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Abstract

Data analysis in real life often relies mainly on statistical probability distributions. However,

data arising from different fields such as environmental, financial, biomedical sciences and

other areas may not fit the classical distributions. Therefore, the need arises for developing

new distributions that would capture high degree of skewness and kurtosis and enhance the

goodness-of-fit in empirical distribution. In this paper, we introduce a novel family of distribu-

tions which can extend some popular classes of distributions to include different new ver-

sions of the baseline distributions. The proposed family of distributions is referred as the

Marshall-Olkin Weibull generated family. The proposed family of distributions is a combina-

tion of Marshall-Olkin transformation and the Weibull generated family. Two special mem-

bers of the proposed family are investigated. A variety of shapes for the densities and

hazard rate are presented of the considered sub-models. Some of the main mathematical

properties of this family are derived. The estimation for the parameters is obtained via the

maximum likelihood method. Moreover, the performance of the estimators for the consid-

ered members is examined through simulation studies in terms of bias and root mean

square error. Besides, based on the new generated family, the log Marshall-Olkin Weibull-

Weibull regression model for censored data is proposed. Finally, COVID-19 data and three

lifetime data sets are used to demonstrate the importance of the newly proposed family.

Through such an applications, it is shown that this family of distributions provides a better fit

when compared with other competitive distributions.

1 Introduction

Selecting a suitable statistical distribution for modeling and analyzing data is of great impor-

tance in order to achieve more accurate decisions. Over the years, many statistical distributions

have been proposed to fit different shapes of the data. Applying classical distributions to fit

these data sets may lead to inaccurate results. Hence, the need for modifying the standard dis-

tributions is clearly evident.
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Recently, many methods have been proposed to obtain more flexible distributions that can

reflect the data behavior in many situations more accurately. Adding a new parameter to exist-

ing distributions is one popular method that has attracted more attention in literature. [1] pro-

posed the exponentiated method by raising a new parameter to the cumulative distribution

function (cdf) of any distribution.

Additionally, [2], presented a new modified method for obtaining more adaptable distribu-

tions called Marshall-Olkin (MO) family of distributions. The method relies on extending a

given distribution by including an additional shape parameter called a tilt parameter, [3]. To

illustrate, consider a random variable X from a baseline distribution and such variable has a

cdf G(x; τ). Then, for the MO family, its cdf and its probability density function (pdf) are,

respectively, given by

FMOðxÞ ¼
Gðx; τÞ

aþ �aðx; τÞ
; ð1Þ

and

f MOðxÞ ¼
agðx; τÞ

ðaþ �aGðx; τÞÞ2
; ð2Þ

where α> 0 is the shape (tilt) parameter, �a ¼ 1 � a and τ is a vector of parameters for the

baseline model. The MO transformation has some attractable characteristics which can add

more flexibility to any baseline distribution. This encouraged many researchers to apply the

MO transformation to common classical distributions such as the Pareto distribution by [4],

Weibull distribution by [5, 6], the three parameter Weibull by [7], Lomax distribution by [8],

gamma distribution by [9], Uniform distribution by [10], log-logistic distribution by [11],

inverted Kumaraswamy distribution by [12], inverse Lomax distribution by [13], kappa distri-

bution by [14], generalized Pareto distribution by [15], Gumbel-Lomax distribution by [16],

power Lomax distribution by [17] and inverse log-logistic distribution by [18], among others.

The MO transformation can be applied on family of distributions. Specifically, a com-

pounding technique can be used to combine the MO family with other generated classes to

obtain some new families that provide distribution with greater flexibility in modeling. This

method can be defined by taking any family of distributions as the baseline cdf in Eq (1). Sev-

eral families have been generalized using this method, for instance, [19] introduced the MO

extended Weibull family, [20] suggested the MO Kumarswamy-G family, [21] proposed the

MO odd Lindley-G family, [22] proposed the MO alpha power family of distribution, [23]

considered the MO Topp Leone-G family and [24] suggested the MO odd Burr III-G family

and among many others.

Another way to develop a new flexible distribution is by the transformed-transformer

(T-X) family proposed by [25]. The T-X method is widely applicable because any continuous

distribution can be used as a generator. In other words, for any continuous random variable X,

the cdf and pdf for the T-X family with a vector of parameters z = (θ, τ) are, respectively,

defined by

Fðx; ζÞ ¼
Z WðGðx;τÞÞ

a
rðt; θÞdt; and f ðx; ζÞ ¼

d
dx

WðGðx; τÞÞ
� �

r W G x; τð Þð Þ½ �;

where a is a real number, r(t; θ) is the generator pdf of a random variable T and W(G(x; τ)) is

function of the cdf of the random variable X. [25, 26] presented the Weibull-G family as an

example of the T-X family based on the Weibull distribution with parameters c and β as a gen-

erator. That is, for any distribution with cdf G(x; τ) and vector of parameters; τ, the cdf of the
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Weibull-G family can be expressed as follows

FWGðx; c; b; τÞ ¼ 1 � e�
� logð1� Gðx;τÞÞ

bð Þ
c

; ð3Þ

and the corresponding pdf is of the form

f WGðx; c;b; τÞ ¼
c
b

gðx; τÞ
1 � Gðx; τÞ

� logð1 � Gðx; τÞÞ
b

� �c� 1

e�
� logð1� Gðx;τÞÞ

bð Þ
c

: ð4Þ

where c> 0 is the shape parameter and β> 0 is a scale parameter.

Many studies have been considered of some members of the Weibull-G family, such as the

Weibull-Pareto by [27], the Weibull-Rayleigh by [28], the Weibull-Lomax by [29] and more

lately the Weibull-gamma by [30].

Recently, attempts have been made to generalize the Weibull-G family. For example, [31]

introduced a Beta Weibull-G class of distributions, [32] generalized the Weibull-G family by

the combination with Kumaraswamy-G family to obtain the Kumaraswamy Weibull-G family

and also the Weibull-G family was combined by [33] with the gamma-generator for defining

the gamma Weibull-G, among others.

The first objective of this paper is to introduce a novel generalization for the Weibull-G

family, called MO Weibull-G (MOW-G) family and derive some of its properties. The con-

struction of this family is the combination of the MO family and the Weibull-G. Marshall-

Olkin Weibull-Exponential (MOW-E) and Marshall-Olkin Weibull-Weibull (MOW-W) dis-

tributions are special cases of the MOW-G distribution. The proposed family of distributions

provide better fits than some well known lifetime distributions. The importance of this new

family of distributions is the ability of describing decreasing, increasing, bath-tub and upside

down bath-tub shaped hazard rate functions which is extensively used in many real life data.

Besides, MOW-G family is a suitable model for fitting positively skewed data which may not

be adequately modelled by many other distributions. Thus, it can be used to fit data related to

public health, biomedical studies, industrial reliability, survival analysis and several other

areas. Second objective is to estimate the unknown model parameters using maximum likeli-

hood method for different sample sizes and different parameter values. To evaluate the perfor-

mance of the estimators, a simulation study is carried out. In addition, four real life data sets

have been analyzed for illustrative purposes. Third objective is to obtain the maximum likeli-

hood estimators (MLEs) of the log Marshall-Olkin Weibull-Weibull (LMOW-W) regression

model for censored data to show the flexibility of the log Marshall-Olkin Weibull-Weibull

regression model. Thus far we have not come across any report on estimation of parameters

for the considered distribution along with regression model for censored data.

We have organized the remainder of this paper in the following way: Section 2 discusses the

new MOW-G family. Some sub-models of the family are presented in Section 3 while several

statistical properties of this family are given in section 4. Section 5 presents the maximum like-

lihood estimation for the new family’s parameters. A Monte Carlo simulation study is pro-

vided in section 6 to evaluate the performance of the estimators for the MOW-G family.

Section 7 illustrates the flexibility of the new family compared to other families using four real

data sets. In Section 8, log Marshall-Olkin Weibull-Weibull regression model for censored

data is presented. Finally, we conclude the paper in Section 9.

2 The MOW-G family

Replacing G and g in Eqs (1) and (2) by cdf and pdf of the Weibull-G in Eqs (3) and (4), then

MOW-G family is obtained. That is, for any baseline distribution with cdf G(x; τ), the
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respective MOW-G family associated cdf with parameters z = (α, c, β, τ) is defined as

FMOWGðx; ζÞ ¼
1 � e�

� logð1� Gðx;τÞÞ
bð Þ

c

1 � �ae�
� logð1� Gðx;τÞÞ

bð Þ
c : ð5Þ

Consequently, its pdf can be obtained as

f MOWGðx; ζÞ ¼
ac
b

gðx;τÞ
1� Gðx;τÞ

� logð1� Gðx;τÞÞ
b

� �c� 1

e�
� logð1� Gðx;τÞÞ

bð Þ
c

1 � �ae�
� logð1� Gðx;τÞÞ

bð Þ
ch i2

; ð6Þ

where α, c, β and τ are defined in Eqs (2) and (4).

3 Sub-models of the MOW-G family

Two special distributions are considered as members of the MOW-G family: the MOW-expo-

nential (MOW-E) distribution and the MOW-Weibull (MOW-W) distribution. That is, for

the MOW-E distribution, its corresponding cdf and pdf can be correspondingly obtained as

Fðx; a; c; b;lÞ ¼
1 � e�

lx
bð Þ

c

1 � �ae�
lx
bð Þ

c ; and f ðx; a; c; b; lÞ ¼
acl
b

� �
lx
b

� �c� 1

e�
lx
bð Þ

c

1 � �ae�
lx
bð Þ

ch i2
: ð7Þ

where λ> 0 is the scale parameter, α and c, β are defined in (2) and (4), respectively.

