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Abstract

Common genetic risk for neuropsychiatric disorders is enriched in regulatory elements active 

during cortical neurogenesis. However, it remains poorly understood how these variants influence 

gene regulation. To model the functional impact of common genetic variation on the non-coding 

genome during human cortical development, we performed ATAC-seq and analyzed chromatin 

accessibility quantitative trait loci in cultured human neural progenitor cells and their 

differentiated neuronal progeny from 92 donors. We identified significant genetic effects on 

988/1,839 neuron/progenitor regulatory elements, with highly cell-type and temporally specific 

effects. A subset (~30%) of caQTLs were also associated with changes in gene expression. Motif-

disrupting alleles of transcriptional activators generally led to decreases in chromatin accessibility, 

whereas motif-disrupting alleles of repressors led to increases in chromatin accessibility. By 

integrating cell-type specific caQTLs and brain-relevant genome-wide association data, we were 

able to fine-map and identify regulatory mechanisms underlying non-coding neuropsychiatric 

disorder risk loci.

Genome-wide association studies (GWAS) have revealed hundreds of common single 

nucleotide polymorphisms (SNPs) that are associated with risk for neuropsychiatric 

disorders and interindividual differences in brain structure1,2. A crucial next step is to 

understand the molecular mechanisms underlying the effect of these variants2. This is 

complicated by many factors, including unknown causal variant(s) at an associated locus due 

linkage disequilibrium (LD)3, unknown cell-type(s), tissue-type(s), or developmental time 

period(s) in which a genetic risk variant exerts its effects4, and unknown regulatory function 

of non-coding risk variants5. Nevertheless, a commonly assumed model to explain molecular 

mechanisms underlying risk loci is that non-coding risk alleles disrupt transcription factor 

(TF) binding within cell-type specific regulatory elements (REs) leading to alterations in 

gene expression and downstream impacts on risk6,7. Thus, understanding genetic effects on 

cell-type specific regulatory activity is an essential aspect of moving from genetic 

association to a meaningful biological understanding of disorder risk.

With this in mind, several consortia including ENCODE, GTEx and PsychENCODE have 

taken major steps to build maps of non-coding genome function across the body8–12. These 

and other efforts have connected non-coding genetic variation to genes in developing and 

adult brain tissue by profiling 3-dimensional chromatin interactions and by measuring the 

genetic effects on gene expression, called expression quantitative trait loci (eQTLs)13,14. 

Although these studies are an important first step in connecting non-coding risk loci to 

genes, they do not elucidate how the gene is regulated via genetic variation.

Risk variants for multiple neuropsychiatric disorders are enriched in REs active at mid-

gestation in humans, during cortical neurogenesis15. Histone acetylation QTLs (haQTLs) 

and chromatin accessibility QTLs (caQTLs) are powerful tools to identify the effect of 

genetic variation on non-coding REs and provide further understanding of regulatory 

mechanisms at tissue or cell-type specific levels11,16,17. However, the ability to connect 

human genetic variation to longitudinal changes in regulatory architecture during brain 

development is limited by the inaccessibility of brain tissue from the same individual over 

multiple time points. Here, we leveraged a well validated model of human brain 
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development based on in vitro culture of primary human neural progenitors18 to study the 

functional effects of genetic variation on chromatin architecture during neurogenesis. We 

measured chromatin accessibility19 in cell culture in a cell-type specific manner at two key 

stages of neural development, during progenitor proliferation (Ndonor=76) and after 

differentiation using their sorted neuronal progeny (Ndonor=61). We identified thousands of 

caQTLs and allele specific chromatin accessibility (ASCA) sites, the majority of which were 

highly cell-type specific. We use the effects of these genetic variations to understand how 

disrupting TF binding motifs impact chromatin accessibility and gene expression, as well as 

to understand the cell-type specific regulatory mechanisms underlying genetic risk for 

neuropsychiatric disorders.

Results

Genome-wide chromatin accessibility profiling

We generated primary human neural progenitor cell (phNPC) lines from 14–21 gestation 

weeks genotyped fetal brains (N=92) using a neurosphere isolation method that results in 

cultures with high fidelity to the in vivo developing brain18 (Figure 1a; Methods). phNPCs 

were cultured and isolated at two stages: progenitor cells and 8-week differentiated and 

sorted neurons (Extended Data Figure 1a–1b). Using immunofluorescence of neural cell 

markers, we found over 90% of the progenitor cells were positive for SOX2 and PAX6, 

indicating a highly homogenous population of radial glia cells20 (Figure 1a; Extended Data 

Figure 1c). After 8-weeks of differentiation, we FACS sorted neurons labeled using a viral 

construct (AAV2-hSyn1-EGFP) which showed typical neuronal morphology (Figure 1a; 

Extended Data Figure 1b and 1d; Methods). We performed ATAC-seq on intact nuclei and 

found that libraries were high quality based on a comparison of quality metrics relative to 

previous in vivo developing brain data, as well as a sensitivity analysis and nucleosome 

periodicity (Extended Data Figure 1e and 2a–2b; Methods)15,19. We quantified accessibility 

as batch-effect-corrected reads within accessible peaks normalized for GC content, peak 

length and sequencing depth (Extended Data Figure 2c, 2e and 2f). We found higher 

correlations of chromatin accessibility for libraries from the same donors cultured at 

different times as compared to correlations across donors (Extended Data Figure 2d). To 

ensure independence for subsequent analyses, we randomly selected one library from each 

donor for each cell-type (N_progenitor=76 and N_neuron=61) to identify accessible peaks 

(N=90,227; average peak length of 409 bp; Methods).

