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Abstract: Human safety and well-being is threatened by microbes causing numerous infectious
diseases resulting in a large number of deaths every year. Despite substantial progress in antimicrobial
drugs, many infectious diseases remain difficult to treat. Antimicrobial polymers offer a promising
antimicrobial strategy for fighting pathogens and have received considerable attention in both
academic and industrial research. This mini-review presents the advances made in antimicrobial
polymers since 2013. Antimicrobial mechanisms exhibiting either passive or active action and
polymer material types containing bound or leaching antimicrobials are introduced. This article also
addresses the applications of these antimicrobial polymers in the medical, food, and textile industries.

Keywords: antimicrobial; polymer; microbe; bacteria; review

1. Introduction

Microbes are living organisms, such as bacteria, fungi, and parasites, which are the critical
sources of infections [1]. Infectious diseases result from pathogenic microbes and kill more people
than any other single cause [2]. An antimicrobial is an agent used to kill microbes or inhibit their
growth. Although numerous antimicrobial drugs have been developed to kill or inhibit microbes,
many infectious diseases remain difficult to treat [3,4]. Antimicrobial polymers were discovered since
1965 [5] and have attracted considerable attention in both academic and industrial research. Table 1
shows recent review articles on antimicrobial polymers from various perspectives. These reviews
focus on methods for producing antimicrobial polymers and various applications of antimicrobials.
Increasing efforts develops learning from nature, green or nontoxic biocides. The medical, food,
and textile industries are three major areas of applied antimicrobials. More than 27,845 patents for
antimicrobial polymers have been filed in the Google Patent Search database since 2013. In addition,
antimicrobial medical devices have attracted substantial attention in clinical trials [5]. Compared with
their small molecular counterparts, antimicrobial polymers demonstrate superior efficacy, reduced
toxicity, minimized environmental problems, and greater resistance [6].
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Table 1. Recent review articles of antimicrobial polymers.

Subject Topic Reference

Application
Stimuli-responsive polymeric materials for human health applications [7]
Antimicrobial polymers for anti-biofilm medical devices [8]
Antimicrobial peptides in the treatment of bacterial biofilm infections [9]

Overview

Antimicrobial peptides and enzymes [10]
Anti-infectious surfaces achieved by polymer modification [11]
Antimicrobial polymers [6]
Antimicrobial polymers with metal nanoparticles [12]

Synthesis and
characteristic

Antimicrobial N-halamine polymers and coatings [13]
Antimicrobial modifications of polymers [14]
Antibacterial dental resin composites [15]
Novel formulations for antimicrobial peptides [16]
Coatings and surface modifications imparting antimicrobial activity to orthopedic implants [17]
Antimicrobial activity of chitosan derivatives containing n-quaternized moieties [18]
Cationic polymers and their self-assembly for antibacterial applications. [19]
Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts [20]

When microbes adhere to a substrate, they excrete biofilms to anchor themselves to the substrate.
In biofilms, cells grow in multicellular aggregates and become embedded within a self-produced
matrix of an extracellular polymeric substance. A biofilm extracellular polymeric substance is a
polymeric conglomeration composed of polysaccharides and other components, such as proteins and
DNA. Defective biofilms cannot offer an environment for microbes to grow. Therefore, antimicrobial
applications entail strategies for preventing microbial viability or adhesion. For example, antimicrobial
peptides act primarily by disrupting the bacterial cell membrane, and heparin exhibits anti-adhesive
activity and hydrophilic characteristics that prevent the growth of microbes [21]. Several reviews have
described antimicrobial management [22–28]. Biofilms are difficult to remove and resist many biocides.
Therefore, to prevent the spread of diseases, inhibiting biofilm formation and reducing microbial
attachment are a more promising antimicrobial strategy than killing microbes [17,29].

Many promising antimicrobial polymers have been reported, and the number of FDA-approved
antimicrobial polymers has increased drastically in the past decade [5]. This review describes the new
developments in antimicrobial polymers over the past three years. According to the mechanism of
antimicrobial activity, the activity of antimicrobial polymers can be categorized as either passive or
active (Section 2). Based on the polymer material type, antimicrobial polymers can be classified as
bound or leaching antimicrobials (Section 3). These antimicrobial polymers are applied in the medical,
food, and textile industries (Section 4). Finally, the conclusion and prospects for future research are
addressed (Section 5).

