koffS ⋅ DSP

dDPh

dt
¼ VP

VPh
⋅ kPPh ⋅ DP � kPhP ⋅ DPh

dDT

dt
¼ VP

VT
⋅ kPT ⋅ DP � kTP ⋅ DT � konM ⋅ DT ⋅MT þ koffM ⋅ DMT � konS ⋅ DT ⋅ ST þ koffS ⋅ DST

dDMT

dt
¼ konM ⋅ DT ⋅MT � koffM ⋅ DMT � kintM ⋅ DMT � konS ⋅ DMT ⋅ ST þ koffS ⋅ DMST

dDST
dt

¼ � kdegS ⋅ DST þ konS ⋅ DT ⋅ ST � koffS ⋅ DST � konM ⋅ DST ⋅MT þ koffM ⋅ DMST � kTP ⋅ DST þ VP

VT
⋅ kPT ⋅ DSP

dDSP
dt

¼ � kel ⋅ DSP þ konS ⋅ Dp ⋅ SP � koffS ⋅ DSP � kPT ⋅ DSP þ VT

VP
⋅ kTP ⋅ DST

dDMST
dt

¼ konS ⋅ DMT ⋅ ST � koffS ⋅ DMST þ konM ⋅ DST ⋅MT � koffM ⋅ DMST � kintM ⋅ DMST

dSp
dt

¼ ksynS � kdegS ⋅ SP þ
VT

VP
⋅ kTPS ⋅ ST � kPTS ⋅ SP � konS ⋅ DP ⋅ SP þ koffS ⋅ DPSP

dST
dt

¼ ksynS � kdegS ⋅ ST � konS ⋅ DT ⋅ ST þ koffS ⋅ DST � konS ⋅ DMT ⋅ ST þ koffS ⋅ DMST � kTPS ⋅ ST þ VP

VT
⋅ kPTS ⋅ SP

dMT

dt
¼ ksynM � kdegM ⋅MT � konM ⋅ DT ⋅MT þ koffM ⋅ DMT � konM ⋅ DST ⋅MT þ koffM ⋅ DMST

A diagram summarizing these interactions is given in Figure 2 of the main text.
9
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Parameters
Similar to our work in our previous model (Kareva et al. 2018), parameters used in this model can be subdivided into three categories: 1) Physi-

ological compartment parameters, 2) BsAb PK parameters and 3) Target-related parameters.
Physiological parameters include volumes of plasma and SoA compartments VP and VT , respectively. They are typically estimated from PK data, as

are drug clearance and distribution rates from plasma and SoA compartments, ClP and ClT respectively. With these values, it is easy to estimate the rate
of drug distribution from plasma to SoA to be kPT ¼ ClT

VP
and rate of drug distribution from SoA back to plasma to be kTP ¼ ClT

VT
.

The value of dissociation constant KD, which is defined as KD ¼ koff
kon
, is typically experimentally estimated using Biacore®, or other methods. Foote

and Eisen (Foote & Eisen 1995) estimated kon for large molecules to be in the range of 105 � 106 M�1s�1, which will be fixed in the current model,
especially when the latter is not measured. This allows estimation of koff from KDvalues for various interactions.

Finally, target elimination rate can be estimated from its half-life (THL): assuming first order kinetics, kdeg ¼ lnð2Þ
THL . Rate of target synthesis can then be

calculated from target baseline levels as ksyn ¼ kdeg*R0, where R0 is the homeostatic baseline level of the target. It is likely to vary between healthy and
disease states, which should be considered for modeling purposes.

A summary of sample parameter values used in our model is given in Table 1. Parameter values were primarily obtained from (Dirks & Meibohm
2010; Le Dirks 2010; Gibiansky & Gibiansky 2009; Gibiansky 2011). Notably, these values will vary depending on the molecule and targets studied.
Supplementary Table 1. Description, units and sample values of parameters use
d in System [1].

Parameter Description Units Sample value Ref.
10
Physiological parameters
VP
 Volume of plasma compartment
 L
 3.06
 Tiwari et al.
VPh
 Volume of peripheral compartment
 L
 3.1
 Tiwari et al.
VT
 Volume of tissue (SoA) compartment
 L
 0.192
 (Davies & Morris 1993)
BsAb Pharmacokinetics
ClP
 Rate of drug clearance from plasma
 L/day
 1.32
 (Gibiansky 2011)
CLS
 Distribution clearance of cytokine (soluble receptor)
 L/day
 0.504
 (Chudasama et al. 2015)
kPPh
 Drug transfer rate from peripheral compartment to plasma
 1/day
 0.186
 (Tiwari et al. 2016)
kPhp
 Drug transfer rate from plasma to peripheral compartment
 1/day
 0.184
 (Tiwari et al. 2016)
kTP
 Drug transfer rate from SoA to plasma
 1/day
 0.186
 Assumed same as kPPh
kPT
 Drug transfer rate from plasma to SoA
 1/day
 0.184
 Assumed same as kPhP
Target properties
KDM = KDS
 Equilibrium dissociation constant for drug-target binding. In the simulations, KD for both arms of the
molecule is varied from 0.01 to 500 nM. The approach summarized in Figure 5 is then applied to
determine whether there is a benefit to optimizing KD at all, and if so, whether
there is a particular arm of the molecule that should be the focus of optimization efforts
nM
 0.01–500
 (Gibiansky 2011)
konM= konS
 Second order rate constant of drug binding to target
 nM/day
 1.32
 (Foote & Eisen 1995)
koff M=

