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Abstract: Drowsiness while driving can lead to accidents that are related to the loss of perception
during emergencies that harm the health. Among physiological signals, brain waves have been used
as informative signals for the analyses of behavioral observations, steering information, and other
biosignals during drowsiness. We inspected the machine learning methods for drowsiness detection
based on brain signals with varying quantities of information. The results demonstrated that machine
learning could be utilized to compensate for a lack of information and to account for individual
differences. Cerebral area selection approaches to decide optimal measurement locations could be
utilized to minimize the discomfort of participants. Although other statistics could provide additional
information in further study, the optimized machine learning method could prevent the dangers of
drowsiness while driving by considering a transitional state with nonlinear features. Because brain
signals can be altered not only by mental fatigue but also by health status, the optimization analysis
of the system hardware and software will be able to increase the power-efficiency and accessibility in
acquiring brain waves for health enhancements in daily life.

Keywords: EEG; biosignal; measurement; sleepiness; fatigue; DDS; driving; machine learning;
random forest; SVM

1. Introduction

Drowsiness is defined as the transitional state of falling asleep. The brain in the
drowsy state has yielded to the slowness or cessation of body movement, as indicated
by the etymology of drowsiness, such as “drūsian” and “dreosan” in Old English, which
mean “sink” and “to become slow”. The state of the brain yields negative outcomes
without an adequate self-awareness of global indicators such that driving in a drowsy
state can lead to unintended damage, injury, and death, especially in view of the fact
that automotive improvements in recent times have not considered safe in an adequate
manner [1]. Unfortunately, many people continue to drive despite their self-awareness of
sleep deprivation and its risks [2]. Additionally, people easily underestimate the severity
and risk caused by drowsiness [3]. However, sleep-deprived people are not able to assess
situations to prevent the occurrence of accidents.

Brain waves have been used to investigate and understand drowsiness based on
variations of consciousness [4–6]. The electrophysiological signals measured on the scalp
are known as electroencephalograms (EEG). The accumulated knowledge from prior
research efforts based on EEG and sleep stage analyses offer basic insights for the EEG
features required to assess different states of drowsiness. Brain waves have been analyzed
based on the delta (<4 Hz), theta (4–7.99 Hz), alpha (8–12.99 Hz), beta (13–30 Hz), and
gamma (>30 Hz) spectra bands [7–9]. A number of additional information, including time-
domain and nonlinear features, have been used to analyze different stages of sleep [10–13].
These EEG features have been used for feature extraction in almost all studies of drowsiness
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detection. However, the protocol used for physiological data lengths to analyze each
research approach has not been standardized [14]. The degree of drowsiness changes with
respect to time in daily life, based on variations in physical and mental conditions.

Additionally, due to the advances in mobile EEG systems [15] (e.g., lightweight
hardware, wireless transmission, and software), we can evaluate the optimal electrode
location for specific tasks. This evaluation of a limited sensor installment is required because
additional electrodes can cause more discomfort for wearers. According to a comparative
review of seven mobile EEG devices, few studies considered user discomfort [16]. Comfort
of use and visual appearance with limited electrode number should be considered when
designing a practical system.

Unlike other EEG studies that focused solely on increasing detection ability, we
focused on the locations of the electrodes, considering the specific characteristics of the
stages of drowsiness and the information quantity. We inspected the outcome of varying
the data length for each EEG channel for a broader outlook on transitional drowsiness to
find the effective cerebral area. The variety of data lengths that determine the quantity of
the prior information for training can affect the feature characteristics and performance
of the signals used for the detection of participant drowsiness. Therefore, drowsiness
was detected using EEG with a combination of time, frequency, complexity, and entropy
features affected by data length variations. We derived nonlinear features from each
separate spectral range of EEG produced by band-pass filtering. After the feature extraction,
we used supervised machine learning methods, random decision forest (RF), and support
vector machine (SVM). The RF is a robust ensemble method that does not suffer from
overtraining [13,17]. The terminology ‘random’ was influenced by the idea of searching
over a random subset when splitting a node or random subspace selections [18]. The SVM
has been used for drowsiness classification based extension of solution surfaces from linear
to non-linear and use of optimal hyperplanes with support vectors [19,20].

The remaining sections are organized as follows. Section 2 describes the materials
and methods for the EEG measurements during the virtual driving simulation. The
feature extraction and RF machine learning processes were presented to classify states of
drowsiness. Section 3 consists of descriptions of the findings from experiments for the
estimation of drowsiness. Section 4 includes discussions on the results for EEG-based
drowsiness detection system (DDS). Finally, Section 5 summarizes the conclusions of the
preceding sections.

2. Materials and Methods
2.1. EEG Acquisition during Driving Tasks in Simulations

Virtual driving at a fixed speed (e.g., 95 km/h) on a straight highway was set as the
fundamental task. The monotony of driving in a separate and quiet space for 55–70 min
with no other cars or pedestrians was used to induce drowsiness. The driving simulation
software (Carnetsoft B.V., Groningen, The Netherlands) displayed a three-dimensional
(3-D) in-vehicle view of a driver on three 24-inch monitors (Figure 1).