2. Passive or Active Action

2.1. Passive Action

A passive polymer layer can reduce protein adsorption on its surface, thereby preventing
the adhesion of bacteria. However, although passive surfaces repel bacteria, they do not actively
interact with or kill bacteria. Due to the mainly hydrophobic and negatively-charged properties
of microbes, passive polymers should be either (1) hydrophilic; (2) negatively-charged; or (3) have
a low surface free energy (Figure 1) [8,30]. Typical passive polymers comprise (1) self-healing, slippery
liquid-infused porous surface (SLIPS), such as poly(dimethyl siloxane); (2) uncharged polymers, such as
poly(ethylene glycol) (PEG), poly(2-methyl-2-oxazoline), polypeptoid, polypoly(n-vinyl-pyrrolidone),
and poly(dimethyl acrylamide); and (3) charged polyampholytes and zwitterionic polymers, such as
phosphobetaine, sulfobetaine, and phospholipid polymers [31,32]. Table 2 lists selected passive
polymers and their antimicrobial applications. Among these passive polymers, PEG has been
extensively studied and has demonstrated excellent antimicrobial effects in drastically reducing
protein adsorption and bacterial adhesion. Due to high chain mobility, large exclusion volume,
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and steric hindrance effect of highly hydrated layer [30], PEG has been the most commonly used
passive antimicrobial material [33], and research has shown that it exhibits high antifouling ability to
prevent protein and cell adhesion effectively, consequently preventing the growth of microbes.
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Table 2. Examples of passive polymers for antimicrobial applications.

Polymer Target Remark Reference

Poly(ethylene glycol)
Staphylococcus aureus,
Escherichia coli,
Pseudomonas aeruginosa

Used as neutral polymer brush systems to
prevent protein and cell adhesion [33]

Poly(sulfobetaine methacrylate) Pseudomonas aeruginosa,
Staphylococcus epidermidis

Resist protein adsorption, cell attachment,
and bacterial adhesion [34]

Poly[3-dimethyl
(methacryloyloxyethyl)
ammonium propane
sulfonate-b-2-(diisopropylamino)
ethyl methacrylate]

Staphylococcus aureus Zwitterionic coronae and pH-responsive cores
can impart bacterial anti-adhesive properties [35]

Poly(2-methyl-2-oxazoline) Escherichia coli
Dual-functional antimicrobial surface of
poly(L-lysine)-graft-poly(2-methyl-2-oxazoline)-
quarternery ammonium

[36]

Albumin, whey Bacillus subtilis,
Escherichia coli

No bacterial growth was observed on
albumin-glycerol and whey-glycerol after
24 h inoculation

[37]

Polyphenols
Streptococcus mitis,
Fusobacterium nucleatu,
Porphyromonas gingivalis

Effective against periodontal bacteria [38]

2.2. Active Action

Active polymers actively kill bacteria that adhere to the polymer surface. Polymers functionalized
with active agents, such as cationic biocides, antimicrobial peptides, or antibiotics, can kill bacteria on
contact. The mechanism of polymers killing microbes depends on the active agents (Figure 1). The most
widely used active antimicrobial polymers are functionalized with positively-charged quaternary
ammonium, which interacts with the cell wall and destroys the cytoplasmic membrane, resulting in
the leakage of intracellular components and consequent cell death [20]. In addition, polyethylenimine,
polyguanidine, and N-halamine are representative polymers that demonstrate active antimicrobial
activity. Polyethylenimine brings about bacterial cell membrane rupture by the electrostatic interaction
between polyethylenimine and the cell membrane. Polyguanidine has bacterial growth inhibition
through adhesion and subsequent disruption of Ca2+ salt bridges or cell death. N-halamine makes cell
inhibition or inactivation by action of the oxidative halogen targeted at thio or amino groups of cell
receptors [6]. Table 3 lists active polymers and their antimicrobial applications, indicating that most of
these new antimicrobials materials are based on quaternary ammonium salts.
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Table 3. Examples of active polymers for antimicrobial applications.

