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Abstract

Visualizations of biomolecular structures empower us to gain insights into biological functions, 

generate testable hypotheses, and communicate biological concepts. Typical visualizations (e.g. 

ball and stick) primarily depict covalent bonds. In contrast, non-covalent contacts between atoms, 

which govern normal physiology, pathogenesis, and drug action, are seldom visualized. We 

present Protein Contacts Atlas, an interactive resource of non-covalent contacts from over 100,000 

PDB crystal structures. We developed multiple representations for visualization and analysis of 

non-covalent contacts at different scales of organization: atoms, residues, secondary structure, 

subunits, and entire complexes. Protein Contacts Atlas enables researchers from different 

disciplines to investigate diverse questions in the framework of non-covalent contacts, including 

the interpretation of allostery, disease mutations and polymorphisms, by exploring individual 

subunits, interfaces and protein-ligand contacts, and by mapping external information. Protein 

Contacts Atlas is available at http://www.mrc-lmb.cam.ac.uk/pca/ and also through PDBe.

Introduction

Elucidating the structure of biomolecules has provided insights into how they carry out their 

function1–3. These insights have depended on advances in both methods for determining 
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structures (initially X-ray crystallography4, NMR spectroscopy5 and more recently electron 

microscopy6) and on approaches for visualizing these structures. Historically, graphical 

representations of biomolecules have focused on covalent bonds that connect individual 

atoms, such as the ball and stick representation7. Such a representation emphasizes the 3D 

arrangement of atoms and the covalent bonds between them. This has been critical for 

understanding how function is mediated by the precise spatial localization of atoms in a 

biomolecule. Computational analyses of covalent bonds have been instrumental in 

uncovering the principles of protein architecture8–11. Similarly, the calculation of dihedral 

angles around the covalent bond, and their representation in the Ramachandran plot12, 

charted the conformational landscape of polypeptides. The ribbon diagram which was 

popularized as the Richardson diagram13 focused on the covalent backbone architecture and 

was revolutionary in providing a simplified protein structure representation. This enabled the 

identification of structural domains, establishment of the structure-function relationship, and 

classification of protein families14–16. In this manner, each of these representations 

centered on the covalent bond emphasizes a key aspect of structure and has formed the basis 

of deriving new insights and discoveries.

In addition to covalent bonds, non-covalent contacts between atoms of residues (residue 

contacts) are important for co-operative folding of biomolecules, stability and 

conformational flexibility, and in molecular recognition. Representation of non-covalent 

contacts dates back to the 1970s in the form of contact matrices17 and networks of contacts 

between amino acids in proteins18. More recently, a number of web tools that compute 

contact networks have facilitated progress in this area of research19–23. Network 

representations of non-covalent contacts, and their comparison among related structures, 

have provided insights into allosteric mechanisms, protein stability, conformational 

switching, ligand binding and the determinants of protein fold and protein complex 

assembly17,24–34. Recently, we employed this approach to provide detailed molecular 

insights into the family of G-protein coupled receptors and G proteins35–38. In this manner, 

a residue contact-based representation and analysis of protein structures enable us to identify 

critical contacts and holds the potential for understanding how biomolecules function in new 

ways and engineer their activity39–41.

Here, we present Protein Contacts Atlas (http://www.mrc-lmb.cam.ac.uk/pca/), a resource of 

non-covalent contacts from over 110,000 publically available structures in the Protein Data 

Bank (PDB42; http://www.rcsb.org/). The goal of Protein Contacts Atlas is to go beyond 

computing contact networks; for the exploration of contacts in structures, we developed 

interactive representations tailored for different scales of structural organization: atoms, 

residues, secondary structure, subunits, interfaces and entire biological complexes (Fig. 1). 

Protein Contacts Atlas also enables investigation of contacts within a single protein or a 

protein complex, or between a protein and nucleic acids, ligands or other small molecules 

(Fig. 1). It also permits quantitative analyses of the residue-centric properties derived from 

the contact network along with externally obtained properties such as evolutionary 

conservation, thermostability measurements, etc. Outlier residues from the analyses that 

have the potential to inform follow up experiments are compiled in a downloadable report. 

Here, we describe the visualization and analysis of non-covalent contacts in Protein Contacts 
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Atlas, which can be readily applied to any system, by focusing on diverse proteins involved 

in the GPCR signaling pathway.