To determine the in vivo relevance of these accessible peaks, we performed an overlap 

analysis utilizing previously classified chromatin states from 93 in vivo human tissues and 

cell types (Figure 1b; Methods). The accessible peaks from progenitors and neurons most 

strongly overlap with enhancers and promoters in brain germinal matrix and fetal brain 

tissue, followed by other brain regions, indicating that these peaks were highly 

representative of the in vivo fetal brain. Principal component analysis of chromatin 

accessibility revealed that progenitors and neurons clearly separate along the first principal 

component (Figure 1c), indicating that cell-type was associated with the largest variability in 

chromatin accessibility profiles (64.91% of variance explained). These results demonstrate 

that chromatin accessibility measured from phNPC cultures are representative of REs 
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present in the developing human brain and that chromatin accessibility patterns are different 

between progenitors and neurons, consistent with previous data from fetal brain tissues15.

Identifying cell-type specific regulatory elements

To reveal cell-type specific REs involved in neuronal differentiation, we performed an 

analysis to determine which peaks had significantly different chromatin accessibility 

between progenitors and neurons (Figure 1d; Methods). We identified 35,379 peaks with 

greater accessibility in progenitors than neurons (progenitor peaks) and 44,729 peaks with 

greater accessibility in neurons than progenitors (neuron peaks; FDR < 0.05; Supplementary 

Table 1). At the promoter of SYN1, which was used to label neurons for sorting after 

differentiation, we observed considerably higher accessibility in neurons, as expected (LFC=

−2.88, P-value=2.83e-55; Figure 1d). Among significant differentially accessible peaks, we 

found greater accessibility in progenitors at the promoters of genes highly or uniquely 

expressed in progenitors, such as the dorsal telencephalic marker EMX2 (Figure 1e)21. 

Moreover, promoters of genes highly expressed in neurons, such as DCX, BDNF, CAMK2B 
and SYT1322, showed greater chromatin accessibility in neurons (Figure 1d–1e).

We found an expected enrichment of Gene Ontology terms related to neurogenesis in genes 

with differentially accessible promoters (Extended Data Figure 3a; Methods). We also found 

that differentially accessible peaks were significantly enriched in ATAC-seq peaks from the 

relevant in vivo fetal brain laminae (Figure 1f)15. Specifically, progenitor peaks were more 

enriched in peaks with higher accessibility in the progenitor-enriched germinal zone. 

Conversely, neuron peaks were more enriched in peaks with higher accessibility in the 

neuron-enriched cortical plate. These results showed differentially accessible peaks 

represent cell-type specific active REs and were in strong agreement with biological 

processes and gene regulatory behavior present in in vivo fetal brain tissues.

To detect TFs involved in neuronal differentiation, we conducted a differential motif 

enrichment analysis to predict TF binding sites more active in either progenitors or neurons. 

We detected 62 TFs (FDR < 0.05) with binding sites present more often in progenitor peaks 

than neuron peaks (here, called progenitorTFs), and 208 TF motifs presents more often in 

neuron peaks than progenitor peaks (neuronTFs) (Methods; Extended Data Figure 3b; 

Supplementary Table 2). Within progenitorTFs and neuronTFs, we found TFs previously 

characterized with key roles in neurogenesis, which provides further support that TF binding 

within accessible peaks from this in vitro system reflect the expected in vivo developmental 

processes (Extended Data Figure 3c; Supplementary Table 2)15. We also identified several 

TFs that have not been previously associated with neuronal differentiation, such as MEF2A, 

MIX-A and HOXB5, which may be useful for directed differentiation of human neural 

progenitors.

Chromatin accessibility quantitative trait loci (caQTLs)

To identify genetic variants that influence chromatin accessibility within cell types 

representing longitudinal changes during cortical development, we performed caQTL 

analyses separately for progenitors and neurons using in total 90,227 peaks and 10M genetic 

variants (Figure 2a; Extended Data Figure 4a–4b). We stringently controlled for population 
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stratification (Extended Data Figure 4c) in association tests using a mixed linear model 

including a kinship matrix as a random effect, and 10 genotype MDS components as fixed 

effects23,24. In addition, we included principal components (PCs) across chromatin 

accessibility profiles and sorter in neurons as fixed effect covariates to reduce the impact of 

unmeasured technical variation25.