To monitor reactions to the vehicle lane-keeping task, we asked participants to control
a G27 steering wheel (Logitech, Lausanne, Swiss Confederation). The virtual world was
created with a width limit that allowed a drowsy vehicle operator to realize the proper
direction for keeping the lane. Participants only used their visual senses without any
environmental sound to avoid unexpected auditory stimulation effects. Forced lateral
moves of the car (e.g., 5 km/h to the left or right) over random intervals (5–19 s) occurred
in scenarios for behavioral analyses. The video for the offline annotation of the state of
the upper body and steering wheel was recorded by a video camera, LifeCam HD-5000
(Microsoft, Redmond, WA, USA) in front of the driver.
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gineering, Schiedlberg, Austria) with a 24-bit quantization level at a sampling rate of 512 
Hz during the simulation. The locations of the Ag/AgCl electrodes were selected on the 
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2a. The abbreviations in Figure 2a denote the following: the frontal (F), temporal (T), pa-
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symbolized as PO. The subscripted numbers of single electrodes indicate the left (odd) or 
right (even) hemisphere of the brain and the relative distance from the zero line. 

Figure 1. Driving simulation with electroencephalogram (EEG) measurements and video recording.

Standard 16-channel EEGs were acquired by a g.USBamp device (g.tec Medical Engi-
neering, Schiedlberg, Austria) with a 24-bit quantization level at a sampling rate of 512 Hz
during the simulation. The locations of the Ag/AgCl electrodes were selected on the basis
of the international 10-10 electrode placement system [21], as illustrated in Figure 2a. The
abbreviations in Figure 2a denote the following: the frontal (F), temporal (T), parietal (P),
and occipital (O) cerebral lobes, and the central (C) area around the vertex in Figure 2b,
where “z” symbolizes “zero” on the midline between the nasion (N) and the inion (I). For
grouping, electrodes on the posterior area (i.e., Pz, P7, P8, and Oz) were symbolized as
PO. The subscripted numbers of single electrodes indicate the left (odd) or right (even)
hemisphere of the brain and the relative distance from the zero line.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 2. (a) The 10-10 electrode placement system (Bold: 10–20 system). (b) The cerebral lobes and central area. (c) The 
placement configuration of the 16 electrodes. 

To achieve balanced measurements of all cerebral areas, the electrodes were posi-
tioned at Fp1, Fp2, Fz, F3, F4, Cz, C3, C4, T7, T8, FT9, FT10, Pz, P7, P8, and Oz, as shown 
in Figure 2c. The ground electrode was placed at Fpz, and a clip-type reference electrode 
was fixed at A2. A bandpass filter (0.1–50 Hz) was used to decrease noise and a 60-Hz 
notch filter was used to diminish the power line interference in the hardware. 

For the EEG and video synchronization, participants were asked to turn the steering 
wheel in the clockwise and counterclockwise directions at the beginning and end of the 
experiment. The steering motion was measured by a 3-axis accelerometer fixed on the 
uppermost position of the steering wheel (Figure 1). The acceleration data were recorded 
by a video camera and an MP150 data acquisition system (BIOPAC Systems Inc., Goleta, 
CA, USA) at a sampling rate of 1 kHz. For accelerometer and g.USBamp recordings, the 
BIOPAC system was synchronized by an ATMEGA128 microcontroller unit (ATMEL Co., 
San Jose, CA, USA) based on 5-V pulses with 1-s duration that were sent to the inputs of 
both systems. 

2.2. Participants and Experimental Conditions 
A total of 16 (12 men and 4 women) healthy right-handed participants (25–32 years 

old) participated in the EEG measurements for the driving simulation experiments. The 
research was approved by the Institutional Review Board (IRB) of the Seoul National Uni-
versity Hospital (IRB No. C-1509-074-704). All participants provided informed consent 
before they engaged in the study. The voluntary agreement included the control of the 
intake of chemicals, such as not drinking caffeinated drinks (for 5 h) and alcohol (for 24 h) 
before the experiment to avoid factors that affect drowsiness. Considering the possibility 
of drowsiness suppression by hunger, experiments were conducted 40–70 min after meals. 
The physical activity of the participants was not considered, and no extraneous physical 
activities (e.g., labor or exercise) were reported on the day before the experiment. To learn 
how to handle the steering wheel and avoid health issues during the simulation, the par-
ticipants were allowed to experience preliminary drives for 5 min. During the pretest, no 
one felt 3-D simulation sickness. 

  

Figure 2. (a) The 10-10 electrode placement system (Bold: 10–20 system). (b) The cerebral lobes and central area. (c) The
placement configuration of the 16 electrodes.