Similarly, for the MOW-W distribution, its respective cdf and pdf can be found as

Fðx; a; c;b; g; dÞ ¼
1 � e�

x
dð Þ
g
=bð Þ

c

1 � �ae�
x
dð Þ
g
=bð Þ

c ; and f ðx; a; c; b; g; dÞ ¼
acg
bcdgc

xgc� 1e�
x
dð Þ
g
=bð Þ

c

1 � �ae�
x
dð Þ
g
=bð Þ

ch i2
: ð8Þ

where γ> 0 is the shape parameter, δ> 0 is the scale parameter, α and c, β are defined in Eqs

(2) and (4), respectively.

Possible shapes for the density and hazard functions for MOW-E and MOW-W distribu-

tions are, respectively shown in Figs 1 and 2. It can be seen from Fig 1 that, the pdf for

MOW-E and MOW-W exhibit symmetrical, right-skewed, left-skewed, J shaped and reversed-

J shaped densities. Moreover, from Fig 2 we can see that, the hazard for these distributions

exhibits increasing, decreasing, bathtub, upside-down bathtub, S shaped, J shaped, and

reversed-J shapes. S1 Appendix provides a list of other sub-models associated with the

MOW-G family.

4 Statistical properties of the MOW-G family

4.1 Expansion of the density function

For α 2 (0,1), the binomial expansion states that

ð1 � oðxÞÞ� k ¼
X1

j¼0

Gðkþ jÞ
GðkÞj!

oðxÞj; ð9Þ

where Γ(.) is the gamma function.
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Fig 1. Plots for the pdf of two members from the MOW-G, with different values of the parameters: (a)MOW-E distribution and (b)MOW-W distribution.

https://doi.org/10.1371/journal.pone.0263673.g001

Fig 2. Plots for the hazard function of two members from the MOW-G, with different values of the parameters: (a)MOW-E distribution and (b)MOW-W

distribution.

https://doi.org/10.1371/journal.pone.0263673.g002
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Then, it follows from Eq (9) that

1 � �ae� �
logð1� Gðx;τÞÞ

bð Þ
ch i� 2

¼
X1

j¼0

ðjþ 1Þð1 � aÞ
je� j �

logð1� Gðx;τÞÞ
bð Þ

c

:

Therefore, the MOW-G family’s pdf can be obtained as

f MOWGðx; ζÞ ¼
X1

j¼0

ðjþ 1Það1 � aÞ
j c
b

gðx; τÞ
1 � Gðx; τÞ

� logð1 � Gðx; τÞÞ
b

� �c� 1

� e� ðjþ1Þ
� logð1� Gðx;τÞÞ

bð Þ
c

:

Considering the expansion of the exponential function as

e� x ¼
X1

i¼0

ð� 1Þ
i

i!
xi; ð10Þ

we can have,

e� ðjþ1Þ
� logð1� Gðx;τÞÞ

bð Þ
c

¼
X1

i¼0

ð� 1Þ
i

i!
ðjþ 1Þ

i � logð1 � Gðx; τÞÞ
b

� �ci

: ð11Þ

The pdf can be written as

f MOWGðx; ζÞ ¼
X1

j¼0

X1

i¼0

ð� 1Þ
i

i!
ðjþ 1Þ

iþ1
að1 � aÞ

j c
b

gðx; τÞ
1 � Gðx; τÞ

�
� logð1 � Gðx; τÞÞ

b

� �cðiþ1Þ� 1

:

For a> 0, we have the following formula

ð� logð1 � xÞÞa� 1
¼ a � 1ð Þ

X1

m¼0

Xm

t¼0

ð� 1Þ
tþm

m � aþ 1

m

� �
m
t

� �
Pt;m

ða � 1 � tÞ
xa� 1þm;

ð12Þ

where the constant Pt,m is defined as

Pt;m ¼ ðmÞ� 1
Xm

l¼1

ð� 1Þ
l
½lðt þ 1Þ � m�
lþ 1

Pt;m� l; for m ¼ 1; 2; . . . and Pt;0 ¼ 1: ð13Þ

Also, from Eq (9), we have

ð1 � Gðx; τÞÞ� 1
¼
X1

r¼0

½Gðx; τÞ�r: ð14Þ
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Therefore, from Eqs (12) and (14) and for 0< α< 1, the pdf of MOW-G is given by

f MOWGðx; ζÞ ¼
X1

j¼0

X1

i¼0

X1

r¼0

X1

m¼0

Xm

t¼0

ð� 1Þ
iþtþm

i!
m � cðiþ 1Þ þ 1

m

� �
m
t

� �
Pt;m

�
cðjþ 1Þ

iþ1
að1 � aÞ

j
ðcðiþ 1Þ � 1Þ

b
cðiþ1Þ
ðcðiþ 1Þ � t � 1Þðcðiþ 1Þ þmþ rÞ

� ðcðiþ 1Þ þmþ rÞgðx; τÞ½Gðx; τÞ�cðiþ1Þþmþr� 1
:

For α> 1, the pdf of the MOW-G family can be expressed as follows

f MOWGðx; ζÞ ¼
ac
b

gðx; τÞ
1 � Gðx; τÞ

� logð1 � Gðx; τÞÞ
b

� �c� 1

e�
� logð1� Gðx;τÞÞ

bð Þ
c

� aþ �a 1 � e� �
logð1� Gðx;τÞÞ

bð Þ
c� �h i� 2

;

which can be written as

f MOWGðx; ζÞ ¼
c
b

gðx; τÞ
1 � Gðx; τÞ

� logð1 � Gðx; τÞÞ
b

� �c� 1

e�
� logð1� Gðx;τÞÞ

bð Þ
c

�
1

a
1 �
ða � 1Þ

a
1 � e� �

logð1� Gðx;τÞÞ
bð Þ

c� �� �� 2

:

From Eq (9), we can have

1 �
ða � 1Þ

a
1 � e� �

logð1� Gðx;τÞÞ
bð Þ

c� �� �� 2

¼
X1

k¼0

kþ 1ð Þ 1 �
1

a

� �k

1 � e� �
logð1� Gðx;τÞÞ

bð Þ
c� �k

; ð15Þ

and by using the binomial theorem

ð1 � xÞk ¼
Xk

j¼0

k
j

� �

ð� 1Þ
j xj; ð16Þ

Eq (15) can be written as

X1

k¼0

kþ 1ð Þ 1 �
1

a

� �kXk

j¼0

k
j

� �

ð� 1Þ
je� j �

logð1� Gðx;τÞÞ
bð Þ

c

:

Thus, by replacing
P1

k¼0

Pk

j¼0

by
P1

j¼0

P1

k¼j
, the MOW-G family’s pdf is expressed as

f MOWGðx; ζÞ ¼
X1

j¼0

X1

k¼j

ð� 1Þ
j k

j

� �

kþ 1ð Þ
1

a
1 �

1

a

� �k c
b

gðx; τÞ
1 � Gðx; τÞ

�
� logð1 � Gðx; τÞÞ

b

� �c� 1

e� ðjþ1Þ �
logð1� Gðx;τÞÞ

bð Þ
c

:
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Applying Eq (10), the pdf can be given by

f MOWGðx; ζÞ ¼
X1

j¼0

X1

k¼j

X1

i¼0

ð� 1Þ
iþj

i!
k
j

� �

kþ 1ð Þðjþ 1Þ
i 1

a
1 �

1

a

� �k c
b
cðiþ1Þ

�
gðx; τÞ

1 � Gðx; τÞ
ð� logð1 � Gðx; τÞÞÞcðiþ1Þ� 1

:

Now by using Eq (9) for [1 − G(x; τ)]−1 and Eq (12) for (−log(1 − G(x; τ)))c(i+1)−1, the pdf

for MOW-G family with α> 1 is obtained by

f MOWGðx; ζÞ ¼
X1

j¼0

X1

k¼j

X1

i¼0

X1

r¼0

X1

m¼0

Xm

t¼0

ð� 1Þ
iþjþtþm

i!
k
j

� �
m � cðiþ 1Þ þ 1

m

� �
m
t

� �
Pt;m

�

c kþ 1ð Þðjþ 1Þ
i 1

a
1 �

1

a

� �k

c iþ 1ð Þ � 1ð Þ

b
cðiþ1Þ
ðcðiþ 1Þ � t � 1Þðcðiþ 1Þ þmþ rÞ

� ðcðiþ 1Þ þmþ rÞgðx; τÞ½Gðx; τÞ�cðiþ1Þþmþr� 1
:

Therefore, the pdf of MOW-G family is written as

f MOWGðx; ζÞ ¼
X1

j¼0

ojf
ExpGðx; cðiþ 1Þ þmþ rÞ; ð17Þ

where

oj ¼

X1

i¼0

X1

r¼0

X1

m¼0

Xm

t¼0

ð� 1Þ
iþtþm

i!
zðjþ 1Þ

iþ1
að1 � aÞ

j
; 0 < a < 1;

X1

k¼j

X1

i¼0

X1

r¼0

X1

m¼0

Xm

t¼0

ð� 1Þ
iþjþtþm

i!
k
j

� �

z kþ 1ð Þðjþ 1Þ
i 1

a
1 �

1

a

� �k

; a > 1;

8
>>>>>>><

>>>>>>>:

ð18Þ

and

z ¼

m � cðiþ 1Þ þ 1

m

� �
m
t

� �
Pt;mc c iþ 1ð Þ � 1ð Þ

b
cðiþ1Þ
ðcðiþ 1Þ � t � 1Þðcðiþ 1Þ þmþ rÞ

;
ð19Þ

for Pt,m is defined by (13).