Results

Computing non-covalent contacts

We identified non-covalent contacts by calculating the distance between each pair of atoms 

using their atomic coordinates. We then compared the distances to the Van der Waals radii of 

the corresponding atoms as determined by Chothia et al.43. The sum of the two atomic radii 

was subtracted from their distance and a contact was assigned if the resulting difference was 

less than a threshold. The set of all non-covalent atomic contacts defines a residue contact 

network, in which each node represents a residue, and a pair of nodes is joined by an edge if 

there is at least one non-covalent atomic contact between the corresponding residues (the 

number of such contacts is recorded as the edge weight). For each residue, we computed the 

local and global network centrality properties such as degree, closeness, and betweenness 

centrality (see Methods for details). We also quantified the solvent accessible surface area 

(ASA; Å2) for each residue based on the entire PDB file. Through this approach we 

identified ~2 billion non-covalent atomic contacts in over 110,000 crystal structures from the 

PDB (see Supplementary Data for non-covalent contact statistics for each PDB file). As a 

general trend, we find that the number of non-covalent contacts scale linearly with the size 

of the molecule, i.e. number of atoms and residues (Supplementary Fig. 1), suggesting that 

this relationship can be used to infer the tightness of protein packing.

We provide different filtering and contact definition options where users can select a 

threshold in terms of absolute number of atomic contacts between residues, and/or 

normalized with respect to the the size of the amino acid to define, view and analyze 

stronger or weaker interactions. They can also filter contacts based on whether the atoms are 

from the main-chain/side-chain of residues and identify contacts by their type (i.e. hydrogen 

bonds, water mediated hydrogen bonds, weak hydrogen bonds, ligand and metal complex 

interactions, salt bridges, hydrophobic interactions, cation-pi interactions, pi-pi interactions, 

and other non-canonical contacts using standard geometric considerations by employing the 

definitions used in Arpeggio21. Thus, the user has a number of different options to 

parameterize, filter and/or choose specific contact types for visualization and analysis in 

Protein Contacts Atlas.

Visualization of non-covalent contacts

We describe representations that allow intuitive and interactive visualization and analysis of 

residue contacts (Supplementary Note 1; Fig. 2; Supplementary Fig. 2). We highlight how 

representations of residue contacts of the same molecule at different scales of organization 

can provide new insights into structure and function that are not obvious from standard 

representations.

Biomolecular complex network enables visualization of contacts at the subunit level

How protein (or nucleic acid) subunits interact with each other in a complex is important for 

understanding the evolution and assembly pathways of the complexes32. The biomolecular 

Kayikci et al. Page 3

Nat Struct Mol Biol. Author manuscript; available in PMC 2018 July 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



complex network representation captures the interactions between subunits of a complex. In 

this network, the nodes denote individual subunits, which could be proteins or nucleic acids. 

The links between the nodes denote interaction interfaces between subunits (chains). The 

size of the node is proportional to the number of residues in the chain and thickness of the 

link is proportional to the number of residue contacts between the subunits. Such a 

simplified interactive representation of the entire complex provides an intuitive way to 

navigate and identify subunits or interfaces of interest for further investigation; particularly 

when investigating large, multi-subunit complexes (e.g. proteasome). Choosing a subunit, or 

an interface, takes the user to the “Visualization and Analysis” page (Supplementary Fig. 2).

Chord plot enables visualization of contacts at the secondary structure level

The pattern of contacts between the different secondary structure elements is key to 

determining the tertiary structure, and hence protein function. ‘Chord plots’ depict all non-

covalent contacts at the level of secondary structures. In a chord plot, every secondary 

structure (including the loops) is represented as an arc (nodes) in a circular layout, and the 

contacts between the secondary structures are represented as chords (edges). The size of the 

arc is proportional to the number of residues within the secondary structure and the 

thickness of the chord is proportional to the number of atomic contacts between them. The 

chord plot representation provides information about the packing of the different secondary 

structures and helps identify the secondary structures that are highly connected in the protein 

structure.

Residue contact matrix enables visualization of contacts at the residue level

Identifying specific contacts between amino acids present on different secondary structure 

elements helps with inferring the key residues that contribute to protein fold and function. 

The residue contact matrix presents the non-covalent contacts between residues in the 

secondary structure elements (selected from Chord plots) and displays the number of atomic 

contacts between them (Supplementary Fig. 2). Every cell in the matrix has a background 

color based on the number of atomic contacts. This allows easy identification of residue 

pairs that make a large number of contacts. The reside contact matrix is particularly useful to 

investigate the atomic details of interaction interfaces.