Sensors 2021, 21, 1255 4 of 16

To achieve balanced measurements of all cerebral areas, the electrodes were positioned
at Fp1, Fp2, Fz, F3, F4, Cz, C3, C4, T7, T8, FT9, FT10, Pz, P7, P8, and Oz, as shown
in Figure 2c. The ground electrode was placed at Fpz, and a clip-type reference electrode
was fixed at A2. A bandpass filter (0.1–50 Hz) was used to decrease noise and a 60-Hz
notch filter was used to diminish the power line interference in the hardware.

For the EEG and video synchronization, participants were asked to turn the steering
wheel in the clockwise and counterclockwise directions at the beginning and end of the
experiment. The steering motion was measured by a 3-axis accelerometer fixed on the
uppermost position of the steering wheel (Figure 1). The acceleration data were recorded
by a video camera and an MP150 data acquisition system (BIOPAC Systems Inc., Goleta,
CA, USA) at a sampling rate of 1 kHz. For accelerometer and g.USBamp recordings, the
BIOPAC system was synchronized by an ATMEGA128 microcontroller unit (ATMEL Co.,
San Jose, CA, USA) based on 5-V pulses with 1-s duration that were sent to the inputs of
both systems.

2.2. Participants and Experimental Conditions

A total of 16 (12 men and 4 women) healthy right-handed participants (25–32 years
old) participated in the EEG measurements for the driving simulation experiments. The
research was approved by the Institutional Review Board (IRB) of the Seoul National
University Hospital (IRB No. C-1509-074-704). All participants provided informed consent
before they engaged in the study. The voluntary agreement included the control of the
intake of chemicals, such as not drinking caffeinated drinks (for 5 h) and alcohol (for 24 h)
before the experiment to avoid factors that affect drowsiness. Considering the possibility
of drowsiness suppression by hunger, experiments were conducted 40–70 min after meals.
The physical activity of the participants was not considered, and no extraneous physical
activities (e.g., labor or exercise) were reported on the day before the experiment. To
learn how to handle the steering wheel and avoid health issues during the simulation, the
participants were allowed to experience preliminary drives for 5 min. During the pretest,
no one felt 3-D simulation sickness.

2.3. Feature Extraction with Signal Processing

The acquired signals were analyzed using MATLAB R2020a (MathWorks, Natick,
MA, USA). All EEG signals were resampled at 512 Hz and normalized. The accelerometer
data recorded with the EEG and the videos were synchronized based on the steering
wheel movements for cues. We recorded data for 60 s in advance of the start time of the
experiments because the first 60 s of data must be excluded to eliminate the cue movements
for synchronization and transitional waveforms from all filtered signals. Then, the EEG
features were calculated for all data length options before every forced move event, as
shown in Figure 3.
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Spectral features were derived using the periodogram, which is a nonparametric
estimate of the power spectral density (PSD) with a Hanning window in the frequency
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domain. The power, frequency, gravity frequency [10], and frequency variability [20] of the
five basic spectral features were calculated for all EEG frequency bands. In addition, the
ratios between the pairs of band powers (i.e., a total of six combinations from the bands)
were derived. A total of 26 features in the frequency domain could be used.

We conducted feature augmentation on the basis of knowledge about physiological
functions in EEG. Nonlinear features were computed for each separate signal in terms
of delta, theta, alpha, and beta spectral ranges after digital band-pass filtering (i.e., But-
terworth). Four nonlinear features for four spectral bands yielded a total of 16 nonlinear
features. The procedure allowed comparison of the outcomes yielded by spectral features
and by nonlinear features.

The generalized Hurst exponent (H) and Higuchi fractal dimension (HFD) were
computed. The exponent H, named after Hurst, is a statistical measure that represents the
signal tendencies with time. The Hurst exponent was generalized using the first-order
moment of the increment distribution, as detailed in the algorithm described in a previous
report [22]. The H value ranged between 0 and 1 and contained information about the
signal on the basic criterion. H = 0.5 indicated that the signal exhibited random walk
patterns (i.e., a Brownian time series). H values > 0.5 represented more persistent processes
related to low fractal dimensions (FDs). Conversely, the FD was derived based on Higuchi’s
algorithm [23]. The FD is a representative measure that quantifies the ratio of the change in
a fractured signal pattern to a change in the scale.

The number of time series N can be described as

Xm
k : x(m), x(m + k), x(m + 2k), . . . , x(m +

[
N −m

k

]
· k) (1)

for the initial time m = 1, 2, . . . , k, where the interval time is k = 2, . . . , kmax. In this case, []
represents the Gauss’ notation, and both k and m are integers.

The curve length Lm(k) is estimated using Equation (2).

Lm(k) =


[ (N−m)

k ]

∑
i=1
|x(m + ik)− x(m + (i− 1)k)|

 N − 1[
N−m

k

]
· k

/k (2)

The length of the curve for the time interval k can be estimated using the arithmetic
mean of Lm(k) for all m values defined as 〈Lm(k)〉 or L(k). Therefore, the HFD is identified
as the angular coefficient of the linear regression of the graph of ln(L(k)) versus ln(1/k)
using the linear least-squares fitting procedure [24] applied to the pairs of (k, L(k)) by
varying k (kmax = 8 in the present study).