Polymer Target Antimicrobial Substance Remark Reference

Nisin-immobilized organosilicon Bacillus subtilis Nisin Superior antimicrobial activity, and resistant to
several cleaning conditions [39]

Polyurethane containing
quaternary ammonium Staphylococcus aureus, Escherichia coli Quaternary ammonium Good antimicrobial activities against even at low

concentrations (5 wt %) [40]

Poly(n,n-diethylethylendiamine-co-
yrosol-based acrylic)

Staphylococcus epidermidis,
Staphylococcus aureus Tertiary amine

Combination of two active compounds provide a
synergistic action against biofilms and suppress
reactive species oxygen

[41]

Organosilicon quaternary
ammonium chloride Staphylococcus aureus Quaternary ammonium Exerted long-lasting antimicrobial activity for at

least four hours [42]

Poly(2-(dimethylamino)ethyl
methacrylate) tethering
quaternary ammonium

Bacillus subtilis, Escherichia coli Quaternary ammonium
Higher C–N+ content and relatively smooth
morphology would find potential
antimicrobial activity

[43]

Acrylamide polymers with
quaternary ammonium

Staphylococcus albus, Escherichia coli,
Rhizoctonia solani, Fusarium oxysporum Quaternary ammonium

Benzyl group attached to nitrogen atom showed
better inhibitory effect on bacteria and
phytopathogenic fungi

[44]
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3. Bound or Leaching Antimicrobials

Several recent comprehensive state-of-the-art reviews summarize the progress of and research
on antimicrobial polymers [6,11]. Antimicrobial polymers can be divided into three types: polymeric
biocides, biocidal polymers, and biocide-releasing polymers [5]. Recently, synergistic combination has
been commonly used to provide multiple functional antimicrobials for fighting pathogens.

3.1. Polymeric Biocides

Polymeric biocides are polymers that covalently link bioactive repeating units with antimicrobial
activity such as amino, carboxyl, or hydroxyl groups [8,14,18]. The polymerization process may either
enhance or reduce the antimicrobial activity of bioactive functional groups. Table 4 lists examples of
polymeric biocides synthesized from antimicrobial monomers.

Table 4. Examples of polymeric biocides for antimicrobial applications.

Monomer Target Antimicrobial
Substance Remark Reference
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3.2. Biocidal Polymers

Requiring no bioactive repeating units, the antimicrobial site of biocidal polymers is embodied
by the entire macromolecule. Many biocidal polymers contain cationic biocides, such as quaternary
ammonium, phosphonium, tertiary sulfonium, and guanidinium. Microbes generally have a negative
charge at the outer membrane of the cell. Cationic polymers can lead to the destabilization of the
cell surface and the ultimately induction of bacterial death [19]. The antimicrobial activity of cationic
polymers relate to the charge density of cationic groups.
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Table 5. Examples of biocidal polymers for antimicrobial applications.

Polymer Target Remark Reference

Quaternary ammonium
polyethyleneimine

Gram-positive and
Gram-negative bacteria

n-alkylated polyethyleneimine has effective
antimicrobial activity, dependent on the
hydrophobic and positively charged
immobilized long polymeric chains

[15]

Quaternary phosphonium
modified epoxidized
natural rubber

Staphylococcus aureus,
Escherichia coli Moderate growth inhibition of microbes [48]

Arginine–tryptophan-rich
peptide

Gram-positive and
Gram-negative bacteria

Retain antimicrobial functionality for at least
21 days, showing negligible cytotoxicity [49,50]

Guanylated
polymethacrylate

Staphylococcus epidermidis,
Candida albicans

Guanidine copolymers were much more active
compared to the amine analogues [51]

Chitosan Bacteria, yeast, fungi Widely-used antimicrobial agent either alone or
blended with other compounds [52–54]

Ammonium ethyl
methacrylate
homopolymers

Methicillin-resistant
Staphylococcus aureus,
Escherichia coli

Very little or no hemolytic activity and higher
inhibitory effects against Gram-positive bacteria
than Gram-negative bacteria

[55]