The multi-level visualization of non-covalent contacts in the context of a protein-protein 

interaction (between the Adenosine A2a receptor and an engineered mini Gαs protein44) 

and a protein-nucleic acid interaction (between p53 and DNA45) is highlighted in Fig. 3. 

Such representations can also provide a non-covalent contact based context to generate 

testable hypotheses for understanding the molecular mechanisms of disease-associated 

mutations as in pseudo-hyperthyroidism and Albright hereditary osteodystrophy 

(Supplementary Note 2).

Visualization and analysis of residue-centric contacts and properties

Asteroid plot enables visualization of local neighbourhood of residues and 
ligands—Understanding the local neighbourhood of ligands and residues in a structure can 

aid protein engineering, structure-based drug design and interpretation of the effect of 

mutations (for example via schematic diagrams of protein-ligand interactions generated by 
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programs such as LigPlot46). ‘Asteroid plots’ provide an interactive representation of the 

atomic neighborhood of a selected ligand or a residue. The ligand or residue of interest is 

shown in the center as a node. All immediate residues that form a non-covalent contact 

(first-shell residues) are arranged in a circle around the ligand. The neighbors of each of the 

contacting residues that do not directly contact the ligand (second-shell residues) are 

arranged in a larger concentric circle. The size of the nodes in the inner and outer concentric 

circles denotes the number of atomic contacts. Clicking on any residue makes it the central 

node, and the asteroid plot for that entity is dynamically generated. This representation 

allows the identification of key residues that contact a ligand of interest in a structure. While 

the atomic details or the nature of the contact (e.g. main-chain, side-chain, etc.) are not 

shown in the asteroid plot, the contacting residues are highlighted in the 3D structure panel 

(Supplementary Note 1; Supplementary Fig. 2), enabling the analysis of the nature of the 

contact. Furthermore, detailed information about the individual non-covalent atomic contacts 

between the individual atoms of the ligand and the contacting residues can be visualized as a 

ligand-residue interaction matrix from this sub-panel (Fig. 1). Using Asteroid plot, we 

illustrate how the beta-blocker carazolol acts at its target human β2 adrenergic receptor (Fig. 

4a-d; PDB 2RH1)47. Please see Supplementary Note 2 for a discussion on how such plots 

can provide a context for generating hypothesis of the molecular basis of a receptor 

polymorphism linked to asthma.

Scatter plot matrix allows quantitative analysis of per-residue properties—
Residues with distinct structural properties are important for function or are attractive sites 

for engineering. Quantifying different structural (e.g. surface area) and contact properties 

(e.g. number of contacts) on a per-residue basis, and analyzing their correlations provides a 

way to identify outlier residues that might be important for structure and/or function (e.g. a 

buried residue with a large number of contacts can be critical for protein stability)26,28,48–

50. Per-residue external information such as sequence conservation, thermostability, disease 

mutations, etc. as well as the computed properties can also be mapped onto the contact 

information and 3D structure for further analysis. Scatter plots display values for two 

variables for every residue in the chain(s) of interest: each residue is represented by a point, 

with the values of the variables determining its x- and y-coordinates. A matrix of scatterplots 

represents more than two variables using multiple scatter plots arranged in a grid, with one 

row and column per variable. The calculated properties such as the solvent accessible area of 

the complex, network centrality measures (closeness and betweenness) and the degree for 

each residue are plotted against each other in the scatter plot matrix (Fig. 4e; see also 

Supplementary Note 2 and Supplementary Fig. 3 for highlighting multiple positions that are 

disease mutations in rhodopsin onto the scatter plot).

Analysis of per-residue properties through an interactive statistics table—The 

interactive statistics table allows sorting the individual residues by any property (e.g. residue 

name, number, ASA, degree, etc.), enabling the identification of residues with extreme 

values for a property. The table can be filtered by typing a residue (or multiple independent 

residues) in the text box, or selecting a bunch of data points directly in the scatter plot, or by 

clicking on a residue or secondary structure in the sequence panel (Supplementary Note 1; 
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Fig. 4f). Clicking on any row will update the 3D structure panel with the selected residue 

and can be downloaded in different formats (see sample PDF file in Supplementary Data).