Furthermore, we applied the viewpoints of entropy in the frequency and time domains.
The spectral entropy (SpEn) [25], the entropy of the PSD, was derived in the normalized
form as

SpEn =

(
−

fU

∑
i= fL

Pi log Pi

)
/N f (3)

where fL and fU are the lower and upper frequencies of a band, respectively, Pi is the
relative power (the ratio of each power to the total power) over the frequency i, and Nf is
the number of frequencies within the band. The permutation entropy (PmEn) was derived
by symbolizing the elements of a time series as the defined permutation patterns. For the
time series {xt}t=1,...,T , we defined n different encoding numbers that yield n! possible
permutations π of order n [13]. An encoded permutation list for time series group was
sequenced in increasing order of the values of the matched n-time series (n = 4 and lag = 1).
The raw data for the PmEn were resampled at the sampling rate of 64 Hz in the present
study. For a counted number denoted as #, the relative frequency p(π) for each permutation
π is defined as

p(π) =
#{t|t ≤ T − n, (xt+1,...,xt+n)has type π}

T − n + 1
(4)
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The entropy associated with the distribution of the relative frequency (PmEn) is then
defined as

PmEn = −∑ p(π) log p(π) (5)

where the sum includes n! permutations π of order n. These features sequenced by
a ranking filter (i.e., generalized Fisher score [26]) were utilized as input data for the
following machine learning method to detect the state of drowsiness.

2.4. Classification of Drowsiness

The ground truth used for statistical analysis with respect to drowsiness was labeled
by researchers experienced in sleep analysis and behavioral observations on the 10 s videos
around each forced move [13]. To assign true sleepiness labels, behavioral measures of
percentage eyelid closure, head pose, and yawning rate have been widely utilized. The
drowsiness descriptions were divided into ‘awake’ and ‘drowsy’ classes through omission
of the median of the five levels of the European Transport Safety Council report in 2001 [27].
The levels of ‘not drowsy’ and ‘slightly drowsy’ were grouped into the ‘awake’ class, and
the ‘very drowsy’ and ‘extremely drowsy’ were grouped into the ‘drowsy’ class. The
actual labels were confirmed through an agreement among all three researchers. We
utilized an RF that compounded the results of different decision trees that developed their
branches and internal nodes by using roots (prior information) and leaves (detections). The
generalization ability of the RF could be explained by randomizing the training steps to
fuse the characteristics of each tree by bootstrap aggregating (bagging) [18]. The bagging
algorithm randomly selects a subset of detectors for growing each tree. We selected 128
trees to form the forest, which we considered to be an appropriate number of trees based
on the biological data [28]. We adapted SVM using the radial basis function kernel, which
has shown robust results in studies of drowsiness and sleep stage classifications [25,29].
The hyperparameters to optimize the SVM model were selected by the random search
method [30] implemented in MATLAB 2020a.

A reliability analysis was performed using a random division of the optimization set
(two-thirds) and the final test set (one-third). To avoid biased results, the cross-validation
(CV) process was performed for the optimization set, which was repeatedly separated
into training sets (e.g., 4/5 of the optimization set) and validation sets (e.g., 1/5 of the
optimization set). The minimum mean-squared-error of classification of the fivefold CV
defined the condition for an optimal number of ranked features. The performance was
represented by the accuracy of classified labels by the intelligent system relative to the
ground truth labels. The task achievements of drowsy detections were yielded from unseen
737 cases of forced move events by confusion matrix results as shown by an example in
Figure 4. Accuracy was calculated as the number of identical cases of actual and classified
labels divided by the number of total cases for each class in percentage [%].
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2.5. Comfort Rating Scale of Measurements on Cerebral Areas

Participant discomfort due to electrode placement on a cerebral area was evaluated
on a 0-to-10 numerical rating scale based on a visual analog scale (VAS). The two comfort
descriptors ‘perceived change’ and ‘anxiety’ were assessed using a conventional comfort
rating scale (CRS) [31]. The VAS is the most common scale for quantification of discomfort
in medical studies [32,33]. The participants were asked to report discomfort using the
VAS (where 10 stood for maximum discomforts) after familiarizing themselves with the
criteria of Wong-Baker FACES pain scales, which matched a numerical scale to six facial
expressions [34].

3. Results

The average number of forced movement events in driving simulations was approxi-
mately 390 for all participants. The average number of annotated states of drowsiness was
approximately 47, with a standard deviation (SD) of 22 for all participants. The number of
awake and drowsy states was balanced for each participant.

The appropriate sample size for machine learning classifications could be determined
by fitting a classifier learning curve produced using empirical data as described in a study
about inverse power-law models [35]. The previous study showed that learning classifier
learning curves generally follow the inverse power law. This alternative inspection with
an increase of sample size has been used like a statistical power consideration in studies
using hypothesis tests [36]. A total of 184 cases among all participants (14 cases of each
participant) successfully fitted learning curves for both RF and SVM models, as in Figure 5.
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Figure 5. Learning curve of RF depending on total sample size using all features from 180-s data on 16-ch full-scalp EEG
with standard deviation (SD) bar.