At this point, the cdf and pdf for the exponentiated-G (Exp-G) distribution, denoted by

fExpG(x), with a parameter c can be respectively defined for an arbitrary G(x) as

FExpGðxÞ ¼ ½GðxÞ�c; and f ExpGðxÞ ¼ c gðxÞ½GðxÞ�c� 1
: ; for c > 0

Then, a linear combination of the Exp-G density functions serves as a way of expressing the

pdf of the MOW-G family. Hence, starting from the properties of the Exp-G class of distribu-

tions, some features of the MOW-G family of distributions can be obtained. Such features

have been investigated in several studies such as, [34–36], among others.
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4.2 Moments

Let Yj is a random variable from Exp-G distribution with parameter (c(i + 1) + m + r), then the

rth moment of the MOW-G family is given by

EðXrÞ ¼

Z 1

0

xrf MOWGðxÞ dx ¼
X1

j¼0

ojEðY
r
j Þ;

where ωj is defined in Eq (18).

4.3 Moment generating function

The moment generating function of the MOW-G family can be derived in term of the Exp-G

distribution as follows

MXðtÞ ¼ EðetXÞ ¼
Z 1

0

etxf MOWGðxÞ dx ¼
X1

j¼0

ojMYj
ðtÞ;

where Yj is a random variable from Exp-G distribution with parameter (c(i + 1) + m + r) and

ωj is defined in Eq (18).

4.4 Incomplete moments

The sth incomplete moment for MOW-G family is obtained as follows

IðXsÞ ¼ EðXsÞ ¼

Z z

0

xsf MOWGðxÞ dx ¼
X1

j¼0

ojIðY
s
j Þ;

where IðYs
j Þ is the incomplete sth moment for the Exp-G distribution with parameter (c(i + 1)

+ m + r) and ωj is defined in Eq (18).

4.5 Quantile and median

The quantile function, Q(p), 0< p< 1, of the MOW-G family is as follows

QðpÞ ¼ G� 1 1 � e� b � log 1�
ap

1� �apð Þð Þ
1
c

� �

:

Therefore, the median is given by

M ¼ Qð0:5Þ ¼ G� 1 1 � e� b � log 1� 0:5a
1� 0:5�að Þð Þ

1
c

� �

:

4.6 Rényi entropy

The Rényi entropy for the MOW-G family is given by

HRðxÞ ¼
1

1 � R
log

Z 1

0

ðf MOWGðx; ζÞÞR dx
� �

:
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For 0< α< 1, (fMOWG(x))R can be obtained using Eq (9) as

½f MOWGðx; ζÞ�R ¼
ac
b

� �R gðx; τÞ
1 � Gðx; τÞ

� �R
� logð1 � Gðx; τÞÞ

b

� �Rðc� 1Þ

� e� R
� logð1� Gðx;τÞÞ

bð Þ
c X1

j¼0

Gð2Rþ jÞ
Gð2RÞj!

�a je� j
� logð1� Gðx;τÞÞ

bð Þ
c

:

Therefore,

HRðxÞ ¼
1

1 � R
R log

ac
b

� �

þ log
X1

j¼0

Gð2Rþ jÞ
Gð2RÞj!

ð1 � aÞ
jA

 !" #

;

where

A ¼

Z 1

0

gðx; τÞ
1 � Gðx; τÞ

� �R
� logð1 � Gðx; τÞÞ

b

� �Rðc� 1Þ

e� ðjþRÞ
� logð1� Gðx;τÞÞ

bð Þ
c

dx: ð20Þ

Now, using Eq (10), we have

A ¼
1

b
Rðc� 1Þþci

X1

i¼0

ð� 1Þ
i

i!
ðjþ RÞi

Z 1

0

gðx; τÞ
1 � Gðx; τÞ

� �R

ð� logð1 � Gðx; τÞÞÞRðc� 1Þþci dx:

Applying Eqs (9) and (12), respectively, for (1 − G(x; τ))−R and (−log(1 − G(x; τ)))R(c−1)+ci,

the Rényi entropy for the MOW-G family for α 2 (0, 1), is expressed as

A ¼
1

b
Rðc� 1Þþci

X1

i¼0

X1

r¼0

X1

m¼0

Xm

t¼0

ð� 1Þ
iþtþm

i!
ðjþ RÞi

GðRþ rÞ
GðRÞr!

R c � 1ð Þ þ cið Þ

�

m � Rðc � 1Þ � ci
m

� �
m
t

� �
Pt;m

Rðc � 1Þ þ ci � t

Z 1

0

ðgðx; τÞR½Gðx; τÞ�Rðc� 1Þþciþmþrdx:

ð21Þ

HRðxÞ ¼
R

1 � R
log

ac
b

� �

þ
1

1 � R
log

�
X1

j¼0

X1

i¼0

X1

r¼0

X1

m¼0

Xm

t¼0

ð� 1Þ
iþtþm

i!
m � Rðc � 1Þ � ci

m

� �
m
t

� �
Pt;m

�
ð1 � aÞ

j
ðjþ RÞiGð2Rþ jÞGðRþ rÞðRðc � 1Þ þ ciÞ

b
Rðc� 1Þþci

Gð2RÞGðRÞr!j!ðRðc � 1Þ þ ci � tÞ

�
RR

ðcðiþ RÞ þmþ rÞR
eð1� RÞH

ExpG
R

�

;

ð22Þ

where Γ(.) is the gamma function, Pt,m is defined in Eq (13) and HExpG
R is the Rényi entropy for

the Exp-G distribution with parameter (
cðiþRÞþmþr

R ).

PLOS ONE A new generalized family of distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0263673 February 9, 2022 10 / 29

https://doi.org/10.1371/journal.pone.0263673


Now for α> 1 and using Eq (9), we have

½f MOWGðx; ζÞ�R ¼
c
ab

� �R gðx; τÞ
1 � Gðx; τÞ

� �R
� logð1 � Gðx; τÞÞ

b

� �Rðc� 1Þ

e� R
� logð1� Gðx;τÞÞ

bð Þ
c

�
X1

k¼0

Gð2Rþ kÞ
Gð2RÞk!

a � 1

a

� �k

1 � e�
� logð1� Gðx;τÞÞ

bð Þ
c� �k

:

Applying Eq (16), and replacing
P1

k¼0

Pk
j¼0

by
P1

j¼0

P1

k¼j, the entropy is written as

HRðxÞ ¼
1

1 � R
R log

c
ab

� �

þ log
X1

j¼0

X1

k¼j

ð� 1Þ
j k

j

� �
Gð2Rþ kÞ
Gð2RÞk!

1 �
1

a

� �k

A

 !" #

;

where A is defined in Eq (20).

Thus, for α> 1, the Rényi entropy for the MOW-G family is written as

HRðxÞ ¼
R

1 � R
log

c
ab

� �

þ
1

1 � R
log

�
X1

j¼0

X1

k¼j

X1

i¼0

X1

r¼0

X1

m¼0

Xm

t¼0

ð� 1Þ
iþjþtþm

i!
k
j

� �
m � Rðc � 1Þ � ci

m

� �
m
t

� �

�Pt;m

1 �
1

a

� �k

ðjþ RÞiGð2Rþ kÞGðRþ rÞ R c � 1ð Þ þ cið Þ

b
Rðc� 1Þþci

Gð2RÞGðRÞk!r!ðRðc � 1Þ þ ci � tÞ

�
RR

ðcðiþ RÞ þmþ rÞR
eð1� RÞH

ExpG
R

�

;

where Γ(.) is the gamma function, Pt,m is defined in Eq (13) and HExpG
R is the the Rényi entropy

for the Exp-G distribution with parameter (
cðiþRÞþmþr

R ).

4.7 Distribution of order statistics

Consider the random sample x1, x2, . . ., xn from MOW-G distribution with order statistics x1:n

< x2:n< . . .< xn:n. Then the distribution of the qth order statistics of MOW-G distribution is

given by

f MOWG
q:n ðx; ζÞ ¼

n!

ðq � 1Þ!ðn � qÞ!
f MOWGðx; ζÞ½FMOWGðx; ζÞ�q� 1

½1 � FMOWGðx; ζÞ�n� q;

where from Eq (16),

½1 � FMOWGðx; ζÞ�n� q ¼
Xn� q

p¼0

n � q
p

� �

ð� 1Þ
p
½FMOWGðx; ζÞ�p:
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Then, for for α 2 (0, 1) and after some algebra, the distribution of the qth order statistics of

the MOW-G is expressed as follows

f MOWG
q:n ðx; ζÞ ¼

Xn� q

p¼0

Xpþq� 1

s¼0

X1

j¼0

X1

i¼0

X1

r¼0

X1

m¼0

Xm

t¼0

ð� 1Þ
pþsþiþtþm

i!
n!

ðq � 1Þ!ðn � qÞ!

� z
n � q
p

� �
pþ q � 1

s

� �
að1 � aÞ

j
ðjþ sþ 1Þ

i
Gðpþ qþ jþ 1Þ

Gðpþ qþ 1Þj!

� ðcðiþ 1Þ þmþ rÞgðx; τÞ½Gðx; τÞ�cðiþ1Þþmþr� 1
:

ð24Þ

Similarly, for α> 1, we can obtain

f MOWG
q:n ðx; ζÞ ¼

Xn� q

p¼0

X1

k¼0

Xpþqþk� 1

j¼0

X1

i¼0

X1

r¼0

X1

m¼0

Xm

t¼0

ð� 1Þ
pþjþiþtþm

i!
n!

ðq � 1Þ!ðn � qÞ!

� z
n � q
p

� �
pþ qþ k � 1

j

� �
1

a

� �pþq

1 �
1

a

� �k

ðjþ 1Þ
i
Gðpþ qþ kþ 1Þ

Gðpþ qþ 1Þk!

� ðcðiþ 1Þ þmþ rÞgðx; τÞ½Gðx; τÞ�cðiþ1Þþmþr� 1
;

ð25Þ

where Γ(.) is the gamma function and z is defined in Eq (19).

From Eqs (24) and (25), we can see that the pdf for the order statistic of the MOW-G family

is an infinite linear combination of the pdf of the Exp-G with parameter (c(i + 1) + m + r). Thus,

many proprieties of these order statistics can be achieved from the proprieties of the Exp-G.