Mapping external information for detailed per-residue analysis of structures—
Combining the computed properties of individual residues with external information can 

help to identify and characterize functionally and structurally important regions/segments in 

protein structures. Protein Contacts Atlas allows importing and mapping of any external 

information that is relevant to a particular research question (e.g. evolutionary conservation, 

disease mutations, thermostability, b-factors, post-translational modification sites, etc.). It 

automatically generates a template file that a user can download, complete, and upload to the 

website. The uploaded values are integrated with the statistics table, mapped onto all the 

relevant panels (including scatter plot matrix, asteroid plot and the 3D structure panel) and 

colour-coded (cyan low to magenta, high). In this manner, Protein Contacts Atlas allows the 

user to integrate external and independently derived (i.e. orthogonal) information to make 

relevant inferences about a biomolecule of interest (see also Supplementary Note 2 and 

Supplementary Fig. 4 for interpreting stability measurements of point mutations in G protein 

using this feature).

Structure report and downloadable data

A fully customizable report of the contact-based analysis of the selected chain of a structure 

can be downloaded (see example in Supplementary Data). It provides a summary of the 

session for a structure of interest, containing a screenshot of the current views of the 

structure from the 3D structure panel, the chord plot, an asteroid plot of the selected ligand 

and the scatter plot matrix from the contacts panel (Supplementary Note 1). Outlier residues 

are listed in tables, which include those residues with the ten largest, and ten smallest values 

of (a) ASA, (b) degree, (c) betweenness (d) closeness, and (e) number of atomic contacts (of 

the ligand if there is one). The primary information about every non-covalent contact 

between atoms can be downloaded as a text file, via the contacts panel (see example TXT 

file in Supplementary Data). The web resource can be queried using batch mode by 

retrieving structures based on their PFAM domain. The information can be downloaded in 

different formats including for stand-alone visualization with PyMOL (see Methods for 

details).

Rearrangement of residue contacts in rhodopsin cycle

To highlight how the analysis of residue contacts can be used to derive insights into protein 

function and mechanism, we present an analysis of the activation mechanism of rhodopsin. 

Overall, the analysis of the high-resolution structures of rhodopsin reveals a global 

rearrangement of non-covalent contacts underlying the first molecular events of vision.

Rhodopsin is a light-sensitive protein that is expressed in the eye and enables vision in dim 

light. In the absence of light, rhodopsin is bound to cis-retinal and is in an inactive state. 

Incidence of light catalyzes an isomerization reaction of retinal that leads rhodopsin to 

change shape to an activated form. This trigger intracellular signaling cascades that 

ultimately culminate as an electrical impulse in the visual cortex of the brain. As non-

covalent contacts are important for activation, investigating the organization of non-covalent 
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contacts in rhodopsin is imperative for understanding how rhodopsin functions. During the 

activation process, rhodopsin forms a series of spectroscopically identifiable intermediate 

states, which when taken together constitute the rhodopsin cycle (Fig. 5a): dark rhodopsin, 

batho-rhodopsin, lumi-rhodopsin, meta rhodopsin (MI and MII) and free opsin. Extensive 

efforts in crystallography over the years have resulted in the determination of high-resolution 

structures of rhodopsin in these states. The availability of these structures provides an 

opportunity to systematically investigate the rearrangement of non-covalent contacts during 

rhodopsin activation.

Non-covalent contacts for the different states of the rhodopsin cycle were computed (PDB 

IDs: 1U19, 2G87, 2HPY, 3PQR, 3CAP). The presence of contacts was compared across 

different states using contact fingerprinting (see Methods and Supplementary Data). A core 

network consisting of 318 residue contacts is present consistently in all the five states. This 

core network provides a state-independent platform for changes in non-covalent contacts in 

the rest of the protein. A separate network of 151 contacts connecting 163 residues is 

maintained exclusively in the inactive (dark, batho and lumi) states. Upon the lumi to 

metarhodopsin transition, there is a major change in the organization of the contacts. The 

network of 151 contacts that was previously present in the inactive states is broken and a 

new network of 90 contacts connecting 126 residues is formed exclusively in metarhodopsin 

and free opsin and is maintained until the end of the rhodopsin cycle.

In the dark, batho and lumi states, the 151 contacts connecting 163 residues of the inactive 

states are largely localized near two regions in rhodopsin: (i) the retinal-binding pocket and 

the transmembrane-extracellular interface region and (ii) region connecting the retinal-

binding pocket and G protein-binding site. On the other hand, the 90 contacts of the active 

states are localized largely in the transmembrane region connecting the retinal binding 

pocket and G protein-binding pocket. In the inactive states, in the retinal-binding pocket, one 

of the key contacts observed is between the aromatic ring of Phe2937.39 (TM7) and 