Metallo-terpyridine
carboxymethyl cellulose

Staphylococcus aureus,
Streptococcus thermophilus,
Escherichia coli,
Saccharomyces cervisiae

Minimum inhibitory concentration ranged from
6 to 8 mg/L to achieve ≥90% inhibition [56]

Poly(n-vinylimidazole)
modified silicone rubber

Pseudomonas aeruginosa,
Staphylococcus aureus

More antibacterial activity against
Pseudomonas aeruginosa than Staphylococcus aureus [57]

Table 5 lists examples of biocidal polymers in relevant literature. Due to its properties of
nontoxicity, biodegradability, and biocompatibility, chitosan is the most representative natural material
exhibiting inherent antimicrobial activity. The antimicrobial activity of chitosan depends heavily on
pH value. With a pH value of less than pKa, electrostatic interaction occurs between protonated amino
groups and the cell wall. When the pH is higher than the pKa value, the antimicrobial activity of
chitosan derives from hydrophobic interaction and chelation effects. Other natural antimicrobial
polymers include heparin, poly-ε-lysine, and gramicidin A [6]. Antimicrobial peptides have been
recognized as promising candidates for the new generation of antibacterial surfaces [10,58,59]. Thus far,
more than 1000 antimicrobial peptides have been found. In addition to directly killing microbes by
disrupting cell membranes and inhibiting cellular processes, the antimicrobial mechanisms of peptides
can also exert immunomodulatory effects resulting in microbial clearance through stimulation of the
noninflammatory host immune response [9]. The challenges of microbial peptides for therapeutic use
include unwanted side effects, high production costs, deficient stability, and adaptive antimicrobial
resistance [9].

3.3. Biocide-Releasing Polymers

Biocide-releasing polymers can be realized by (1) polymerization of biocide-releasing molecules
to polymeric backbone; or (2) polymer/biocide-releasing molecules composites. The polymer in
biocide-releasing systems is used as a carrier for biocides. Polymers exhibit antibacterial properties
through the incorporation of antibiotic and/or antiseptic compounds. The controlled release system
of biocide-release polymers has numerous advantages such as maintaining a high local biocide
concentration close to microbes and facilitating the delivery of biocides with short in vivo half-lives.
This type of antimicrobial polymer demonstrates great potential for use in the medical industry.
Numerous biodegradable polymer devices have been developed as antibiotic carriers for various
applications [60–63]. Table 6 shows various biocide-releasing polymer systems, including new polymer
composites that exhibit antimicrobial activity.

A chitosan-agarose hybrid material and nanocomposite ionogels decorated with silver were
produced using an ionic liquid, 1-butyl-3-methylimidazolium chloride. The prepared antimicrobial
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composite ionogels were biocompatible and demonstrated favorable electrical conductivity, as well as
thermal and conformational stability [64]. A resorbable antibiotic-eluting polymer composite bone void
filler was developed to exhibit both osteoconductive and antimicrobial properties for reducing the rates
of orthopedic device-related infections [65]. Synergistic combinations of iron-sequestering polymers
and conventional antibiotics may drastically reduce the minimum inhibitory concentrations of
antibiotics and offer a promising early intervention or adjuvant to antibiotics [66]. Incorporating crystal
violet and di(octyl)phosphinic-acid-capped zinc oxide nanoparticles into medical-grade silicone can
provide a dual-mechanism antimicrobial polymer as a strategy for reducing the risk of infection [67].

In addition, antimicrobial polymers can be classified as surface-bound or solution-based polymers.
Surface-bound polymers have direct antimicrobial activity on the polymer surface. However,
solution-based polymers need to be used in solutions to have antimicrobial activity. In general,
biocidal polymers are surface-bound polymers, while biocide-releasing polymers are solution-based
polymers to release biocides in solutions. Depending on the property of bioactive repeating units,
polymeric biocides can be surface-bound or solution-based polymers.

Table 6. Examples of biocide-releasing polymers for antimicrobial applications.