3.1. Single Electrode Placement for EEG-Based DDS

Generally, we realized that the reliability yielded from RF and SVM approached a
plateau at data lengths of 180 s for all electrode cases. Tables 1 and 2 list the reliability
outcomes with two different amounts of information in the RF and SVM modeling. The
increase of accuracy by including nonlinear features with spectral features was symbolized
as ∆accuracy on the basis of spectral feature results.



Sensors 2021, 21, 1255 8 of 16

Table 1. RF classification accuracy [%] using spectral and nonlinear features derived from 30- and 180-s data from each
electroencephalographic (EEG) electrode.

Ch.
30-s EEG 180-s EEG

S 1 N 2 S + N ∆accuracy 3 S N S + N ∆accuracy

Fp1 92.84 87.48 94.51 1.67 97.83 96.89 97.29 0.54
Fp2 92.94 93.47 94.94 2.00 98.03 96.26 97.64 0.39
F3 88.35 89.74 89.86 1.51 96.86 96.59 98.38 1.52
F4 88.26 90.74 93.82 5.56 96.90 97.19 97.93 1.03
C3 80.84 86.16 89.01 8.17 97.60 95.82 96.73 0.87
C4 86.33 91.88 90.99 4.66 94.28 96.45 96.73 2.45
T7 88.12 91.99 91.72 3.60 96.58 97.00 97.81 1.23
T8 89.17 91.45 91.19 2.02 97.40 97.24 94.92 2.48

FT9 89.85 89.36 92.23 2.38 97.20 96.77 97.83 0.63
FT10 91.57 89.51 90.97 0.60 95.79 95.51 98.07 2.28

P7 87.97 89.26 91.21 3.24 96.59 96.06 95.74 0.85
P8 89.36 91.51 88.55 0.81 95.81 95.82 96.80 0.99
Fz 88.48 89.01 88.18 0.30 96.86 94.76 97.13 0.27
Cz 83.60 89.24 85.06 1.46 95.84 96.42 97.96 2.12
Pz 80.59 83.12 84.51 3.92 96.52 94.69 96.98 0.46
Oz 83.26 86.32 87.82 4.56 97.24 94.06 97.63 0.39

Mean 87.60 89.39 90.29 2.90 96.71 96.10 97.22 1.16
1 S: Spectral features; 2 N: Nonlinear features; 3 ∆accuracy: Accuracy difference by including N from results of S.

Table 2. Support vector machine (SVM) classification accuracy [%] using spectral and nonlinear features derived from 30-
and 180-s data from each electroencephalographic (EEG) electrode.

Ch.
30-s EEG 180-s EEG

S 1 N 2 S + N ∆accuracy 3 S N S + N ∆accuracy

Fp1 93.84 94.62 96.41 2.57 97.74 97.50 98.33 0.59
Fp2 93.21 94.07 96.41 3.20 96.92 98.30 98.26 1.34
F3 88.70 93.24 93.86 5.16 97.15 97.31 98.51 1.36
F4 89.36 91.53 93.19 3.83 96.74 96.93 98.04 1.30
C3 86.43 92.25 91.51 5.08 98.58 97.77 97.82 0.76
C4 88.68 90.58 91.43 2.75 97.96 97.78 98.98 1.02
T7 88.37 92.24 92.61 4.24 96.76 96.66 97.71 0.95
T8 86.57 90.25 93.24 6.67 97.23 96.98 98.61 1.38

FT9 91.04 89.25 94.03 2.99 97.46 97.84 97.11 0.35
FT10 91.14 91.53 93.29 2.15 97.90 95.78 97.75 0.15

P7 85.67 88.02 91.65 5.98 96.79 96.37 95.55 1.24
P8 86.86 91.83 92.40 5.54 96.67 96.91 98.28 1.61
Fz 90.26 89.14 93.93 3.67 97.06 97.86 98.46 1.40
Cz 84.28 85.48 87.69 3.41 97.79 96.91 97.61 0.18
Pz 82.53 85.43 86.86 4.33 98.04 96.03 98.54 0.50
Oz 84.83 89.22 90.01 5.18 96.40 96.94 97.80 1.40

Mean 88.24 90.54 92.41 4.17 97.32 97.12 97.96 0.97
1 S: Spectral features; 2 N: Nonlinear features; 3 ∆accuracy: Accuracy difference by including N from results of S.

If we focused on the results of the spectral features, Fp1 and Fp2 exhibited the highest
values for 30-s EEG and 180-s EEG using RF results and for 30-s EEG using SVM. The
variations in the data length could offer a variety of insights based on considerations of
the changeable character of the state of drowsiness. The electrodes on the F area exhibited
high performance in both data quantity cases using spectral features.