Lys2967.42 (TM7) linked to retinal (superscripts denote GPCRdb numbering51,52). Upon 

activation, this contact is broken and Phe293 engages in a contact with its adjacent amino 

acid Phe2947.40 (Fig. 5b). The change in the Phe293 side chain orientation creates an 

opening between TM1 and TM7 and this local region has been associated with the channel 

that could potentially be involved in the entry and exit of retinal53. Thus, Phe293 in the 

inactive states appears to be stabilizing the ligand through a contact whereas the same 

residue in the active states creates an opening that could enable retinal’s lateral entry and 

exit. In the G protein-coupling region, some of the important residues in rhodopsin are 

Arg1353.50 (TM3), Tyr2235.58 (TM5), and Tyr3067.53 (TM7). In the inactive state, they are 

distal from each other. In the active state, Met2576.40 (TM6) contacts all these three residues 

(Fig. 5b). The Met257Tyr mutant form of rhodopsin is constitutively active54.

Discussion

Representations of biomolecular structures highlighting specific aspects such as covalent 

bonds, volume, and surface area have had a profound impact on our understanding of 

function and on the development of new drugs55. For instance, space filling models, 

Voronoi diagrams and surface representations emphasize volume and surface area, which 
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formed the basis for the identification and investigation of cavities and channels, 

electrostatic potentials, and interaction interfaces. Such cavities have been exploited for 

structure-based drug design. Drawing inspiration from how visualization and analysis of 

structures based on different representations revolutionized structure- and shape- based 

understanding of biomolecules, we developed representations that enable analysis of non-

covalent contacts in biomolecules. Presenting representations of atomic contacts 

interactively and at different levels of organization (atoms, residues, secondary structures, 

and chains) alongside the classical 3D structural representation that is more familiar to most 

biologists provides the opportunity to investigate biomolecules in new ways. Given the likely 

general interest of this form of representation of protein structures, we have integrated 

Protein Contacts Atlas via an API through the Protein Data Bank in Europe (PDBe)56 

website. Protein Contacts Atlas has a modular design, allowing new features to be added 

easily. Future releases will include the ability to analyze all structures (including NMR and 

MD models) and directly compare contacts between different structures (e.g. conformational 

changes upon ligand binding).

Protein Contacts Atlas allows scientists from diverse disciplines including structural 

biologists, biochemists, molecular biologists, protein engineers, cancer biologists, medicinal 

and computational chemists, bioinformaticians and geneticists to address diverse questions 

(Fig. 6). Some typical tasks include mapping mutations from cancer genome sequencing 

experiments and genome wide association studies, investigating protein structures for 

rational protein engineering, understanding how individual residues in homologous proteins 

evolve across homologs, identifying positions for mutational studies aimed at interrogating 

the function of biomolecules and analyzing structures to derive new biological insights. 

Finally, Protein Contacts Atlas can also serve as an excellent tool for teachers and students 

to explore and understand biological molecules at different levels of organization. We 

anticipate that Protein Contacts Atlas will be a useful scientific resource as well as a learning 

platform that can fuel future research in biomedical sciences.

Online Methods

Data preprocessing

New structures added to the PDB are preprocessed in a batch process that is run every six 

months. Structures uploaded by a user undergo the same preprocessing steps, which may 

take up to 5-7 minutes depending on the size of the file. First, secondary structures are 

determined using DSSP if this information is not available in the PDB file57,58. Non-

covalent contacts between atoms are computed using a custom C++ program. Solvent 

accessible surface area (ASA) is also calculated for each residue using an external program 

(POPS59). For contact identification, we calculated the distance between each pair of atoms 

based on the co-ordinates provided in the PDB file. The sum of the two atomic radii (defined 

by Chothia et al.43) was subtracted from this distance and a contact was assigned if the 

resulting difference was less than a threshold. By default, the threshold used to define if two 

atoms are contacting is 0.5 Å, but the user can choose any value in the range of 0 to 1 Å. In 

the case of ligands (including all non-amino acid residues except water (e.g. ions)) or water 
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molecules in the HETATM record in the coordinate file, a contact is assigned if the distance 

is < 4 Å. The user has the option to provide different distance cutoff values for the ligands.

Filtering and contact identification options

The user has different options to view and analyze contacts:

1. A filtering step to select a threshold in terms of absolute number of atomic 

contacts between residues. In this option, the user selects the minimum number 

of atomic contacts between pairs of residues to view and analyze. After selecting 

this parameter, the filtering is done within the C++ program. The user has all the 

options as before for viewing and analyzing the contacts.

2. A filtering step to view and analyze contacts involving main chain-main chain, 

side chain-side chain or main chain-side chain atoms.

