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Abstract: Supplemental oxygen (SO) increases survival in hypoxemic patients. In hypoxia, mammals
respond by modulating O2-sensitive transducers that stabilize the transcription factor hypoxia-
inducible factor-1-alpha (HIF-1α), which transactivates the genes that govern angiogenesis and
metabolic pathways. Residing at high altitudes exposes millions of people to hypoxemia with
potential adverse consequences on their health. We aimed to identify markers of hypoxemia that can
be used in the evaluation of patients in addition to pulse oximetry and arterial blood gases, especially
those that could respond after 1 month of oxygen use. We performed a prospective pilot study at
2240 m above sea level, with repeated measurements before and after (b/a) 1-month home oxygen
therapy in 70 patients with lung diseases, of which 24/20 have COPD, 41/39 obstructive sleep apnea
(OSA), and 5/2 with interstitial lung diseases (ILD), all of them having chronic hypoxemia, as well as
70 healthy subjects as controls. Proteins evaluated included HIF-1α, vascular endothelial growth
factor (VEGF), and erythropoietin (EPO). Among the main results, we found that hypoxemic patients
had normal levels of HIF-1α but increased EPO compared with healthy controls. VEGF levels were
heterogeneous in the sample studied, similar to the control group in COPD, slightly increased in
OSA, and decreased in fibrosis. With oxygen treatment, the HIF-1α and EPO decreased in COPD and
OSA but not in fibrosis, and VEGF remained constant over time. In conclusion, erythropoietin and
HIF-1α identified hypoxemia initially and responded to oxygen. In pulmonary fibrosis, HIF-1α, EPO,
and VEGF increased with oxygen therapy, which is likely linked to the disease’s pathogenesis and
clinical course rather than hypoxemia.

Keywords: hypoxemia; HIF-1α; EPO; VEGF; supplemental oxygen; hypoxia

1. Introduction

Chronic or intermittent hypoxemia reduces lung disease subjects’ survival and worsens
their health [1,2]. Chronic hypoxemia has a profound effect on patients’ functional capacity
and physical activity with COPD and other chronic diseases, not just respiratory [3,4].
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On the other hand, supplemental oxygen (SO) treatment improves survival and qual-
ity of life in patients with chronic obstructive pulmonary disease (COPD) [1,2], with such
relevant results that the criteria used for oxygen therapy in COPD trials in cities near sea
level, based on a PaO2 < 55 mm Hg, or <60 with polycythemia or pulmonary hypertension,
have been applied to patients with other chronic lung diseases and at different ages and
altitudes. Hypoxemia generates broad responses of the body that impact cells, tissues, or-
gans, and physiological systems triggered by hypoxia-induced factor-1 alpha (HIF-1α) [5,6]
after activating many genes that subsequently determine known physiological responses to
hypoxemia, including pulmonary hypertension or polycythemia [3]. The therapeutic inter-
ventions are only restoring PaO2 by descending to low altitudes or by oxygen therapy [1–3].
In chronic intermittent hypoxemia (CIH), such as occurs in sleep apnea, it differs from
continuous hypoxia in the activation of HIF-1α. It suppresses HIF-2-mediated transcription
and thus peripheral mechanisms, such as an increase in the generation of reactive oxygen
species in the chemosensory reflex, which is central in the development of systemic arterial
hypertension, which is one of the most frequent chronic diseases [7–9].

Chronic hypoxemia is common in residents at moderate altitudes, such as that in the
Valley of Mexico at 2240 m above sea level. In a population-based study, 6% of participants
aged 40 or over residing in Mexico City found a SpO2 of 88% or less and would have in
principle indication of oxygen therapy, although only 8% of them received it [10].

Our study’s primary objective is to identify possible biomarkers of hypoxemia that
could be used clinically, especially those capable of identifying the impact of oxygen use
for 1 month.