We observed that 16 nonlinear features derived from four EEG bands achieved drowsi-
ness classification accuracies similar to the results achieved using 26 spectral features.
Feature augmentation based on the knowledge of physiological functions can provide
information on forest growth or identification of optimal hyperplanes. Except Fp1, all
results using nonlinear features of 30-s data were superior to those using spectral features.
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The accuracy of all areas was improved by the combination of nonlinear features with
spectral features for both machine learning methods. Using 30-s EEG, the improved results
showed an average difference of 2.9% of RF and 4.17% of SVM, respectively. Increasing the
data length from 30 to 180 s produced accuracy differences of 1.16% of RF and 0.97% of
SVM.

When using all spectral and nonlinear features, accuracy for all participants showed a
difference of 6.93% in RF and 5.54% in SVM when increasing data length from 30 to 180 s.
In SVM results, this difference was about 59% smaller than that between the results of the
30- and 180-s spectral features only (9.08%). The additional information showed positive
effects in terms of reliability. The nonlinear features offered supplementary insights to the
machine learning for shorter data lengths. In addition, the sensitivity to data length (i.e.,
from 30-s to 180-s) can vary depending on the use of spectral, nonlinear, or all features,
with accuracy differences of 9.09%, 6.57%, and 5.55, respectively.

Figure 6 shows the representative classification accuracies yielded by RF and SVM
intelligent systems for drowsy states using spectral and nonlinear features of every EEG
electrode. The overall tendencies of RF and SVM were similar to each other in terms
of information quantity. In 30-s data on the frontal area, the combination (3rd bar) of
nonlinear and spectral features achieved much higher performance than the others. For
single-electrode location, every electrode on the central line symbolized as ‘z’ produced
lower accuracy than the other electrodes. This result could be related to lateralization of
brain processing of basic sensory information in left and right hemispheres. The neural
signals from the lateral sides of the cerebral lobes could be divided into left and right sides
based on the affected body parts [37]. Therefore, an electrode on the interhemispheric
fissure of the central longitudinal line might contain a smaller amount of drowsiness
information than others. This is because evidence of drowsiness is based on a sensorimotor
function decrease that causes slower reactions.
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For classification performance using all features, we could select an optimal location
of a single electrode for EEG utilized for DDS. For the participants in the present study, an
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electrode on the frontal lobe including Fp1, Fp2 (best for 30-s data), or F3 (best for 180-s
data) was optimal. When the EEG system had sufficient availability to operate multiple
channels for DDS, we grouped the features of multiple channels for each cerebral area
(Figure 2c) to create an input dataset.

3.2. Cerebral Area for EEG-Based DDS

Figure 4 presents an example confusion matrix derived by RF with 180-s data of
grouped channels to cover the cerebral areas. SVM using each dataset from F, C, T, and
PO areas yielded the accuracy of 97.01%, 96.74%, 96.88%, and 97.15%, respectively. All
cerebral areas showed an accuracy greater than 96%. If we consider a strict criterion for
the highest performance, F and PO areas could be selected. In following analyses about
grouped electrodes, we focused on the SVM results, as they were superior to RF results
in general.

By taking advantage of multiple channels, more informative pattern analyses could
enhance the performance of the detected data. Table 3 lists the reliability with three feature
sets (i.e., spectral, nonlinear, and combination) based on the EEG data of each cerebral
area. For example, upon the feature combination of the electrodes on a specific area with
30-s spectral features, the accuracy increased from 91.07% (i.e., average value for single-
electrode results on F) to 95.95% by grouping electrodes on the F lobe, as in Table 3. The
electrodes on the F lobe showed outstanding performances up to a 60-s data length, like
the 30-s result of a single electrode.

Table 3. Accuracy [%] using SVM with spectral and nonlinear features derived from 30- to 180-s EEG
on cerebral areas.

Feature Area 30 s 60 s 90 s 120 s 150 s 180 s

S 1

F 3 95.95 96.08 95.72 98.03 97.60 98.36
C 88.54 93.19 95.91 96.22 95.89 98.24
T 94.46 95.25 96.49 98.56 96.34 98.46

PO 91.43 94.04 97.04 97.57 96.68 97.22
All 95.87 97.43 97.91 98.30 97.19 98.52

N 2

F 96.34 97.03 96.59 96.85 97.48 98.38
C 94.48 94.98 97.05 97.78 95.76 98.17
T 95.98 95.49 97.38 98.26 97.84 98.47

PO 96.53 96.01 97.37 97.21 97.54 97.73
All 97.33 98.00 97.83 97.74 98.39 98.28

S + N

F 97.27 97.50 96.69 98.27 98.23 98.50
C 95.13 96.42 97.00 97.56 97.08 97.99
T 96.70 96.89 97.60 98.11 97.70 99.13

PO 96.78 96.80 97.17 98.51 97.12 98.61
All 97.52 97.78 97.78 98.82 97.37 99.20

1 S: Spectral, 2 N: Nonlinear, 3 F: Frontal; C: Central; T: Temporal; P: Parietal; O: Occipital areas.

The grouping effect was outstanding for nonlinear features, with higher accuracy
in 30-s, 60-s, and 90-s data compared to the results of spectral features. The number of
nonlinear features was much lower (i.e., 40) than the number of spectral features when
considering the four sub-bands of EEG.