3. A filtering step to select contacts that are normalized with respect to the the size 

of the amino acid. For the normalization, we used a previously published 

approach19,60. Briefly, we first identified all non-redundant crystal structures in 

the PDB (dated 19.06.17) from the NCBI database (ftp://ftp.ncbi.nih.gov/mmdb/

nrtable/) using a resolution cut-off of 2 Å. This resulted in 48,856 structures 

(95,159 chains). We then calculated the average of the maximum number of 

atomic contacts made by each of the 20 amino acids in these structures (please 

see Supplementary Fig. 5). This was done using the precomputed results 

available as JSON files in Protein Contacts Atlas. Using this as our reference 

table in the C++ program, we computed normalized contacts for any structure 

provided by the user using the following formula:

Normalized weight = (number of side chain atomic contacts /sqrt(norm_res1 * 

norm_res2))*100

where number of side chain atomic contacts is the number of atomic contacts 

between the side chains of two residues where the distance between two atoms is 

smaller than 4 Å and norm_res1 and norm_res2 are the values taken from the 

calculated table. After the normalized weight between the residues is calculated, 

any interaction which has the normalized weight smaller than the threshold 

chosen by the user is filtered.

A distribution of normalized weights from the 48, 856 non-redundant strucutres 

are provided as a guide for users to choose the threshold (Supplementary Data). 

This distribution is also available in the “more info” section of the website while 

choosing this option for filtering contacts.

If the user changes the default threshold, it only affects filtering options 1, 2, and 

3 above.

4. Protein Contacts Atlas can also calculate hydrogen bonds, water mediated 

hydrogen bonds, weak hydrogen bonds, ligand and metal complex interactions, 

salt bridges, hydrophobic interactions, cation-pi interactions, pi-pi interactions, 
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and other non-canonical contacts using standard geometric considerations by 

employing Arpeggio21.

Statistical analysis

For each residue and heteroatoms in the residue contact network, Protein Contacts Atlas 

calculates a range of network centrality measures61 (betweenness centrality, closeness 

centrality and degree), which measures its “importance” in the overall contact network. 

Centrality measures were computed using the SNAP library written in C++ (see their 

documentation at https://snap.stanford.edu/snap/doc/snapuser-ref/index.html for detailed 

definitions). There are two ways of computing the network statistics: with and without water 

molecules. By default, the network statistics with water molecules are not shown, however 

the user has the option to view them with water. Betweenness centrality defines how many 

times the residue of interest falls in the shortest paths connecting other residues. The 

betweenness centrality values are normalized using the following formula: normalized 

betweeness for each residue = betweenness for each residue x (2/(([total number of 

residues]-1)*([total number of residues]-2))). This measure expresses the amount of 

“control” exerted by that residue over the contacts between other residues in the 

network62,63. Closeness centrality is defined as the inverse of the sum of distances of the 

residue of interest from all other residues64,65 and is normalized within SNAP. In this case, 

the more buried a given residue is, the more contacts it has, and the closer it is to other 

residues. The closeness centrality is a measure of how quickly “information” spreads from a 

given residue to other residues in the network. Both measures show how central the residue 

is with regard to the whole residue contact network. The degree of a residue is the number of 

other residues it contacts.

Data visualization

Preprocessed results are stored in JSON files (http://json.org/) and are used to produce the 

interactive visualizations. JSON was chosen because it is a simple format that is easy to 

generate and parse. A typical JSON file includes the name, numbers and weights (number of 

atomic contacts) of the residues, secondary structure elements or loops to which the residues 

belong, whether it is a heteroatom (ligands, water) or not, and which chain they belong to. 

The file also contains the contacts separately for each residue. This includes the contacting 

residue pairs, the contacting atoms in each residue, the distances between the contacting 

atoms, the types of atoms (main or side chains) and the total number of atomic contacts 

within the residue pair. Finally, the file includes the secondary structure definition (start and 

end positions and names, e.g. A:HELIX14, A:SHEETB_2, B:LOOP1). The JSON files are 

used as an input to visualize the contacts in the browser using JavaScript, HTML and CSS. 

The Bootstrap framework (http://getbootstrap.com/) is used for the overall page layout, and 

the D3.js library (http://d3js.org/) is used to produce interactive graphs and plots, including 

the chord plot, asteroid plot and the scatter plot matrix.