2. Materials and Methods

The project was approved (approbation code number: C56-16) by the Institutional
Ethics Committee of the Instituto Nacional de Enfermedades Respiratorias (INER) in
Mexico City, where it was carried out. All participants were adults and signed the corre-
sponding informed consent. The INER is a public healthcare and research institution that
receives primarily uninsured patients with respiratory problems.

We planned a prospective, longitudinal study comparing before and after improving
patient oxygenation using home oxygen for 1 month. Patients with sleep apnea were
treated with nasal continuous positive pressure (nasal CPAP with or without supplemen-
tal oxygen).

For this study, there was a selection of 70 patients with hypoxemia (PaO2 ≤ 55 mm
Hg, or PaO2 < 60 with polycythemia or pulmonary arterial hypertension) with repeated
measurements before and after (b/a) 1-month home oxygen therapy [1,2] of variable
severity and without prior use of oxygen, associated with three common chronic respiratory
diseases: Chronic Obstructive Pulmonary Disease (COPD, n = 24/20), obstructive sleep
apnea (OSA, n = 41/39) and interstitial lung diseases (ILD, n = 5/2), and 70 healthy subjects
covering among all, a broad spectrum of SaO2 and PaO2. The patients were selected
from the corresponding INER clinics: sleep disorders clinic; pulmonary fibrosis clinic; and
COPD and smoking cessation clinic; and had not had a recent (1 month) exacerbation of
the disease, infection, or hospitalization or used supplemental oxygen.

The FEV1/FVC ratio is a standard criterion for airflow obstruction. In the presence of
airflow obstruction, the volume exhaled in the first second (FEV1) decreases in proportion
to the total volume exhaled (FVC). The COPD patients all had FEV1/FVC ratio <0.7.
and had chronic exposure to smoking or biomass-burning smoke while cooking. Those
with interstitial diseases had a diagnosis of idiopathic pulmonary fibrosis or fibrosis
associated with rheumatic diseases. Obstructive sleep apnea patients had been evaluated
with respiratory polygraphy with a respiratory index of >15 or polysomnography with an
apnea-hypopnea index >15.

The healthy controls were generally active or retired INER workers and their relatives;
had a normal oxygen saturation by pulse oximetry (>92%), lacked a history of respiratory
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diseases, and acute and chronic respiratory symptoms and signs during the last 15 days;
and they had never smoked.

Both patients and healthy participants were residents of the Valley of Mexico, at an
average altitude of 2240 m above sea level for at least 5 years. The average barometric
pressure is 585 mm Hg, and the partial pressure of oxygen in the inspired air, humid, and at
body temperature, is about 113 mm Hg.

After signing the informed consent, general health, medical history, and symptoms
questionnaire were applied at the first visit, including questions to determine the clinical
characteristics of hypoxemia and respiratory risk factors. Baseline measurements were
taken that included weight, height, body mass index (weight/ height2 in kg/meters2),
and pulse oximetry at rest (five measurements and the average is reported). Spirometry
was also performed, in a sitting position before and 15 min after a bronchodilator (400 mcg
of salbutamol with a metered-dose aerosol and large volume spacer) [11]), to obtain three
acceptable maneuvers with the two best FEV1 and FVC within 150 mL, following the
American Thoracic Society/European Thoracic Society (ATS/ERS) procedures [12].

Arterial blood samples were taken at rest, from the radial artery in the non-dominant
hand with a 25–27 gauge needle, and processed immediately on an ABL800 FLEX analyzer
(Radiometer, Copenhagen, Denmark). Healthy volunteers had only the pulse oximetry
without an arterial blood sample. PaO2 was classified as normal at the recruitment time if
60+ mm Hg, borderline if 55–59 mm Hg, and hypoxemia if <55 mm Hg.