In most cases, the combination of spectral and nonlinear features achieved the highest
accuracy compared to the result by only spectral or nonlinear features in cerebral areas.
With composite features from longer data, the reliability of the electrodes on the T lobe
and the PO areas increased and was greater than that of the F area. The nonlinear and
combined features on the T lobe classified drowsy states with an accuracy of 97.6% (90-s)
and 99.13% (180-s) that are similar to the best result using all electrodes. The performance of
electrodes on P and O areas was 99.25% (210-s), while that of all electrodes was 99.4% (270-s).
However, in terms of data length variation, the F lobe showed consistent performance,
with accuracies of 98.23% (150-s), 98.5% (180-s), and 99.07% (210-s).
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The spectral information from the spread of the brain wave to the hemispheres outper-
formed that from the C area, like the results of a single electrode. However, the nonlinear
features enhanced the information at longer data lengths and compensated for the lack of
spectral information in the C area.

3.3. Comfort Rating of Electrode Placement

Figure 7a shows the mean and SD of rated ‘perceived change’ and ‘anxiety’ of electrode
use. The discomfort related to the perceived change varied depending on placement and
individual preference, with an average distribution ranging from 2.8 to 5.93 with SD of 1.54
to 2.4. The highest mean perceived change was observed on the F lobe because participants
were not used to object placement on the forehead. Namely, constraints of using frontalis
muscle that covers the forehead can produce perceived change when opening the eyes. This
is because the frontalis muscle (Figure 7b) of the F area has connections with the corrugator
supercilii (i.e., muscle close to the eye) and attachments to the skin of the eyebrows (without
bony attachments). Moreover, the corrugator is connected to the orbicularis oculi close to
the eyelids. In other words, the electrodes on the frontalis muscle could cause awkwardness
in eye and eyebrows movements for gaze controls used to drive. The rating of electrodes
on the T lobe was 4.5 mainly because of high tension yielded by the cap fixation method
using a chin strap (Figure 1). The innate characteristics of conventional EEG based on
elasticity of cap fabrics affect the overall pressure of electrodes. In addition, higher pressure
on the lateral electrodes could be produced by the material of the chin strap, which is less
stretchable than are EEG cap materials. Therefore, the perceived change on the T lobe could
be lessened by an alternative form of fixation [15]. For example, the use of in-ear EEG is
possible considering the signal similarity to that of the temporal lobe and its feasibility in
drowsiness studies [13,38].
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Anxiety from electrode detachments showed a more even distribution than perceived
change, with an average range from 2.6 to 3.93 and SD of 1.33 to 2.31. In addition, the values
lower than the median value of CRS indicated non-severe anxiety during the one-hour
measurement. However, anxiety about the contact stability had an inverse relationship with
stiffness. The lowest anxiety was produced by the electrode on C because the central area
of the human skull can support electrodes without attachment materials. The lower anxiety
on F could be related to its lower steepness than that of T lobe and posterior areas despite
individual differences in head shape. We considered the trade-off relationship between
discomfort and classification performance to determine optimal locations of electrodes.
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4. Discussion

Many previous studies of drowsiness using low-cost EEG systems [39] have focused
on the spectral features from a fixed information system. However, our study demonstrated
the utility of nonlinear features and of various data length observations for analysis with
limited electrodes to minimize user discomfort.

Figure 8 shows the SD of accuracy for all participants in the three datasets of spectral
features (dotted line), nonlinear features (dashed line), and an extended dataset with
nonlinear features (solid line). The C area had the highest SD, which meant it had the most
inconsistent results across participants, although it showed the lowest CRS (Figure 5) when
focusing on discomfort.
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Due to the inclusion of the nonlinear features, both an increase in accuracy and greater
consistency of the results yielded by the frontal and posterior areas were observed. The
greater information quantity produced a lower SD for the sets containing nonlinear features
compared to those containing only spectral features. However, longer data lengths did not
always produce higher accuracy values after arrival at the plateau, such as in the case of
the F area with a 180-s data length. The importance of information quantity could vary by
cerebral area. The shorter data string for the F lobe and the longer data string for the PO
lobes yielded informative features. The shorter data string for the F lobe and the longer
data string for the PO lobes yielded informative features. These results were consistent
with previous vigilance studies that considered cerebral areas. In a vigilance estimation
study, researchers reported that the posterior (12-ch) EEG contained critical information in
comparison with temporal (6-ch) EEG and forehead electrooculogram [40]. Among 19 EEG
channels in an auditory vigilance task, the 10 top-ranked features comprised six features on
the posterior area, two features on F, and two features on T lobes [41]. The T lobe features
were highly ranked in the present study as well, with a result of 99.13% (180-s). If a new
form factor could reduce the discomfort caused by structural characteristics of head shape,
T and posterior areas could be selected for optimal placement of electrodes.