5 MOW-G family’s parameters estimation

To obtain the estimators for the parameters of any member from the MOW-G family, the

maximum likelihood method can be applied. That is, if we have x1, x2, . . ., xn follows a distri-

bution associated to the MOW-G class, with a parameters vector φ = (α, β, c, τ), where τ repre-

sents the vector of parameters of the baseline distribution G, then the log-likelihood function

(ℓ) is defined by

‘ ¼ n log aþ n log c � nc log bþ
Xn

i¼1

logðgðxi; τÞÞ �
Xn

i¼1

logð1 � Gðxi; τÞÞ

þðc � 1Þ
Xn

i¼1

log � log 1 � Gðxi; τÞð Þð Þ �
Xn

i¼1

� logð1 � Gðxi; τÞÞ
b

� �c

� 2
Xn

i¼1

log 1 � �ae�
� logð1� Gðxi ;τÞÞ

b

� �c� �

:

ð26Þ

The complexity of the above log-likelihood makes it difficult to solve analytically. Therefore,

we take the derivative of Eq (26) with respect to the parameters as follows

@‘

@a
¼

n
a
� 2
Xn

i¼1

e�
� logð1� Gðxi ;τÞÞ

b

� �c

1 � �ae�
� logð1� Gðxi ;τÞÞ

b

� �c� � ;
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@‘

@c
¼

n
c
� n log bþ

Xn

i¼1

log � log 1 � Gðxi; τÞð Þð Þ

�
Xn

i¼1

log
� logð1 � Gðxi; τÞÞ

b

� �
� logð1 � Gðxi; τÞÞ

b

� �c

þ2�a
Xn

i¼1

log
� logð1 � Gðxi; τÞ

b

� �
� logð1 � Gðxi; τÞÞ

b

� �c

�a � e

� logð1 � Gðx; τÞÞ
b

� �c ;

@‘

@b
¼ �

nc
b
þ

c
b

Xn

i¼1

� logð1 � Gðxi; τÞÞ
b

� �c

þ 2�ac
Xn

i¼1

� logð1 � Gðxi; τÞÞ
b

� �c

b e

� logð1 � Gðxi; τÞÞ
b

� �c

� �a

0

B
@

1

C
A

;

and

@‘

@τ
¼ n log aþ n log c � nc log bþ

@

@τ

Xn

i¼1

logðgðxi; τÞÞ �
@

@τ

Xn

i¼1

logð1 � Gðxi; τÞÞ

þ
@

@τ
ðc � 1Þ

Xn

i¼1

log
� logð1 � Gðxi; τÞÞ

b

� �

�
@

@τ

Xn

i¼1

� logð1 � Gðxi; τÞÞ
b

� �c

� 2
@

@τ

Xn

i¼1

log 1 � �ae�
� logð1� Gðxi ;τÞÞ

b

� �c� �

:

Thus, the MLEs of the parameters vector φ can be acquired by obtaining the solutions in

iterative way of the above nonlinear equations using the well-known Newton-Raphson method

or any other numerical method. Instead, employing any standard non-linear optimization

technique, the log-likelihood in Eq (26) can be directly maximized.

6 Simulation study

For evaluating the performance of the MLEs, some simulation studies is conducted for the two

particular members of the MOW-G family namely; MOW-E distribution with rate parameter

λ and MOW-W distribution with shape parameter γ and scale parameter δ. For each distribu-

tion, the simulation is performed over the number of iterations, nsimu = 1000. Four distinct

sample sizes n = 25, 50, 100, 200, 500 are considered with the following cases for the true

parameters, θtru.

• For MOW-E:

Case I : a ¼ 0:05; c ¼ 3; b ¼ 0:2; l ¼ 0:7

Case II : a ¼ 0:05; c ¼ 3; b ¼ 0:2; l ¼ 0:7

Case III : a ¼ 1:3; c ¼ 1:3; b ¼ 2:2; l ¼ 1:2

Case IV : a ¼ 2:2; c ¼ 1:2; b ¼ 1:3; l ¼ 2:0
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• For MOW-W:

Case I : a ¼ 0:03; c ¼ 1:2; b ¼ 0:3; g ¼ 0:7; d ¼ 0:5

Case II : a ¼ 0:02; c ¼ 1:6; b ¼ 0:4; g ¼ 1:2; d ¼ 0:5

Case III : a ¼ 1:2; c ¼ 2:6; b ¼ 1:4; g ¼ 2:0; d ¼ 1:5

Case IV : a ¼ 2:2; c ¼ 5:2; b ¼ 2:2; g ¼ 0:9; d ¼ 2:0

We compute the mean square errors (MSEs) and biases of the MLEs of the parameters

based on 1000 iterations, where

biasðŷÞ ¼
Pnsimu

i¼1
ŷ i

nsimu
� ytru; and RMSEðŷÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pnsimu

i¼1
ðŷ i � ytruÞ

2

nsimu

s

:

The R programming language [37] has been used to conduct the Monte Carlo simulation

studies. Tables 1 and 2 report the results for the MLEs for parameters of the MOW-E and

MOW-W along with their corresponding absolute average bias and RMSE, respectively.

The “optim” function in R software is used to achieve all estimation results. The results of

the simulation study are reported in Tables 1 and 2. Tables 1 and 2 show that the RMSEs

decrease as the sample size increases for all parameters. The bias tend to zero for large n, that

is, the estimates are asymptotically unbiased. The RMSEs tend to zero as n increases, which

indicates that the estimates are consistent. This provides evidence that the maximum likeli-

hood method has a good performance when estimating the parameters of the proposed family.

7 Applications

Four real-world data sets with the exponential and Weibull distributions as the G, are consid-

ered to investigate the flexibility of the proposed MOW-G family. The first data set is fitted to

MOW-E distribution and compared with Marshall Olkin-G defined by [2, 38] and Weibull-G

defined by [39] considering G as exponential and Weibull. Second and third data sets are also

fitted to MO extended Weibull (MOEW) defined by [6]. While the fourth data set is fitted to

MOW-W distribution and compared with MO-exponential (MO-E), Weibull-G and Exp-G

defined by [1] considering G as exponential and Weibull.

The proposed model is compared with other models according to some criteria, include the

value of the log likelihood function (ℓ), Akaike information criterion (AIC), Bayesian informa-

tion criterion (BIC), consistent Akaike information criterion (CAIC), Cramér-von Mises

(W�), Anderson-Darling (A�), Kolmogorov-Smirnov (KS) and P-value statistics. These statis-

tics or criteria are widely used to assess the performance of a distribution in modeling a data

set. Smaller values of these statistics, indicate a better fit.

Data set I: The data represents COVID-19 drought mortality rate of Canada for 36 days, in

the period 10 April to 15 May 2020, at https://covid19.who.int. The data is obtained from [40]

and listed in Table 3.

Data set II: Represents tde number of successive failures for tde air conditioning system of

each member in a fleet of 13 Boeing 720 jet airplanes [41]. Tde data is listed in Table 4.

Data set III: Represents strengtd data measured in GPA for single carbon fibers which

were tested under tension at gauge lengtds of 20 mm and impregnated 1000-carbon fiber tows.

[42] originally reported tdis data witd 63 observations in Table 5.
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Data set IV: Represents experimental data of tde strengtd of glass fibers witd lengtds 1.5

cm. Tde source of such data is tde National Physical Laboratory in England and it is composed

of 63 observations and listed in Table 6, [43].

Table 1. MOW-E parameter estimates, absolute bias and RMSE for four different cases.

Case I Case II

MLE Bias RMSE MLE Bias RMSE

n = 25 α 0.6605 0.6105 4.3207 0.8953 0.8853 5.6300

c 2.9519 0.0481 0.6663 5.1535 0.1465 1.1218

β 0.3055 0.1055 0.1745 4.6348 2.2348 3.3710

λ 1.7182 1.0182 1.8956 2.2666 1.5666 2.5822

n = 50 α 0.4057 0.3557 3.6130 0.1804 0.1704 1.6460

c 2.9579 0.0421 0.4778 5.1761 0.1239 0.7576

β 0.2623 0.0623 0.1370 4.2898 1.8898 3.1044

λ 1.2951 0.5951 1.3514 1.8270 1.1270 1.9590

n = 100 α 0.1731 0.1231 2.3818 0.0447 0.0347 0.0700

c 2.9791 0.0209 0.3468 5.2161 0.0839 0.4930

β 0.2530 0.0530 0.1069 3.6792 1.2792 2.2235

λ 1.0719 0.3719 0.8695 1.3796 0.6796 1.1945

n = 200 α 0.0757 0.0257 0.0630 0.0275 0.0175 0.0330

c 2.9775 0.0225 0.2286 5.2268 0.0732 0.3411

β 0.2338 0.0338 0.0852 3.3813 0.9813 1.6353

λ 0.9129 0.2129 0.4999 1.1685 0.4685 0.7964

n = 500 α 0.0599 0.0099 0.0313 0.0173 0.0073 0.0138

c 2.9901 0.0099 0.1417 5.2531 0.0469 0.2059

β 0.2241 0.0241 0.0516 2.8751 0.4751 0.8983

λ 0.8206 0.1206 0.2779 0.9186 0.2186 0.4102

Case III Case IV

MLE Bias RMSE MLE Bias RMSE

n = 25 α 0.9127 0.3873 0.8674 1.2584 0.9416 1.5140

c 1.4706 0.1706 0.5572 1.4466 0.2466 0.5936

β 2.1346 0.0654 0.4746 1.3103 0.0103 0.4435

λ 1.1740 0.0260 1.0423 2.0337 0.0337 1.1219

n = 50 α 1.0095 0.2905 0.8551 1.5321 0.6679 1.4188

c 1.3787 0.0787 0.4468 1.3220 0.1220 0.4439

β 2.0948 0.1052 0.3952 1.3043 0.0043 0.3937

λ 1.1530 0.0470 0.9594 2.1583 0.1583 1.1172

n = 100 α 1.0936 0.2064 0.7166 1.7134 0.4866 1.2383

c 1.3245 0.0245 0.3276 1.2422 0.0422 0.3508

β 2.1689 0.0311 0.3917 1.2551 0.0449 0.3751

λ 1.3357 0.1357 0.8797 2.2024 0.2024 1.0752

n = 200 α 1.2229 0.0771 0.6552 1.8926 0.3074 1.1067

c 1.3174 0.0174 0.2367 1.2101 0.0101 0.2710

β 2.1157 0.0843 0.2913 1.2568 0.0432 0.2679

λ 1.2856 0.0856 0.5987 2.184 0.184 0.893

n = 500 α 1.3458 0.0458 0.5634 2.2098 0.0098 0.9629

c 1.3081 0.0081 0.1478 1.2057 0.0057 0.1798

β 2.2513 0.0513 0.1988 1.2655 0.0345 0.2110

λ 1.2988 0.0988 0.3981 2.0706 0.0706 0.6720

https://doi.org/10.1371/journal.pone.0263673.t001
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Table 2. MOW-W parameter estimates, absolute bias and RMSE for four different cases.