2.1. Serum Protein Determination

The determination in the serum of the following proteins was carried out: hypoxia-
inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), and ery-
thropoietin (EPO) using the commercial kits: HIF1A (Cat. number EHIF1A2. Invitrogen,
Bender MedSystems GmbH. Vienna, Austria), human VEGF (Cat. number KHG0111.
Novex® Life Technologies, Waltham, MA, USA), and human Erythropoietin ELISA (Cat.
number BMS2035. Invitrogen, Waltham, MA, USA). The manufacturer’s instructions for
processing were followed. The kit detection levels for HIF-1α are 82–20,000 pg/mL, with a
sensitivity ≤30 pg/mL, for VEGF 23.4–1500 pg/mL, with a sensitivity <5 pg/mL, EPO of
1.8–100 mIU/mL, and 0.17 mIU/mL sensitivity.

2.2. Ancestry Informative Markers (AIMs) Genotyping

Allelic discrimination of 14 single nucleotide polymorphisms (SNPs) was carried out
through qPCR, using TaqMan probe assays: rs4528122, rs986690, rs10516422, rs10515716,
rs1878071, rs4084051, rs7853112, rs10511491, rs1039336, rs1479514, rs147756, rs14780714,
and rs147756. The DNA was adjusted to 15 ng/µL; a reaction mixture was prepared with
TaqMan probe and Master Mix TaqMan™ (Applied Biosystems, Waltham, MA, USA),
as well as nuclease-free water. It was mixed and centrifuged at 1500 rpm to run in a
7300 Real-Time PCR system thermal cycler.

Patients meeting criteria for hypoxemia for oxygen prescription were loaned an oxy-
gen concentrator to use continuous oxygen at home. According to the treating physician’s
prescription, sleep apnea patients similarly received an automatic-CPAP device for treat-
ment (with or without additional oxygen).

After a month, the patients returned to retake a venous blood sample and baseline studies.

2.3. Statistical Analysis

The degree of hypoxemia quantified through PaO2 was correlated with the variables of
response to hypoxemia, including hemoglobin levels, hematocrit, erythropoietin, and HIF-1α.

A comparison analysis was performed within groups (before and after treatment with
supplemental O2) and between groups of patients and controls, using the Mann-Whitney
and Kruskal-Wallis U statistical tests after Bonferroni correction. Spearman’s correlation
analysis was performed using the patients’ clinical and demographic variables and the
proteins determined at baseline and follow-up. They were carried out in the RStudio
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v3.5.2 environment. On the other hand, the principal component analysis (PCA) was
performed, taking the eigenvalues 1 and 2 of the 14 genotyped SNPs, using a 95% quality
control, in the PLINK v1.07 and EIGENSTRAT v3.0 software. The rest of the analyses were
carried out using STATA statistical software [13].

3. Results

At the basal time, seventy patients with respiratory diseases were recruited (63% men,
with age 59.7 ± 11.7 and PaO2 of 53.4 ± 4.6, SaO2 of 86.3 ± 3.3) and 70 healthy controls
(62% men and age of 56 ± 12.2 years and SpO2 94.2 ±1.9). At the follow-up, 20 patients
with COPD (age 68.4) were recruited, 39 with obstructive sleep apnea (age 53), and 2 with
interstitial lung diseases (age 63.8). Table 1 shows clinical data for each group.

Table 1. Clinical and demographical data for each group in the follow-up.

COPD OSA ILD Controls

Sex (M|F) 12|8 27|12 1|1 44|26

Age (years) 68
(63–71)

53
(42–57)

64
(62–63)

56
(45–69)

BMI (kg/m2)
24.50

(22.23–27.25)
39

(36.50–44.50)
24

(23–28)
26

(24–28.15)
Pulse

Oximetry (%)
89

(87–91)
88

(87–90)
94

(93-94)
94

(93.25–95.90)

PaO2 (mmHg) 54.95
(51.25–56.40)

53.95
(49.67–56.77)

47.90
(47.70–55.60) NT

SpO2 (%) 88
(86–88)

87
(77–88)

85
(77–87) NT

SaO2 (%) 87.47
(84.47–88.78)

86.90
(84.79–88.35)

83.90
(82.10–85.00) NT

FEV1 (%) 48
(46.50–64.50)