Polymer Target Antimicrobial Substances Remark Reference

Dextrans Staphylococcus aureus Gentamicin
Enhance gentamicin stability
over time and prolong drug
release for six days

[60]

Poly-L-lysine,
polyethylene glycol Staphylococcus aureus Staphylolytic LysK enzyme LysK can lyse bacteria [68]

Poly(octanediol-co-citrate) Staphylococcus aureus,
Escherichia coli

Choline chloride, tetraethylammonium
bromide, hexadecyltrimethylammonium
bromide, methyltriphenylphosphonium
bromide

Preserve cytocompatibility
while showing elastic
properties advantageous for
wound dressings

[69]

Cyclodextrin Staphylococcus aureus,
Escherichia coli Triclosan

Reduce drug amount to
inhibit pathogen growth and
toxic impact on
environmental strains

[70]

Poly(methyl methacrylate) Pseudomonas aeruginosa,
Staphylococcus aureus Silver

Light-activated
antimicrobial materials
doped with porphyrin
and sliver

[71]

Poly(methyl methacrylate) Staphylococcus epidermidis,
Escherichia coli

Silver, nanoparticles,
and imidazole complex

Time-dependent
antimicrobial activities [72]

Cyclodextrin Staphylococcus aureus,
Escherichia coli Silver, chitosan

Cyclodextrin stabilized
Ag-chitosan and provided
higher antimicrobial activity

[73]

Acrylic bone cements Enterococcus faecalis
V583 Chlorhexidrina Retain both mechanical and

antimicrobial properties [74]

Polycaprolactone Staphylococcus aureus,
Pseudomonas aeruginosa Silver A strong antimicrobial and

anti-biofilm properties [75]

4. Applications

The major areas of applied antimicrobial polymers are the medical, food, and textile industries.
The recent advances in these three areas are addressed as follows.

4.1. Medical Industry

The surfaces of all medical devices provide an environment for microbial growth, and are
susceptible to microbial infection. Despite continual improvements in materials and techniques, most
hospital-acquired infections originate from medical devices. An innovative antimicrobial copolymer
of 4-vinyl-n-hexylpyridinium bromide (VP) and dimethyl(2-methacryloyloxyethyl) phosphonate
(DMMEP) was developed to reduce biofilm formation and to improve the long-term use of medical
devices. Coating a copolymer (VP:DMMEP 30:70) on titanium drastically reduces the adhesion
of various pathogenic bacteria (e.g., Streptococcus sanguinis, Escherichia coli, Staphylococcus aureus,
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Staphylococcus epidermidis). Furthermore, soft tissue cells (human gingival or dermis fibroblasts) are
minimally affected by such a coating [76].

Antimicrobial peptides and synthetic mimics of antimicrobial peptides are a new generation of
antimicrobial agents with high antimicrobial, broad spectrum activity against a variety of pathogens
and modulation of the immune response [77–82]. Antimicrobial wound-dressings composed of
cotton gauze containing antimicrobial peptides incorporated with polycation (chitosan) and polyanion
(alginic acid sodium salt) exert a high antimicrobial effect (in the range of 4–6 log reduction) for
Staphylococcus aureus and Klebsiella pneumonia. These dressings have also been proven to be noncytotoxic
to normal human dermal fibroblasts [83].

A novel controlled release zinc oxide/gentamicin-chitosan composite gel was developed.
By slowly releasing the antibiotic, this composite gel demonstrated highly effective antimicrobial
properties, inhibiting Staphylococcus aureus and Pseudomonas aeruginosa growth under both planktonic
and surface-attached conditions. When used in a wound dressing, it maintained a moist environment
at the wound interface and provided a cooling sensation and soothing effect. Moreover, this system is
fully scalable to any other soluble drug because the entire solution remains trapped in the ZnO-chitosan
composite gel [84].

The infection of catheter-associated urinary tract is the commonest hospital-acquired infection.
Impregnation of urinary catheters with a combination of rifampicin, sparfloxacin and triclosan was
developed. The release of the drugs from the silicone catheter segments were more than one month.
The antimicrobial catheters could prevent colonization of Proteus mirabilis, Staphylococcus aureus,
and Escherichia coli for 7–12 weeks. The impregnated catheters might reduce catheter-associated
urinary tract infection in both short-term and long-term urinary catheter use [85].