Case I Case II

MLE Bias RMSE MLE Bias RMSE

n = 25 α 0.4298 0.3998 1.5722 0.4929 0.4729 2.1199

c 1.2314 0.0314 0.1771 1.5819 0.0181 0.2118

β 0.2297 0.0703 0.1420 0.3052 0.0948 0.1472

γ 0.6594 0.0406 0.1056 1.1690 0.0310 0.1489

δ 0.3758 0.1242 0.2553 0.3643 0.1357 0.1938

n = 50 α 0.2424 0.2124 1.3979 0.2463 0.2263 1.7105

c 1.2138 0.0138 0.1271 1.5822 0.0178 0.1596

β 0.2518 0.0482 0.1181 0.3348 0.0652 0.1191

γ 0.6747 0.0253 0.0848 1.1757 0.0243 0.1128

δ 0.4116 0.0884 0.2176 0.4112 0.0888 0.1600

n = 100 α 0.0896 0.0596 0.5513 0.0596 0.0396 0.0869

c 1.2122 0.0122 0.0882 1.5798 0.0202 0.1136

β 0.2740 0.0260 0.0999 0.3583 0.0417 0.0903

γ 0.6885 0.0115 0.0556 1.1950 0.0050 0.0672

δ 0.4529 0.0471 0.1754 0.4437 0.0563 0.1175

n = 200 α 0.0488 0.0188 0.0451 0.0382 0.0182 0.0388

c 1.2075 0.0075 0.0526 1.5977 0.0023 0.0829

β 0.2852 0.0148 0.0766 0.3746 0.0254 0.0683

γ 0.6926 0.0074 0.0332 1.1892 0.0108 0.0560

δ 0.4762 0.0238 0.1313 0.4665 0.0335 0.0940

n = 500 α 0.0380 0.0080 0.0214 0.0275 0.0075 0.0173

c 1.2003 0.0003 0.0443 1.5971 0.0029 0.0601

β 0.2912 0.0088 0.0557 0.3862 0.0138 0.0502

γ 0.6984 0.0016 0.0289 1.1978 0.0022 0.0366

δ 0.4868 0.0132 0.0955 0.4802 0.0198 0.0625

Case III Case IV

MLE Bias RMSE MLE Bias RMSE

n = 25 α 0.8979 0.3021 1.1745 1.3912 0.8088 1.5044

c 2.6101 0.0101 0.5369 5.5555 0.3555 1.0127

β 1.3456 0.0544 0.2219 2.2709 0.0709 0.3439

γ 2.1880 0.1880 0.5499 1.0184 0.1184 0.3785

δ 1.5420 0.0420 0.2822 2.1998 0.1998 0.7712

n = 50 α 0.9547 0.2453 1.1362 1.5113 0.6887 1.3924

c 2.4866 0.1134 0.4820 5.4433 0.2433 0.9585

β 1.3067 0.0933 0.2180 2.2159 0.0159 0.2595

γ 2.1758 0.1758 0.4939 0.9641 0.0641 0.3227

δ 1.5485 0.0485 0.2666 2.1069 0.1069 0.7169

n = 100 α 1.0478 0.1522 0.9830 1.7358 0.4642 1.2364

c 2.5888 0.0112 0.4099 5.2056 0.0056 0.8799

β 1.3759 0.0241 0.1797 2.1512 0.0488 0.2555

γ 2.0496 0.0496 0.3711 0.9732 0.0732 0.2546

δ 1.4991 0.0009 0.2101 2.1877 0.1877 0.6412

(Continued)
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Tables 7–14 report the MLE, standard error (SE), summary of the model selection criteria

and showing the −ℓ, AIC, CAIC, BIC, W�, AD�, KS and P-value statistics in each model, for

the four data sets respectively. In addition, the plots of the estimated pdf and cdf with empirical

data in Figs 3–6 show closeness, confirming that MOW-E and MOW-W have a better fit for

all data sets compared to other competing distributions.

The results in Tables 8–14 along with the plots in Figs 3–6 indicate the potentiality of the

proposed distributions when comparing with competitive distributions using the selected

data.

Table 2. (Continued)

n = 200 α 1.3463 0.1463 0.8991 1.9533 0.2467 1.0816

c 2.5743 0.0257 0.3129 5.4280 0.2280 0.7116

β 1.3721 0.0279 0.1293 2.1890 0.0110 0.1599

γ 2.0329 0.0329 0.2963 0.8984 0.0016 0.1943

δ 1.5021 0.0021 0.1626 1.9947 0.0053 0.4597

n = 500 α 1.2030 0.0030 0.4509 2.2156 0.0156 0.9724

c 2.6267 0.0267 0.1738 5.1682 0.0318 0.5765

β 1.4056 0.0056 0.0827 2.1814 0.0186 0.1417

γ 1.9997 0.0003 0.1984 0.9208 0.0208 0.1525

δ 1.4963 0.0037 0.1108 2.0508 0.0508 0.3866

https://doi.org/10.1371/journal.pone.0263673.t002

Table 3. List of data set I.

3.1091 3.3825 3.1444 3.2135 2.4946 3.5146 4.9274 3.3769 6.8686

3.0914 4.9378 3.1091 3.2823 3.8594 4.0480 4.1685 3.6426 3.2110

2.8636 3.2218 2.9078 3.6346 2.7957 4.2781 4.2202 1.5157 2.6029

3.3592 2.8349 3.1348 2.5261 1.5806 2.7704 2.1901 2.4141 1.9048

https://doi.org/10.1371/journal.pone.0263673.t003

Table 4. List of data set II.

194 413 90 74 55 23 97 50 359 50 130 487

57 102 15 14 10 57 320 261 51 44 9 254

493 33 18 209 41 58 60 48 56 87 11 102

12 5 14 14 29 37 186 29 104 7 4 72

270 283 7 61 100 61 502 220 120 141 22 603

35 98 54 100 11 181 65 49 12 239 14 18

39 3 12 5 32 9 438 43 134 184 20 386

182 71 80 188 230 152 5 36 79 59 33 246

1 79 3 27 201 84 27 156 21 16 88 130

14 118 44 15 42 106 46 230 26 59 153 104

20 206 5 66 34 29 26 35 5 82 31 118

326 12 54 36 34 18 25 120 31 22 18 216

139 67 310 3 46 210 57 76 14 111 97 62

39 30 7 44 11 63 23 22 23 14 18 13

34 16 18 130 90 163 208 1 24 70 16 101

52 208 95 62 11 191 14 71

https://doi.org/10.1371/journal.pone.0263673.t004
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8 Regression modeling

Practically speaking, lifetimes are usually affected by some explanatory variables. Parametric

models can be used to estimate univariate survival functions as well as can be solved regression

Table 5. List of data set III.

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396

2.397 2.445 2.454 2.474 2.518 2.522 2.525 2.532

2.575 2.614 2.616 2.618 2.624 2.659 2.675 2.738

2.740 2.856 2.917 2.928 2.937 2.937 2.977 2.996

3.030 3.125 3.139 3.145 3.220 3.223 3.235 3.243

3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435

3.493 3.501 3.537 3.554 3.562 3.628 3.852 3.871

3.886 3.971 4.024 4.027 4.225 4.395 5.020

https://doi.org/10.1371/journal.pone.0263673.t005

Table 6. List of data set IV.

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73

1.81 2 0.74 1.04 1.27 1.39 1.49 1.53 1.59 1.61 1.66

1.68 1.76 1.82 2.01 0.77 1.11 1.28 1.42 1.5 1.54 1.6

1.62 1.66 1.69 1.76 1.84 2.24 0.81 1.13 1.29 1.48 1.5

1.55 1.61 1.62 1.66 1.7 1.77 1.84 0.84 1.24 1.3 1.48

1.51 1.55 1.61 1.63 1.67 1.7 1.78 1.89

https://doi.org/10.1371/journal.pone.0263673.t006

Table 7. MLE and SE of the model parameters for data set I.

Model MLE and (SE)

MOW-E 0.0084 6.2384 0.3331 0.0487

ðâ,ĉ,b̂,l̂) (0.0102) (0.8602) (0.4434) (0.0637)

MO-E 36.7180 1.2089

ðâ,l̂) (15.2164) (0.1356)

MO-W 0.1732326 4.2783684 4.7221390

ðâ,ĉ,b̂) (0.1179) (0.6901) (0.5084)

Weibull-E 3.3153 15.9402 4.3817

(ĉ,b̂,l̂) (0.3789761) (1.0025) (0.1452)

Weibull-W 0.7337 2.1786 4.3658 3.0146

(ĉ,b̂,ĝ,d̂) (0.0857) (0.5183) (0.1921 (0.0026)

https://doi.org/10.1371/journal.pone.0263673.t007

Table 8. Model selection criteria for data set I.