Some channel locations in the specific cerebral area were researched in previous EEG-
based DDS studies using machine learning methods, as shown in Table 4. Commonly
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based on feature extractions by tunable Q-factor wavelet transform for the 3 channels
(C3-O1, C4-A1, and O2-A1) of 16 participants in MIT-BIH polysomnographic database, a
hybrid model of long short-term memory (LSTM) with pretrained models (e.g., AlexNet
and VGG16) [42] and an extreme learning machine (ELM) [43] yielded accuracies of 94.3%
and 91.8%, respectively. Using a five-channel EEG (C3, P4, P7, O1, and O2) with a support
vector machine (SVM), an accuracy of 76.4% was demonstrated [44]. These studies with
limited electrodes commonly observed the C and O areas. The result of our RF for the P
and O lobes was similar to that of a deep learning method, although we should note the
dataset difference.

Table 4. Arithmetic mean of statistical measures of performance in EEG-based detections of drowsiness.

Author Representative Classifier Channel # (Area) Accuracy [%] Participants # (age)

Chai et al. Bayesian Neural Network 32 88.2 43 (18–55 years)
Hu et al. Adaptive Boosting 30 97.5 28 (19–24 years)
Min et al. Back propagation Neural Network 30 98.3 12 (19–24 years)

Awais et al. SVM 5 (C3, P4, P7, O1, O2) 76.4 22 (18–35 years)
Umit et al. Pretrained AlexNet, VGG16 + LSTM 3 (C3-O1, C4, O2) 94.3 16 (average: 43 years)
Bajaj et al. ELM 3 (C3-O1, C4, O2) 91.8

Present study SVM
4 (T7, T8, FT9, FT10)

4 (Oz, Pz, P3, P4)
16

99.13 (180-s)
99.25 (210-s)
99.4 (270-s)

16 (25–32 years)

On the other hand, full scalp EEG (approximately 30 EEGs) were previously tried to
maximize the classification performance for detection of drowsiness. The performance of
the Bayesian neural network with an independent component analysis (ICA) produced an
accuracy of 88.2% for 43 participants [45]. Adaptive boosting (AdaBoost) of the decision
tree classifier (maximum depth = 9) yielded an accuracy of 97.5% for 28 participants [46].
A back-propagation neural network showed an accuracy of 98.3% for 12 participants [12].
Our result with a 16-channel EEG achieved a similar level of results as the ~30-channel
EEG due to the ensemble of nonlinear features and the varying information quantity.

For the daily measurement for EEG-based DDS with the optimal electrode placements,
the electrodes on O and T lobe could be achieved with ear-set type hardware. Considering
the robustness of shorter data for monitoring drowsiness, the inclusion of electrodes on F
and P lobes could be possible with a hair band type system without electrodes on the C
area, unlike a general-purpose EEG headset, which covers the full scalp [15].

5. Conclusions

The present study used a 16-channel EEG with an RF to demonstrate the detection
of drowsiness with varied spectral and nonlinear information quantities. The main con-
tribution of this study was the demonstration that optimal single and multiple electrodes
on specific cerebral areas could be selected to minimize the discomfort of the DDS users.
Few EEG studies using grouped multiple electrodes on cerebral areas have been reported
regarding efficiency in DDS. Many studies for wearable EEG systems have focused on the
enhancement of learning methods after selecting a location of a single electrode [47,48].
To find a better form factor for each brain structure and for broader insight, nonlinear
features derived from sub-bands of EEG and variations of the data length were considered
in the present study. The reliability values for every signal electrode increased as the data
lengths increased, and these values were stable when the data length was approximately
180 s. The present results might be limited under laboratory conditions, which had no
electrical artifacts or interruptions that occur in real environments. The performance might
be limited in our dataset because the number of participants was not statistically sufficient.

Despite these limitations, the results are meaningful because the research target
was to overcome the low accessibility of EEG, which has been a fundamental obstacle
to the accumulation of big data. For real-life measurements out of the lab, it would
be difficult to sustain the quality of EEG that affects the classification performance for
transitional states [1]. In this regard, the utilization of nonlinear features like PmEn is
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worth consideration when it is difficult to acquire stable data. In terms of the feature
curation, we could utilize the variation in detection performance of the cerebral area with
data length. In the participant data, the optimal performance of the DDS systems had
longer data lengths on the P and O lobes. While considering individual differences, the
higher performance by each channel or area selection could enhance the accessibility of
the EEG-based DDS to avoid false alarms. With advances in the mobile system to enhance
user comfort [49], EEG could be an accessible tool not only for safety but also for health
enhancements. It is expected that optimization analysis of the system will contribute to the
advances in monitoring brain functions for the digital healthcare [50] or brain–computer
interface for patients [51] by increasing the power-efficiency and accessibility for acquiring
brain waves.
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