koff S
First order dissociation rate constant of the drug
 1/day
 koff ¼ KD ⋅ kon
 calculated
R0M = R0S
 Baseline Concentration of membrane bound and soluble target
 nM
 0.1
 (Gibiansky 2011)
kintM
 Internalization rate for membrane bound target
 1/day
 50
 (Gibiansky 2011)
kint S= kdeg S
 Degradation/Internalization rate for soluble target
 1/day
 0.1
 (Gibiansky 2011)
kPTS
 Soluble receptor transfer rate from plasma to SoA compartment

ðCLS
VP

Þ

1/day
 0.165
 Based on (Chudasama et al. 2015)
kTPS
 Soluble receptor transfer rate from SoA to plasma compartment

kPT ¼ 0:3 ⋅ kTP ⋅ ðVT

VP
Þ

1/day
 8.75
 Based on (Chudasama et al. 2015)
References

[1] D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat.
Rev. Cancer 12 (4) (2012) 252–264. Nature Publishing Group.

[2] A.M. Eggermont, M. Maio, C. Robert, Immune checkpoint inhibitors in melanoma
provide the cornerstones for curative therapies, Semin. Oncol. (2015) 429–435.
Elsevier.

[3] J.W. Kim, J.R. Cochran, Targeting ligand–receptor interactions for development of
cancer therapeutics, Curr. Opin. Chem. Biol. 38 (2017) 62–69. Elsevier.

[4] E. Cogollo, M.A. Silva, D. Isenberg, Profile of atacicept and its potential in the
treatment of systemic lupus erythematosus, Drug Des. Dev. Ther. 9 (2015) 1331.
Dove Press.

[5] B.H. Rovin, R. Furie, K. Latinis, R.J. Looney, F.C. Fervenza, J. Sanchez-Guerrero, et
al., Efficacy and safety of rituximab in patients with active proliferative lupus
nephritis: the Lupus Nephritis Assessment with Rituximab study, Arthritis Rheum.
64 (4) (2012) 1215–1226. Wiley Online Library.
[6] S.V. Navarra, R.M. Guzm�an, A.E. Gallacher, S. Hall, R.A. Levy, R.E. Jimenez, et al.,
Efficacy and safety of belimumab in patients with active systemic lupus
erythematosus: a randomised, placebo-controlled, phase 3 trial, Lancet 377 (9767)
(2011) 721–731. Elsevier.

[7] E.F. Morand, R. Furie, Y. Tanaka, I.N. Bruce, A.D. Askanase, C. Richez, et al., Trial of
anifrolumab in active systemic lupus erythematosus. New England Journal of
Medicine, Mass Med. Soc. 382 (3) (2020) 211–221.

[8] J.E. Peterson, D. Zurakowski, J.E. Italiano Jr., L.V. Michel, S. Connors, M. Oenick, et
al., VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients,
Angiogenesis 15 (2) (2012) 265–273. Springer.

[9] A. Tiwari, A.K. Abraham, J.M. Harrold, A. Zutshi, P. Singh, Optimal affinity of a
monoclonal antibody: guiding principles using mechanistic modeling, AAPS J. 19
(2) (2017) 510–519. Springer.

[10] V.L. Chudasama, A. Zutshi, P. Singh, A.K. Abraham, D.E. Mager, J.M. Harrold,
Simulations of site-specific target-mediated pharmacokinetic models for guiding the
development of bispecific antibodies, J. Pharmacokinet. Pharmacodyn. 42 (1)
(2015) 1–18. Springer.

http://refhub.elsevier.com/S2405-8440(21)01752-7/sref1
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref1
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref1
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref2
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref2
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref2
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref2
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref3
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref3
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref3
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref3
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref4
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref4
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref4
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref5
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref5
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref5
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref5
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref5
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref6
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref6
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref6
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref6
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref6
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref6
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref7
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref7
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref7
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref7
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref8
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref8
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref8
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref8
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref9
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref9
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref9
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref9
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref10
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref10
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref10
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref10
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref10


I. Kareva et al. Heliyon 7 (2021) e07649
[11] I. Kareva, A. Zutshi, S. Kabilan, Guiding principles for mechanistic modeling of
bispecific antibodies, Prog. Biophys. Mol. Biol. 139 (2018) 59–72. Elsevier.

[12] H. Saber, P. Del Valle, T.K. Ricks, J.K. Leighton, An FDA oncology analysis of CD3
bispecific constructs and first-in-human dose selection, Regul. Toxicol. Pharmacol.
90 (2017) 144–152. Elsevier.