Model −ℓ AIC CAIC BIC W� AD� KS p-value

MOW-E 47.055 102.110 105.277 108.444 0.0539 0.3393 0.099 0.868

MO-E 53.098 110.196 111.780 113.363 0.4262 2.2967 0.211 0.079

MO-W 49.814 105.629 108.004 110.379 0.2083 1.1220 0.161 0.31

Weibull-E 51.474 108.948 111.323 113.698 0.1980 1.1424 0.150 0.390

Weibull-W 51.256 110.514 113.681 116.848 0.2035 1.1932 0.136 0.515

https://doi.org/10.1371/journal.pone.0263673.t008
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problems. In this section, we present a new location regression model based on the MOW-W

distribution.

8.1 The log MOW-W distribution

The regression model can be obtained by considering the log MOW-W (LMOW-W) distribu-

tion in which the location parameter depends on some explanatory variables v. Re-defining

some parameters of the random variable X which have the MOW-W in Eq (8), as g ¼ 1

s
and δ

= eμ, then, the random variable Y = log(X) will have the LMOW-W distribution with the fol-

lowing pdf and survival function respectively

f ðy; a; c;b; s; mÞ ¼

ac
sb

c e
c y� m

sð Þe
�

e
y� m
s

b

 !c

1 � �ae
�

e
y� m
s

b

 !c2

6
6
6
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3

7
7
7
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2
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and

Sðy; a; c;b; s; mÞ ¼
ae
�

e
y� m
s

b

 !c

1 � �ae
�

e
y� m
s

b

 !c ; ð28Þ

where α, c, β are defined in Eq (8), σ> 0 is the scale parameter and m 2 R is a location parameter.

For the standardized random variable Z ¼ Y� m
s

, its pdf can be derived as

f ðz; a; c;bÞ ¼
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c ecze
�

ez

b
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8.2 The LMOW-W regression model for censored data

Assuming the survival time Xi of the ith individual in the sample, for i = 1, . . ., n, and consider-

ing a set of p covariates such that vi = (1, vi1, vi2, . . ., vip)T, where the 1 is for the intercept term,

the location-scale regression model relating to the response variable yi = log(xi) with the

explanatory variable vector v can be mathematically described from the LMOW-W as follows

yi ¼ vTi τ þ szi; i ¼ 1; . . . ; n; ð30Þ

where the random error zi has density function in Eq (29) with unknown parameters σ, α, c, β
> 0 and τ = (τ0, τ1, τ2, . . ., τp)T are the unknown regression coefficients of the p explanatory

variables. To illustrate, yi has the location parameter mi ¼ vT
i τ, in which the vector μ = (μ1, μ2,
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Table 9. MLE and SE of the model parameters for data set II.

Model MLE and (SE)

MOW-E 0.1913 1.2272 3.7838 0.0173

ðâ,ĉ,b̂,l̂) (0.1118) (0.1127) (3.7369) (0.0165)

MO-E 2.0907 0.0163

ðâ,l̂) (0.9718) (0.0029)

MO-W 5.2047 0.5829 20.3798

ðâ,ĉ,b̂,) (7.8332) (0.2379) (32.9191)

Weibull-E 0.9117 3.5951 0.0405

ðĉ,b̂,l̂) (0.0506) (8.3994) (0.0938)

Weibull-W 4.6322 1.8303 0.1966 4.1039

ðĉ,b̂,ĝ,d̂) (3.2733) (0.3770) (0.1393) (2.6784)

MOEW 0.9615 0.8230 0.0106

ðâ,ĉ,b̂) (0.0365) (0.3903) (0.0035)

https://doi.org/10.1371/journal.pone.0263673.t009

Table 10. Model selection criteria for data set II.

Model −ℓ AIC CAIC BIC W� AD� KS p-value

MOW-E 1032.821 2073.642 2080.115 2086.587 0.039 0.301 0.045 0.833

MO-E 1053.74 2111.479 2114.715 2117.952 1.027 6.562 0.128 0.004

MO-W 1042.078 2090.155 2095.01 2099.865 0.161 1.471 0.072 0.283

Weibull-E 1036.757 2079.514 2084.369 2089.224 0.160 0.996 0.060 0.503

Weibull-W 1036.762 2081.523 2087.996 2094.469 0.164 1.008 0.061 0.488

MOEW 1037.073 2080.145 2085 2089.855 0.4905 2.323 0.094 0.069

https://doi.org/10.1371/journal.pone.0263673.t010

Table 11. MLE and SE of the model parameters for data set III.

Model MLE and (SE)

MOW-E 0.0367 8.0621 0.1863 0.0411

ðâ,ĉ,b̂,l̂) (0.0518) (1.0050) (0.1560) (0.0330)

MO-E 27.6589 1.2273

ðâ,l̂) (7.4415) (0.0980)

MO-W 31.3285 2.1262 1.6883

ðâ,ĉ,b̂) (28.6707) (0.4824) (0.4273)

Weibull-E 5.0454 12.3338 3.7198

ðĉ,b̂,l̂) (0.4557) (70.2159) (21.1685)

Weibull-W 3.8592 1.3212 1.3033 2.6755

ðĉ,b̂,ĝ,d̂) (4.4738) (2.4814) (1.5116) (4.0872)

MOEW 4.4823 1.0436 0.0047

ðâ,ĉ,b̂) (0.2353) (0.4158) (0.0016)

https://doi.org/10.1371/journal.pone.0263673.t011

Table 12. Model selection criteria for data set III.

Model −ℓ AIC CAIC BIC W� AD� KS p-value

MOW-E 57.504 123.009 127.2955 131.581 0.067 0.410 0.086 0.734

MO-E 83.417 170.835 172.978 175.122 1.492 7.960 0.303 1.8e-05

MO-W 62.302 130.604 133.819 137.033 0.091 0.867 0.101 0.534

Weibull-E 61.957 129.910 130.317 136.339 0.125 0.937 0.087 0.719

Weibull-W 61.958 131.916 136.202 140.486 0.122 0.929 0.088 0.704

MOEW 62.763 131.527 134.742 137.957 0.157 1.242 0.115 0.372

https://doi.org/10.1371/journal.pone.0263673.t012
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. . ., μn)T of the location parameter is described by the linear model μ = Vτ, such that V = (v1,

v2, . . ., vn)T is a known model matrix.

For an independent sample of n observations (y1 v1), . . ., (yn, vn), assume that F and C be

the sets of individuals for which the response variable yi is the log-lifetime and log-censoring,

respectively. Considering the non-informative censoring such that the observed lifetimes and

censoring times are independent, the random response is determined by yi = {log(xi), log(ci)}.
Then, the log-likelihood function for the vector of parameters z = (α, c, β, σ, τT)T from model

(30) can be obtained from

‘ðζÞ ¼
X

i2F

log½f ðyiÞ� þ
X

i2C

log½SðyiÞ�;

where f(yi) is the density function in Eq (27) and S(yi) is the survival function in Eq (28) of Yi.

Thus, the log-likelihood function for z defined as

‘ðζÞ ¼ rlog
ac
sb

c
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þ c
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i2F
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b
c

X

i2F
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where r is the number of uncensored observations (failures) and Zi ¼
yi � mi
s

, for mi ¼ vT
i τ.

Table 14. Model selection criteria for data set IV.

Model −ℓ AIC CAIC BIC W� AD� KS p-value

MOW-W 12.045 34.089 39.447 44.805 0.084 0.568 0.101 0.536

MO-E 35.371 74.742 76.885 79.028 1.329 6.884 0.262 0.0003

Weibull-E 15.171 36.342 39.556 42.771 0.203 1.216 0.147 0.129

Weibull-W 15.043 38.086 42.372 46.658 0.196 1.223 0.139 0.177

Exp-E 31.392 66.784 68.927 71.071 0.805 4.361 0.229 0.003

Exp-W 17.150 40.301 43.515 46.730 0.276 1.571 0.148 0.122

https://doi.org/10.1371/journal.pone.0263673.t014

Table 13. MLE and SE of the model parameters for data set IV.

Model MLE and (SE)

MOW-W 13.7716 0.6547 1.0645 5.1070 1.1438

ðâ,ĉ,b̂,ĝ,d̂) (16.4430) (0.1879) (1.1491) (0.0987) (0.0601)

MO-E 45.2295 2.7174

ðâ,l̂) (13.705) (0.211)

Weibull-E 5.7842 26.5451 16.2636

ðĉ,b̂,l̂) (0.5722) (0.6067) (0.0235)

Weibull-W 0.8052 4.0655 7.0696 1.3470

ðĉ,b̂,ĝ,d̂) (0.0830) (0.7357) (0.3091) (0.0025)

Exp-E 30.1085 2.5837

(d̂,l̂) (8.9653) (0.2332)

Exp-W 11.8863 0.3347 0.5336

(â,ĉ,b̂) (5.5123) (0.2395) (0.0401)

https://doi.org/10.1371/journal.pone.0263673.t013

PLOS ONE A new generalized family of distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0263673 February 9, 2022 21 / 29

https://doi.org/10.1371/journal.pone.0263673.t014
https://doi.org/10.1371/journal.pone.0263673.t013
https://doi.org/10.1371/journal.pone.0263673


The log-likelihood function in Eq (31) is then, maximized to find the MLEs of z. For this

case, numerical non-linear optimization procedures are commonly applied. The optim func-

tion in R can be used in order to find the MLEs.