Calculations of residue contacts and contact fingerprinting for the Rhodopsin case study

The residue contacts were computed for the structures representing the different 

intermediates of the rhodopsin cycle. A residue contact between a pair of residues is defined 

as present when the distance between any two atoms from the residue pair is less than the 
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sum of their van der Waals radii plus a cut-off distance of 0.5 Å35–37. We analyzed the 

presence of residue contacts between structurally equivalent residues across the different 

conformational states of rhodopsin. The functional importance of a given residue contact 

across conformational states can be estimated based on the extent to which structurally 

equivalent contacts are maintained consistently. For every residue contact within the 

ensemble, the presence or absence of an equivalent residue contact between structurally 

equivalent positions across the rest of the states was recorded. This information is stored as a 

bit string of ones (present) and zeros (absent), which are referred to as “contact 

fingerprints”37. Identifying contact fingerprints that represent consistently maintained 

residue contacts across and between conformational states enabled us to identify the key 

rearrangements of residue contacts during rhodopsin activation.

Description of the visualization features

The PDB file itself may not reflect the biological unit. Therefore, a PDBe PISA link is also 

provided for that PDB file (e.g.http://www.ebi.ac.uk/pdbe/pisa/cgi-bin/piserver?qa=3sn6). 

The link provides access to the PDB co-ordinates to the different plausible biological units 

of the proteins involved in the complexes. The user can then choose the relevant assembly of 

interest and upload the file to Protein Contacts Atlas for visualization and analysis. Upon 

selecting a structure, a page displays the entire 3D structure of the molecule in cartoon 

representation and a corresponding protein complex network. The main page has three 

interlinked panels, displaying representations of the sequence, the 3D structure, and the non-

covalent contacts (see Supplementary Note 1 for details). The biomolecular complex 

network is always shown on the top left, providing the opportunity for the user to easily 

switch between chains or interfaces. For the chord plot, moving the cursor over a chord or 

arc on the contacts panel increases the transparency of the other secondary structures, 

making it easier to identify and investigate contacts between secondary structures that are far 

away in the protein sequence. If the user selects an interface, this view provides information 

about the secondary structures that interact between chains and the thickness is indicative of 

the strength of the interface. The colors used for secondary structure representation are 

consistent across different panels (Supplementary Fig. 2 and Supplementary Note 1). Users 

have the option to manually define “super secondary structure elements” and/or adjust the 

exact definition of a secondary structure. For the residue contact matrix, clicking on the 

individual elements within matrix (which is accessed by clicking on a chord first) highlights 

the relevant contacting residues in the 3D structure panel, providing the opportunity to 

investigate the chemical nature of the contact (e.g. side-chain or main-chain contacts). The 

ligand contacts, which can be seen in the Ligands and Residues sub-panel can be 

independently visualized and analyzed by downloading a PyMOL script that is provided in 

the 3D structure panel.

Description of the analysis features

In the scatter plot matrix, the colour spectrum for the different properties can also be set by 

the user to obtain publication quality images and/or to visualize the 3D structure for detailed 

analysis (by downloading the updated PyMOL session file). In the Per Residue Statistics 

sub-panel, clicking and dragging the cursor over a specific region of any scatter plot selects 

the data points in this region, and simultaneously highlights the same set of residues in the 
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other scatter plots, the 3D structure panel and the sequence panel. Individual residues of 

interest are either selected by typing in the residue number in a text box or by clicking on a 

residue in the sequence panel. Multiple independent residues (e.g. several disease mutations) 

can be selected by typing in the residue numbers separated by a comma in the text box. This 

highlights the residue(s) in red in all the scatter plots and in the 3D structure panel.

Download file formats and options for accessing contact information for several structures

The contacts file for the individual structures (with all their chains) contains information 

about the chain, secondary structure, residue name and number, number of atomic contacts 

for each residue pair, the atom names, types (main chain or side chain atom) and the distance 

(Å) between the contacting atoms in text format. If a user is interested in a particular protein 

family but does not have a list of PDB codes of structures that contain the domain, they can 

use the “PDBs by PFAM” option (within “Advanced Options”) to download contacts of all 

structures that contain a PFAM domain of interest using the default options for contact 

definition. In addition, users can also download this information in a simple interaction file 

(SIF) format, which serves as an input for Cytoscape66, a popular open source software for 

complex network analysis. The user can also download high-resolution screenshots of 

images from the contacts panels in support vector graphics (SVG) format, screenshots of the 

3D structure in portable network graphics (PNG) format, and PyMOL session files for stand-

alone visualization in PyMOL.

Webserver specifications

Protein Contacts Atlas has been tested on Chrome, Firefox and Safari (versions 6.0 and 

higher) and works best in Chrome.