81.5
(72.75–94.0)

61
(39.5–83.5)

108
(98–117)

FVC (%) 79
(72.50–96.50)

88
(76–94)

54.50
(37.00–72.75)

112.50
(97.25–119.75)

DLCO (%) 82.50
(64.75–104.50)

123
(103–139.8)

45
(39–46)

113.5
(105.8–127)

The data of the quantitative variables are shown in median (interquartile range) and categorical variables in n.
PaO2: Arterial oxygen pressure; SpO2: Oxygen saturation; FVC: Forced vital capacity; FEV1: Forced expiratory
volume in the first second. Not tested.

3.1. Protein Measurements

The serum protein levels obtained for the three proteins in the baseline determination
(without supplemental oxygen treatment) shown HIF-1α and VEGF were increased in
the control group compared with the patients’ groups; however, differences were not
statistically significant (p-value = 0.509 and 0.091, respectively).

EPO levels were higher in patients than in the control group, where a statistically
significant difference was found in the OSA vs. the control group (16.80 vs. 5.98, p < 0.001
after Bonferroni correction). The protein levels for each study group are shown in Figure 1.

The patients’ intragroup analyses before and after treatment are shown in Table 2;
HIF-1α at follow-up decreased in patients with COPD and OSA and increased in patients
with fibrosis. In the VEGF levels, no differences were found between the groups before
and after. Finally, EPO levels decreased at follow-up both in the group in general and in
patients with COPD and OSA (p < 0.05).
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The graphs in Table 2 show the change in each group’s levels at baseline and follow-up
and each protein’s levels in the patient groups.

3.1.1. Correlation Analysis

A correlation analysis was carried out between the protein levels (before and after
the supplemental oxygen treatment) and clinical variables, as hematic cytometry and
blood chemistry. Figure 2, correlations: baseline EPO with age (r2 = −0.38) and eosinophil
values (r2 = 0.3); on the other hand, EPO at follow-up is negatively correlated with oxygen
saturation (r2 = −0.45) and positive with the smoking index (r2 = 0.31). And moderate
positive and negative correlations (<0.6) with hemoglobin concentration and VEGF and
EPO levels both at baseline and at follow-up of the patients, as well as low correlations
(<0.4) with blood chemistry analytes such as uric acid, glucose, and creatinine.
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Figure 2. Correlations of proteins determined HIF-1α, VEGF, and EPO in patients before and after
treatment with O2 with clinical variables of interest. The correlations with p-value < 0.05 are shown
in color (intensities from red to blue), the boxes in white have a value of p > 0.05. _b: before, _a:
after, TI: Tobacco index, Leu: leukocytes, Neu: neutrophils, Lym: Lymphocytes, Mon: Monocytes,
Eos: Eosinophils, Bas: Basophils, Hemog: Hemoglobin, Hematoc: Haematocrit, Plat: Platelets, Glu:
Glucose, Creatinine; the plot shows only significant levels of correlation in color red to blue.

3.1.2. Ancestral Contribution According to AIMs

Supplementary Table S1 shows the SNPs selected according to the presence in the
native and Mexican mestizo populations; the SNPs with a delta value > 0.4 are taken for the
ancestry analysis. The principal component analysis was performed, taking as reference
populations Caucasian European residents of Utah (CEU) and Amerindian Zapotec from
Oaxaca (ZAP). The principal components graph was obtained, which shows the distribution
of the 92 individuals AIMs’ in the study groups, which gave rise to Mexican mestizos; it is
observed that the distribution between healthy individuals and cases is similarly displaced
along the vectors.
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4. Discussion

In the longitudinal results shown, before and after using oxygen for 1 month, hy-
poxemic patients did not have on average increased levels of HIF-1α, but after oxygen
therapy, the HIF-1α decreased in COPD and OSA but not in fibrosis, which may be related
to the course of deterioration that is common in pulmonary fibrosis or to the pathogenesis
of the disease. EPO was raised in patients and decreased with oxygen and could be a
useful marker of oxygenation. VEGF leading to vascular proliferation and remodeling had
serum levels heterogeneous in the sample studied. The control group and COPD patients
have similar levels, slightly increased in the OSA group but decreased in the ILD group,
and remained similar after oxygen supplementation. This pattern could be a mixture of
the direct impact of hypoxemia, treatment with oxygen, and different pathogenesis of the
diseases. The possible impact of infection or inflammatory diseases was reduced as much
as possible by checking on comorbidities and avoiding exacerbations.