8.3 Application for log Marshall-Olkin Weibull-Weibull regression model

for censored data

The LMOW-W regression model is applied to fit data from an earlier study by [44], which

compared treatment with radiotherapy only (Arm A) and radiotherapy plus chemotherapy

Fig 3. Estimated pdf and cdf of MOW-E and other competing distributions for data set I.

https://doi.org/10.1371/journal.pone.0263673.g003
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(Arm B), for patients with head and neck cancer. The study included the survival time of 51

patients in arm A and 45 patients in arm B. Particularly, 9 patients in arm A and 14 patients in

arm B failed to follow up and were considered censored. Only one predictor is considered in

this study; v1 which represents the two-arms (Arm A = 0, Arm B = 1). Therefore, the

LMOW-W regression model is considered as

yi ¼ t0 þ t1vi1 þ szi; i ¼ 1; . . . ; 96;

where z1, . . ., z96 are independent random variables with pdf in Eq 29.

Fig 4. Estimated pdf and cdf of MOW-E and other competing distributions for data set II.

https://doi.org/10.1371/journal.pone.0263673.g004
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The results from LMOW-W model are compared with some alternative regression models,

namely; the log-Weibull (LW) in [45], the log-gamma-Weibull (LGW) in [46], the Kumaras-

wamy-log-logistic (KumL) [47], the log-modified Weibull (LMW) in [48], the log-generalized

modified Weibull (LGMW) in [49] and the log-Pareto Weibull generalized lambda (LPWGL)

in [50].

Results in Table 15 suggest that the LMOW-W model has the best fit to the data set as it has

the lowest AIC and BIC values.

Fig 5. Estimated pdf and cdf of MOW-E and other competing distributions for data set III.

https://doi.org/10.1371/journal.pone.0263673.g005
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9 Conclusion

Weibull-G family introduced in [25] has advantage of adding more flexibility in shapes of a

base line distribution and can be generalized in some other forms. This paper presented and

studied the MOW-G family which combines both MO transformation with the Weibull-G to

produce compound distributions with better performance. Specifically, two sub-models

namely, MOW-E distribution and MOW-W distribution are presented. Some of the statistical

properties of the proposed family are studied. Some of the properties related to moments,

moment generating function, incomplete moments, Quantile, median, Renyi entropy, and

Fig 6. Estimated pdf and cdf of MOW-W and other competing distributions for data set IV.

https://doi.org/10.1371/journal.pone.0263673.g006
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distribution of order statistics are presented. To estimate the parameters of the model, the

method of maximum likelihood is applied. Additionally, the performance of the MLEs of the

two selected members is assessed via Monte Carlo simulation studies based on two criteria;

bias and RMSE. The study exhibits a good performance when estimating the parameters of the

proposed family using the maximum likelihood method. Four real data sets are fitted by the

proposed distributions as well as compared with some selected competitive distributions. The

results have been compared based on some efficiency measurements. These results demon-

strate that both MOW-E and MOW-W outperform other distributions in terms of goodness-

of-fit. Furthermore, we suggested the LMOW-W regression model, which provides more ver-

satility, as demonstrated by a real-world application. Hence, it can be concluded that the newly

proposed family of distributions have a wider range of applications in several disciplines.
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Table 15. MLE and SE of the model parameters for regression data.

Model MLE and (SE) AIC BIC

LMOW-W α = 0.0025 c = 6.8453 β = 3.3778 σ = 5.1362 τ0 = 3.7406 τ1 = 0.5729 300.2 315.6

(0.0004) (4.0844) (0.4705) (2.8910) (5.9183) (0.5729)

LW - - - σ = 1.1800 τ0 = 6.7873 τ1 = −0.7490 312.7 320.3

(0.1082) (0.2088) (0.2772)

LGW - - a = 0.0264 σ = 0.0510 τ0 = 8.0113 τ1 = −0.6274 339.7 349.9

(0.0079) (0.0152) (0.1458) (0.1608)

KumL - a = 16.2819 b = 312.91 σ = 5.8106 τ0 = 1.6912 τ1 = −0.6834 308.0 320.8

(2.6189) (24.86) (0.3258) (6.0235) (0.2792)

LMW - - α1 = 1e − 8 σ = 1.1787 τ0 = 6.7841 τ1 = −0.7470 314.6 324.8

(0.0000) (0.1078) (0.2081) (0.2766)

LGMW - φ = 1.6609 λ = 1e − 8 σ = 1.6404 τ0 = 6.4261 τ1 = −0.8841 313.4 326.2

(0.8248) (0.0000) (0.4048) (0.7432) (0.3256)

LPWGL β = 12.2901 s = 279.1100 b = 0.0410 τ = 1.204 τ0 = 6.0071 τ1 = 0.7552 316.2 331.6

(2.1498) (48.2961) (0.0051) (0.1104) (0.1232) (0.2789)

https://doi.org/10.1371/journal.pone.0263673.t015

PLOS ONE A new generalized family of distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0263673 February 9, 2022 26 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263673.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263673.s002
https://doi.org/10.1371/journal.pone.0263673.t015
https://doi.org/10.1371/journal.pone.0263673


Investigation: Hadeel Klakattawi, Lamya Baharith.

Methodology: Hadeel Klakattawi, Dawlah Alsulami, Mervat Abd Elaal.

Software: Hadeel Klakattawi, Lamya Baharith.

Validation: Hadeel Klakattawi, Dawlah Alsulami, Lamya Baharith.

Writing – original draft: Lamya Baharith.

Writing – review & editing: Hadeel Klakattawi, Dawlah Alsulami, Sanku Dey, Lamya

Baharith.

References
1. Gupta RC, Gupta PL, Gupta RD. Modeling failure time data by Lehman alternatives. Communications

in Statistics-Theory and methods. 1998; 27(4):887–904. https://doi.org/10.1080/03610929808832134

2. Marshall AW, Olkin I. A new method for adding a parameter to a family of distributions with application

to the exponential and Weibull families. Biometrika. 1997; 84(3):641–652. https://doi.org/10.1093/

biomet/84.3.641

3. Marshall AW, Olkin I. Life distributions. vol. 13. Springer; 2007.

4. Ghitany M. Marshall-Olkin extended Pareto distribution and its application. International Journal of

Applied Mathematics. 2005; 18(1):17.

5. Ghitany M, Al-Hussaini E, Al-Jarallah R. Marshall–Olkin extended Weibull distribution and its application

to censored data. Journal of Applied Statistics. 2005; 32(10):1025–1034. https://doi.org/10.1080/

02664760500165008

6. Cordeiro GM, Lemonte AJ. On the Marshall–Olkin extended weibull distribution. Statistical papers.

2013; 54(2):333–353. https://doi.org/10.1007/s00362-012-0431-8

7. Ahmad HH, Bdair OM, Ahsanullah M. On Marshall-Olkin Extended Weibull Distribution. Journal of Sta-

tistical Theory and Applications. 2017; 16(1):1–17. https://doi.org/10.2991/jsta.2017.16.1.1

8. Ghitany M, Al-Awadhi F, Alkhalfan L. Marshall–Olkin extended Lomax distribution and its application to

censored data. Communications in Statistics—Theory and Methods. 2007; 36(10):1855–1866. https://

doi.org/10.1080/03610920601126571

9. Ristic MM, Jose K, Ancy J. A Marshall–Olkin gamma distribution and minification process. Stress Anxi-

ety Res Soc. 2007; 11:107–117.

10. Jose K, Krishna E. Marshall-Olkin extended uniform distribution. In: ProbStat Forum. vol. 4; 2011. p.

78–88.

11. Gui W. Marshall-Olkin extended log-logistic distribution and its application in minification processes.

Appl Math Sci. 2013; 7(80):3947–3961.

12. Tomy L, Gillariose J. The Marshall-Olkin IKum Distribution. Biom Biostat Int J. 2018; 7(1):00186.

13. Maxwell O, Chukwu AU, Oyamakin OS, Khaleel MA. The Marshall-Olkin inverse Lomax distribution

(MO-ILD) with application on cancer stem cell. Journal of Advances in Mathematics and Computer Sci-

ence. 2019; p. 1–12. https://doi.org/10.9734/jamcs/2019/v33i430186

14. Javed M, Nawaz T, Irfan M. The Marshall-Olkin kappa distribution: properties and applications. Journal

of King Saud University-Science. 2019; 31(4):684–691. https://doi.org/10.1016/j.jksus.2018.01.001

15. AHmad HH, Almetwally E. Marshall-Olkin Generalized Pareto Distribution: Bayesian and Non Bayesian

Estimation. Pakistan Journal of Statistics and Operation Research. 2020; p. 21–33. https://doi.org/10.

18187/pjsor.v16i1.2935

16. Nwezza EE, Ugwuowo FI. The Marshall-Olkin Gumbel-Lomax distribution: properties and applications.

Heliyon. 2020; 6(3):e03569. https://doi.org/10.1016/j.heliyon.2020.e03569 PMID: 32195394

17. Haq MAU, Hamedani G, Elgarhy M, Ramos PL, et al. Marshall-Olkin Power Lomax distribution: Proper-

ties and estimation based on complete and censored samples. International Journal of Statistics and

Probability. 2020; 9(1):1–48.

18. Aako O, Adewara J, Adekeye K, Nkemnole E. Robust Scale Estimator-Based Control Charts for Mar-

shall-Olkin Inverse Log-Logistic Distribution. BENIN JOURNAL OF STATISTICS. 2020; 3:33–65.