Data availability and webserver access

Protein Contacts Atlas is available online at http://www.mrc-lmb.cam.ac.uk/pca/. Users can 

access the information for any PDB file directly from a link: www.mrc-lmb.cam.ac.uk/pca/

redirect/3sn6/. A detailed tutorial can be accessed via the “Quick Tutorial” button. Data is 

available with the paper online (Supplementary Data). Source code for the project is 

available at https://github.com/pandora2017/protein_contacts_atlas. Other data are available 

upon request. A Life Sciences Reporting Summary for this article is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Visualizations in Protein Contacts Atlas. Summary of the representations for different scales 

of organization: atoms, residues, secondary structure, subunits, interfaces and entire 

biological complexes.
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Figure 2. 
Protein Contacts Atlas framework. Summary of Protein Contacts Atlas’s framework for 

visualizing and analyzing contacts.
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Figure 3. 
Visualization of protein-protein and protein-DNA interaction interfaces. a, The biomolecular 

complex network of the Adenosine A2a-mini-Gs structure (5G53) with four chains as nodes 

and interactions between them as edges is seen with chains A (A2a adenosine receptor; dark 

blue) and C (mini Gαs protein; light blue) highlighted. The chord plot of contacts between 

chains A (outer arc in light grey) and C (outer arc in dark grey) of the complex is seen next 

to it. The inner arcs show the secondary structures in their respective colors with loops as 

light grey. The selected chord shows the contacts between Helix 39 of the G protein (green) 

and Helix 11 of the receptor (purple). The residue contact matrix of the interface is also 

shown along with a network view of the receptor-G protein interaction interface (right). 

Positions that are mutated in pseudo-hypoparathyroidism (L388 G.H5.20; superscript denotes 

common G protein numbering system36) are shown in the network view and highlighted. 

Contacts are represented as blue edges and nodes are represented as spheres (using the Cα 
atom co-ordinates of the residues). b, The biomolecular complex network of p53 in complex 

with DNA (4MZR) with chain A (p53; circle, dark blue) and chain K (DNA; square, light 

blue) is highlighted. The selected chord highlights the contacts between Sheet B3 of p53 

(chain A; light grey, outer arc) with DNA (Chain K; dark grey, outer arc). The residue 

contact matrix shows that there are five atomic contacts between R273 of p53 and T20 of the 

DNA strand. The 3D structure view of the protein-DNA complex with position R273 (red) 

that forms a part of the interaction interface and whose mutation is implicated in cancer is 

highlighted on the right.
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Figure 4. 
Visualization and analysis of protein-ligand contacts. a, Ligand binding pocket of β2 

adrenergic receptor bound to the ligand Carazolol (CAU408; blue; 2RH1). All the directly 

contacting residues are shown as grey sticks. b, Asteroid plot with the ligand highlighted in 

blue (central node). Directly contacting residues (first-shell residues) are shown in the inner 

circle and the residues that contact these but not the ligand (second-shell residues) are shown 

in the outer circle. The residues are colored according to their secondary structures and the 

size of the circle is scaled to denote the number of atomic contacts. c, The ligand residue 
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matrix shows the atoms (atom numbers are obtained from the PDB file) of the ligand as rows 

and the residues contacting the ligand as columns. Number of atomic contacts is also shown 

in the matrix. d, Ligand contacts are shown in the network view. e, All the ligand contacting 

residues are highlighted in the scatter plot matrix along with f, the statistics table showing 

solvated area, degree, betweenness and closeness centrality measures (first ten out of 

seventeen residues are shown).
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Figure 5. 
Comparison of the residue contact networks in the rhodopsin cycle. a, Residue contact 

networks of the structural intermediates of the rhodopsin cycle. In the residue contact 

networks, amino acid residues are denoted as nodes and the presence of contacts between 

pairs of residues are denoted as edges. ‘Contact fingerprinting’ and key residue contact 

changes in the binding pocket are displayed. For every residue contact within the ensemble, 

the presence or absence of an equivalent residue contact between equivalent positions across 

the rest of the states was recorded. This information is represented as an array of filled 
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(contact present) and empty (contact absent) cells, which are referred to here as ‘contact 

fingerprints’. b, Inactive state only contacts map to the retinal binding pocket and the G 

protein-coupling region. Active state only contacts map to the region linking the two 

regions. A key structural change in the binding pocket involving aromatic contacts between 

Phe293 and Phe294 is shown in stick representation. (a-b) inactive states are shown in grey 

and active states are shown in green.
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Figure 6. 
How can researchers from different scientific disciplines make use of Protein Contacts 

Atlas?
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