HIF-1α levels were reported to increase in COPD patients in an amount proportional
to severity [14] and increased in sleep apnea with hypoxemia [15]. Many oxygen-sensitive
regulatory mechanisms work through HIF-1α, and recent literature regarding the hypoxic
stimulus and its pathological implications deals primarily with HIF-related findings. HIF-
1α is pivotal in the adaptation to chronic hypoxia: it induces gene expression for fructose-2-
6-biphosphatase, an enzyme-switching glucose metabolism towards glycolysis, allowing
energy production in anaerobic conditions [16].

Serum erythropoietin was previously found increased in COPD patients with severe
nocturnal and diurnal hypoxemia [17], and patients with severe COPD [18], although
the response to EPO in COPD appears to be blunted [19]. EPO, in general, drops with
hypoxemia treatment in COPD [20] and sleep apnea [21]. Erythropoietin is an endogenous
glycoprotein hormone primarily produced by the kidneys in response to a decrease in
tissue oxygenation tension. EPO acts as the primary stimulus for erythropoiesis in normal
conditions, promoting the differentiation of progenitor cells into erythrocytes. Several
studies have demonstrated that COPD anemic patients frequently present with a significant
enhancement in erythropoietin levels [22]. VEGF was increased in hypoxemic patients
with COPD during an exacerbation [23].

In populational studies, it has been shown that the primary determinant of the oxy-
genation status is the altitude above sea level, so that the higher the altitude, the more
oxygen therapy required [10]. In Mexico City (2240 m of altitude), this has been quantified,
and up to 6% of the population over 40 years of age would have SO indication if we
used the criteria generated at sea level [10]. However, the current criteria to establish the
hypoxemia diagnosis for the SO prescription was generated 30 years ago and originated
from studies carried out at sea level in COPD patients [1,2]. These criteria, based on PaO2,
prevail worldwide without considering the disease or altitude of residence. Altitude could
generate a better adaptation to hypoxemia, especially over many generations, and prepare
inhabitants to tolerate lower levels of PaO2 than if hypoxemia happens to residents of sea
level. Indeed, a fraction of that 6% of residents of Mexico City, at least 40 years of age,
with SpO2 ≤ 88%, require SO, but among the group could be individuals who are adapted
to living at altitude and in whom the benefits of administering SO would be minimal and at
the expense of the high cost of SO therapy. Having additional markers of hypoxemia (other
than PaO2, polycythemia, and pulmonary hypertension) may provide clinical tools to better
decide if a resident at moderate altitude is presenting a bodily response to hypoxemia and
is at risk of complications, and in the best scenario, the marker pattern predicts adverse
outcomes that would be prevented with supplementary oxygen.

In summary, in this pilot study, EPO promises to help identify hypoxemia early and
respond to oxygen treatment, except in pulmonary fibrosis that tends to worsen. HIF-1α
would likely be more useful in patients’ follow-up, although again in fibrosis tends to
increase despite oxygen treatment.

VEGF is decreased in patients with fibrosis, increases with time with oxygen therapy,
and seems more linked to the course of the disease than to hypoxemia.
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5. Conclusions

Erythropoietin and HIF-1α identified hypoxemia initially and responded to oxygen
therapy. In pulmonary fibrosis, HIF-1α, EPO, and VEGF increased with oxygen therapy,
which is likely more linked to the disease’s pathogenesis and course than to hypoxemia.
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