19. Santos-Neto M, Bourguignon M, Zea LM, Nascimento AD, Cordeiro GM. The Marshall-Olkin extended

Weibull family of distributions. Journal of Statistical Distributions and Applications. 2014; 1(1):9. https://

doi.org/10.1186/2195-5832-1-9

PLOS ONE A new generalized family of distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0263673 February 9, 2022 27 / 29

https://doi.org/10.1080/03610929808832134
https://doi.org/10.1093/biomet/84.3.641
https://doi.org/10.1093/biomet/84.3.641
https://doi.org/10.1080/02664760500165008
https://doi.org/10.1080/02664760500165008
https://doi.org/10.1007/s00362-012-0431-8
https://doi.org/10.2991/jsta.2017.16.1.1
https://doi.org/10.1080/03610920601126571
https://doi.org/10.1080/03610920601126571
https://doi.org/10.9734/jamcs/2019/v33i430186
https://doi.org/10.1016/j.jksus.2018.01.001
https://doi.org/10.18187/pjsor.v16i1.2935
https://doi.org/10.18187/pjsor.v16i1.2935
https://doi.org/10.1016/j.heliyon.2020.e03569
http://www.ncbi.nlm.nih.gov/pubmed/32195394
https://doi.org/10.1186/2195-5832-1-9
https://doi.org/10.1186/2195-5832-1-9
https://doi.org/10.1371/journal.pone.0263673


20. Chakraborty S, Handique L. The generalized Marshall-Olkin-Kumaraswamy-G family of distributions.

Journal of data Science. 2017; 15(3):391–422. https://doi.org/10.6339/JDS.201707_15(3).0003

21. Jamal F, Reyad H, Chesneau C, Nasir M, Othman S. The Marshall-Olkin odd Lindley-G family of distri-

butions: Theory and applications. Punjab University Journal of Mathematics. 2019; 51(7):111–125.

22. Nassar M, Kumar D, Dey S, Cordeiro GM, Afify AZ. The Marshall–Olkin alpha power family of distribu-

tions with applications. Journal of Computational and Applied Mathematics. 2019; 351:41–53. https://

doi.org/10.1016/j.cam.2018.10.052

23. Khaleel MA, Oguntunde PE, Al Abbasi JN, Ibrahim NA, AbuJarad MH. The Marshall-Olkin Topp Leone-

G Family of Distributions: A family for generalizing probability models. Scientific African. 2020; p.

e00470. https://doi.org/10.1016/j.sciaf.2020.e00470

24. Afify AZ, Cordeiro GM, Ibrahim NA, Jamal F, Elgarhy M, Nasir MA. The Marshall-Olkin odd Burr III-G

family: theory, estimation, and engineering applications. IEEE Access. 2020; 9:4376–4387. https://doi.

org/10.1109/ACCESS.2020.3044156

25. Alzaatreh A, Lee C, Famoye F. A new method for generating families of continuous distributions.

Metron. 2013; 71(1):63–79. https://doi.org/10.1007/s40300-013-0007-y

26. Alzaatreh A, Ghosh I. On the Weibull-X family of distributions. Journal of Statistical Theory and Applica-

tions. 2015; 14(2):169–183. https://doi.org/10.2991/jsta.2015.14.2.5

27. Alzaatreh A, Famoye F, Lee C. Weibull-Pareto distribution and its applications. Communications in Sta-

tistics-Theory and Methods. 2013; 42(9):1673–1691. https://doi.org/10.1080/03610926.2011.599002

28. Ahmad A, Ahmad S, Ahmed A. Characterization and Estimation of Weibull-Rayleigh distribution with

Applications to life time data. Appl Math Inf Sci Lett. 2017; 5:71–79.

29. Hashmi S, Gull H. A NEW WEIBULL-LOMAX (TX) DISTRIBUTION & ITS APPLICATION. Pakistan

Journal of Statistics. 2018; 34(6).

30. Klakattawi HS. The Weibull-Gamma Distribution: Properties and Applications. Entropy. 2019; 21

(5):438. https://doi.org/10.3390/e21050438 PMID: 33267152

31. Yousof HM, Rasekhi M, Afify AZ, Ghosh I, Alizadeh M, Hamedani G. THE BETA WEIBULL-G FAMILY

OF DISTRIBUTIONS: THEORY, CHARACTERIZATIONS AND APPLICATIONS. Pakistan Journal of

Statistics. 2017; 33(2).

32. Hassan AS, Elgarhy M. Kumaraswamy Weibull-generated family of distributions with applications.

Advances and Applications in Statistics. 2016; 48(3):205. https://doi.org/10.17654/AS048030205

33. Oluyede B. The Gamma-Weibull-G Family of Distributions with Applications. Austrian Journal of Statis-

tics. 2018; 47(1):45–76. https://doi.org/10.17713/ajs.v47i1.155

34. Mudholkar GS, Srivastava DK, Kollia GD. A generalization of the Weibull distribution with application to

the analysis of survival data. Journal of the American Statistical Association. 1996; 91(436):1575–1583.

https://doi.org/10.1080/01621459.1996.10476725

35. Gupta RD, Kundu D. Exponentiated exponential family: an alternative to gamma and Weibull distribu-

tions. Biometrical Journal: Journal of Mathematical Methods in Biosciences. 2001; 43(1):117–130.

https://doi.org/10.1002/1521-4036(200102)43:1%3C117::AID-BIMJ117%3E3.0.CO;2-R

36. Nadarajah S, Kotz S. The exponentiated type distributions. Acta Applicandae Mathematica. 2006; 92

(2):97–111. https://doi.org/10.1007/s10440-006-9055-0

37. R Core Team. R: A Language and Environment for Statistical Computing; 2019. Available from: https://

www.R-project.org/.

38. Nadarajah S, Rocha R. Newdistns: An R Package for New Families of Distributions. Journal of Statisti-

cal Software, Articles. 2016; 69(10):1–32.

39. Alzaghal A, Famoye F, Lee C. Exponentiated TX family of distributions with some applications. Interna-

tional Journal of Statistics and Probability. 2013; 2(3):31. https://doi.org/10.5539/ijsp.v2n3p31

40. Almetwally EM, Alharbi R, Alnagar D, Hafez EH. A New Inverted Topp-Leone Distribution: Applications

to the COVID-19 Mortality Rate in Two Different Countries. Axioms. 2021; 10(1):25. https://doi.org/10.

3390/axioms10010025

41. Proschan F. Theoretical explanation of observed decreasing failure rate. Technometrics. 1963; 5

(3):375–383. https://doi.org/10.1080/00401706.1963.10490105

42. Badar MG, Priest AM. Statistical Aspects of Fiber and Bundle Strength in Hybrid Composites. Progress

in Science and Engineering Composites. 1982; p. 1129–1136.

43. Smith RL, Naylor JC. A comparison of maximum likelihood and Bayesian estimators for the three-

parameter Weibull distribution. Applied Statistics. 1987; 36:358–369. https://doi.org/10.2307/2347795

44. Efron B. Logistic regression, survival analysis, and the Kaplan-Meier curve. Journal of the American sta-

tistical Association. 1988; 83(402):414–425. https://doi.org/10.1080/01621459.1988.10478612

PLOS ONE A new generalized family of distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0263673 February 9, 2022 28 / 29

https://doi.org/10.6339/JDS.201707_15(3).0003
https://doi.org/10.1016/j.cam.2018.10.052
https://doi.org/10.1016/j.cam.2018.10.052
https://doi.org/10.1016/j.sciaf.2020.e00470
https://doi.org/10.1109/ACCESS.2020.3044156
https://doi.org/10.1109/ACCESS.2020.3044156
https://doi.org/10.1007/s40300-013-0007-y
https://doi.org/10.2991/jsta.2015.14.2.5
https://doi.org/10.1080/03610926.2011.599002
https://doi.org/10.3390/e21050438
http://www.ncbi.nlm.nih.gov/pubmed/33267152
https://doi.org/10.17654/AS048030205
https://doi.org/10.17713/ajs.v47i1.155
https://doi.org/10.1080/01621459.1996.10476725
https://doi.org/10.1002/1521-4036(200102)43:1%3C117::AID-BIMJ117%3E3.0.CO;2-R
https://doi.org/10.1007/s10440-006-9055-0
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.5539/ijsp.v2n3p31
https://doi.org/10.3390/axioms10010025
https://doi.org/10.3390/axioms10010025
https://doi.org/10.1080/00401706.1963.10490105
https://doi.org/10.2307/2347795
https://doi.org/10.1080/01621459.1988.10478612
https://doi.org/10.1371/journal.pone.0263673


45. Lawless JF. Statistical models and methods for lifetime data. vol. 362. John Wiley & Sons; 2011.

46. Cordeiro GM, Maria do Carmo SL, Gomes AE, Da-Silva CQ, Ortega EM. The gamma extended Weibull

distribution. Journal of Statistical Distributions and Applications. 2016; 3(1):1–19. https://doi.org/10.

1186/s40488-016-0043-2

47. De Santana TVF, Ortega EM, Cordeiro GM, Silva GO. The Kumaraswamy-log-logistic distribution.

Journal of Statistical Theory and Applications. 2012; 11(3):265–291.

48. Carrasco JM, Ortega EM, Paula GA. Log-modified Weibull regression models with censored data: Sen-

sitivity and residual analysis. Computational statistics & data analysis. 2008; 52(8):4021–4039. https://

doi.org/10.1016/j.csda.2008.01.027

49. Ortega EM, Cordeiro GM, Carrasco JM. The log-generalized modified Weibull regression model. Brazil-

ian Journal of Probability and Statistics. 2011; 25(1):64–89. https://doi.org/10.1214/09-BJPS110

50. Al-Aqtash R, Mallick A, Hamedani G, Aldeni M, et al. On the Gumbel-Burr XII Distribution: Regression

and Application. International Journal of Statistics and Probability. 2021; 10(6):1–31. https://doi.org/10.

5539/ijsp.v10n6p31

PLOS ONE A new generalized family of distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0263673 February 9, 2022 29 / 29

https://doi.org/10.1186/s40488-016-0043-2
https://doi.org/10.1186/s40488-016-0043-2
https://doi.org/10.1016/j.csda.2008.01.027
https://doi.org/10.1016/j.csda.2008.01.027
https://doi.org/10.1214/09-BJPS110
https://doi.org/10.5539/ijsp.v10n6p31
https://doi.org/10.5539/ijsp.v10n6p31
https://doi.org/10.1371/journal.pone.0263673