[13] S.L. Maude, D. Barrett, D.T. Teachey, S.A. Grupp, Managing cytokine release
syndrome associated with novel T cell-engaging therapies, Cancer J. 20 (2) (2014)
119. NIH Pub. Access.

[14] J.D. Urban, W.P. Clarke, M. Von Zastrow, D.E. Nichols, B. Kobilka, H. Weinstein, et
al., Functional selectivity and classical concepts of quantitative pharmacology,
J. Pharmacol. Exp. Therapeut. 320 (1) (2007) 1–13.

[15] M.E. Spilker, P. Singh, P. Vicini, Mathematical modeling of receptor occupancy
data: a valuable technology for biotherapeutic drug development, Cytometry B Clin.
Cytometry 90 (2) (2016) 230–236. Wiley Online Library.

[16] O.E. Della Pasqua, PKPD and Disease Modeling: Concepts and Applications to
Oncology, Clin. Trial Simulat. (2011) 281–306. Springer.

[17] G. Helmlinger, V. Sokolov, K. Peskov, K.M. Hallow, Y. Kosinsky, V. Voronova, et al.,
Quantitative systems pharmacology: an exemplar model building workflow with
applications in cardiovascular, Metabolic and oncology drug development, CPT
Pharmacometrics Syst. Pharmacol. (2019). Wiley Online Library.

[18] V. Chelliah, G. Lazarou, S. Bhatnagar, J.P. Gibbs, M. Nijsen, A. Ray, et al.,
Quantitative Systems Pharmacology approaches for Immuno-oncology: adding
virtual patients to the development paradigm, Clin. Pharmacol. Therapeut. (2020).
Wiley Online Library.
11
[19] A.P. Singh, Y.G. Shin, D.K. Shah, Application of pharmacokinetic-
pharmacodynamic modeling and simulation for antibody-drug conjugate
development, Pharmaceut. Res. 32 (11) (2015) 3508–3525. Springer.

[20] A. Tiwari, H. Luo, X. Chen, P. Singh, I. Bhattacharya, P. Jasper, et al., Assessing the
impact of tissue target concentration data on uncertainty in in vivo target coverage
predictions, CPT Pharmacometrics Syst. Pharmacol. 5 (10) (2016) 565–574. Wiley
Online Library.

[21] J. Kurai, H. Chikumi, K. Hashimoto, K. Yamaguchi, A. Yamasaki, T. Sako, et al.,
Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung
cancer cell lines, Clin. Cancer Res. 13 (5) (2007) 1552–1561.

[22] G.N. Naumov, E. Bender, D. Zurakowski, S.-Y. Kang, D. Sampson, E. Flynn, et al.,
A model of human tumor dormancy: an angiogenic switch from the nonangiogenic
phenotype, J. Natl. Cancer Inst. 98 (5) (2006) 316–325. Oxford University Press.

[23] C. Chen, S. Parangi, M.J. Tolentino, J. Folkman, A strategy to discover circulating
angiogenesis inhibitors generated by human tumors. Cancer research, AACR 55
(19) (1995) 4230–4233.

[24] J. Folkman, Angiogenesis: an organizing principle for drug discovery? Nat. Rev.
Drug Discov. 6 (4) (2007) 273–286. Nature Publishing Group.

[25] J. Folkman, Role of angiogenesis in tumor growth and metastasis, Semin. Oncol.
(2002) 15–18. Elsevier.

[26] R.K.Jain,Normalizing tumorvasculaturewithanti-angiogenic therapy: anewparadigm
for combination therapy, Nat. Med. 7 (9) (2001) 987. Nature Publishing Group.

http://refhub.elsevier.com/S2405-8440(21)01752-7/sref11
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref11
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref11
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref12
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref12
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref12
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref12
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref13
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref13
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref13
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref14
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref14
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref14
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref14
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref15
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref15
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref15
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref15
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref16
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref16
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref16
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref17
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref17
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref17
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref17
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref18
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref18
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref18
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref18
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref19
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref19
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref19
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref19
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref20
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref20
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref20
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref20
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref20
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref21
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref21
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref21
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref21
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref22
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref22
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref22
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref22
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref23
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref23
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref23
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref23
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref24
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref24
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref24
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref25
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref25
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref25
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref26
http://refhub.elsevier.com/S2405-8440(21)01752-7/sref26

	Bispecific antibodies: A guide to model informed drug discovery and development
	1. Introduction
	2. Methods
	2.1. Model inputs
	2.2. Process overview
	2.3. Decision thresholds

	3. Results
	3.1. What makes a target limiting?

	4. Discussion
	4.1. Receptor engagement efficacy model

	Declarations
	Author contribution statement
	Funding statement
	Data availability statement
	Declaration of interests statement
	Additional information

	AppendixAdditional information
	Model description
	Parameters


	References