4.2. Food Industry

Food safety and quality have attracted increasing attention because of concerns about consumer
health. The advent of new technologies has been addressed by the food industry to reduce the risks
to consumer health. In particular, substantial progress in food packaging has been achieved using
antimicrobial polymers.

Nisin is the only bacteriocin approved as a food preservative because of its favorable properties
of negligible toxicity and antibacterial effectiveness [86]. Nisin-loaded chitosan/poly(L-lactic acid)
antimicrobial films were developed for applications in food packaging. The diffusion process of
antimicrobial nisin from the manufactured film is spontaneous and endothermic. The well-controlled
release of nisin from the film demonstrates high antimicrobial activity against Staphylococcus aureus [87].

Antimicrobial packing films were developed by compounding low-density polyethylene and its
blend of ethylene vinyl acetate with potassium sorbate. A new approach to incorporating preservatives
into a polyolefin matrix by using glycerol mono-oleate as a dispersant was reported to obtain uniform
dispersions of the preservatives in the packing films, thereby significantly improving the thermal
stability with no viscosity reduction [88].

A cellulose acetate film incorporated with a solution of bacteriophages was developed for food
packaging. This film showed antimicrobial activity against Salmonella Typhimurium ATCC 14028,
and the bacteriophages could remain viable for 14 days [89].

4.3. Textile Industry

Textiles are favorable substrates for microbial growth under appropriate conditions of temperature
and moisture. Antimicrobial agents have yielded new opportunities for additional applications
involving textile fibers. The market for antimicrobial textiles has grown dramatically over the past
two decades.

Ag:ZnO/chitosan nanocomposite coatings were developed using a modified sol-gel method
with 3-glycidyloxypropyltrimethoxysilane and tetraethoxysilane as functionalization agents and were
applied to antimicrobial fabrics. This prepared hybrid nanocomposite demonstrated high antimicrobial
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activity and exhibited higher thermal stability than that of chitosan. Composite coatings on the textile
blend of cotton/polyester (50%/50%) exerted the most advanced effect [90].

Natural fibers contributing to the reduction of environmental pollution as well as the burden of
waste disposal have recently received considerable attention and become highly valuable materials.
A new type of textile consisting of mulberry fibers uniformly laden with titania nanorods was
prepared using sol-gel electrospinning and facile dip-coating methods. The mulberry fiber-TiO2

composite textile exhibited improved antimicrobial activity compared with pure mulberry textile.
Furthermore, the advantages of this unique natural-synthetic composite textile are its anti-yellowing
and self-cleaning properties, which are due to the scattering effect of UV radiation by titania
nanorods [91].

For fabricating ecofriendly antimicrobial textile material, the impregnation of polypropylene (PP)
and corona-modified PP nonwoven material with thymol by super-critical solvent impregnation with
carbon dioxide as a working fluid was proposed. The thymol impregnation yield was approximately
7% for both PP and corona-modified PP nonwoven fabrics, providing antimicrobial activity against
S. aureus, E. coli, and Candida albicans. Nevertheless, the higher rate of thymol release from the
corona-modified material was due to the higher fiber surface hydrophilicity [92].

5. Conclusions

Recently, antimicrobial polymers have received considerable attention in both academic and
industrial research. This mini-review summarizes the advances made in antimicrobial polymers
since 2013. Passive antimicrobial polymers preventing bacterial adhesion and growth provide a more
promising strategy than that of killing microbes directly by using active antimicrobial polymers.
Among three bound or leaching polymers–polymeric biocides, biocidal polymers, and biocide-releasing
polymers–the biocide-releasing system demonstrates the most potential because of the controlled release
characteristics. Despite the substantial progress of antimicrobial polymers, the precise mechanisms
underlying antimicrobial interaction with microbes necessitates further clarification. In particular,
biofilm-associated mechanisms will require an intensive effort to design a promising antimicrobial
agent. Combining diverse antimicrobial mechanisms may contribute to a more effective antimicrobial
polymer. Further challenges are developments of long-acting or reusable antimicrobial polymers,
a broad range of antimicrobial activity, and an activity-controlled system on demand sites.
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