After the stringent multiple testing correction (Methods), we identified 1,839 progenitor 

caPeaks and 988 neuron caPeaks at FDR < 5%. caPeaks were significantly enriched in active 

REs defined in the fetal brain (Extended Data Figure 4d), consistent with their expected 

regulatory function. The most significant caSNPs of each caPeak are most often found near 

the peaks they are associated with (Figure 2b). We found that the most significant caSNP or 

an LD-proxy was located in annotated functional regions for over 80% of caPeaks (Figure 

2c; Supplementary Table 3). These results imply that most genetic variants affect chromatin 

accessibility by altering the sequence (and presumably transcription factor binding sites) at 

the caPeak or disrupt chromatin accessibility at distal peaks which have secondary effects on 

the caPeak7.

To identify if genetic influences on chromatin accessibility also affected gene expression, we 

compared progenitor/neuron caQTLs with eQTLs derived from the same cell lines and 

eQTLs from the mid-gestation bulk cortical wall14,26. For the most significant caSNPs for 

each caPeak, we estimated the posterior probability that the effect is shared with cell-type 

specific or cortical wall eQTLs (m-value > 0.9; Supplementary Table 4). Thirty percent of 

progenitor caQTLs and 34.9% of neuron caQTLs have shared effects with eQTLs in the 

same cell types, but a smaller proportion are shared with bulk cortical wall eQTLs (Figure 

2d). Those SNPs with shared effects between caQTLs and eQTLs showed strongly positive 

correlations in effect sizes (r=0.85 in neurons and r=0.84 in progenitors; Figure 2e), 

indicating that alleles associated with increased chromatin accessibility tend to be associated 

with increased gene expression.

We then compared the number and effect size differences between caQTLs and eQTLs. 

First, we subsampled the eQTL dataset to ensure that caQTLs and eQTLs have the same 

sample sizes in order to avoid winner’s curse27 (Methods). The proportions of peaks (2.62%/

5.81% in neuron/progenitor) or genes (1.85%/5.70%) influenced by genetic variation were 

comparable in caQTL or eQTLs. However, we observed that caQTLs generally explain more 

variance than eQTLs, implying that caQTL studies have higher power than eQTL studies28 

(Figure 2f; Extended Data Figure 4e).

Genetic effects on cell-type specific regulatory elements

We next aimed to identify the cognate genes of cell-type specific REs, fine map causal 

variants at eQTL loci, and predict regulatory mechanisms underlying eQTLs by overlapping 

cell-type specific caQTLs with cell-type specific or bulk fetal cortical eQTLs (r2>0.8 

between index ca/eSNPs; Supplementary Table 5). Using cell-type specific eQTLs, we 

identified ca/eQTL overlaps in 152/373 RE-Gene pairs in neurons/progenitors. Using the 

larger sample size of fetal cortical eQTLs, we identified 303/282 RE-Gene pairs using 

neuron/progenitor caQTLs. Within these RE-Gene pairs, we found many genes involved in 

neuronal differentiation such as FABP7, VAT1 and FGF129–31. We also identified RE-gene 
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pairs where the caSNP disrupted TF motifs that have known function in neuronal 

differentiation. For example, the G allele of rs185220 was associated with increased 

chromatin accessibility of a caPeak (chr5:56,909,141–56,910,860) near the SETD9 TSS and 

was associated with increased expression of SETD9 in neurons and progenitors (Figure 3a–

3c). Several TF motifs were disrupted by this caSNP, but we prioritized REST based on its 

expression in progenitors22,26 (Figure 3d; logFC=−1.85, FDR = 2.75e-17) and evidence of 

binding at this site in ES cells and to a lesser degree in neurons differentiated from ES 

cells8,9 (Figure 3a). The G allele of rs185220 led to disruption of the REST motif and 

increased chromatin accessibility, consistent with the function of REST as a repressor32. 

Through integration of ca/eQTL data, we hypothesize a regulatory mechanism where the G 

allele of rs185220 disrupts REST binding, resulting in increased chromatin accessibility and 

increased expression of SETD9 (Figure 3e). As experimental validation of this caQTL, we 

found that the G allele of rs185220 increased the activity of this enhancer in progenitors 

relative to the A allele using a luciferase assay (Figure 3f).

In contrast with the previous example, we found the C allele of the caSNP, rs11544037, 

matched the motif of RAD21 and was associated with increased chromatin accessibility of 

the progenitor-specific enhancer (chr4:158,667,771–158,667,860 located ~5 kb upstream 

from the ETFDH TSS) and increased expression of EFTDH in fetal brain (Extended Data 

Figure 5a–5e). Experimental validation via a luciferase reporter assay showed a consistent 

result with the caQTL for this enhancer (Extended Data Figure 5f). As a final example of 

regulatory mechanisms underlying a cell-type specific eQTL, we found the C allele of 

rs11960262 associated with increased chromatin accessibility of a caPeak 

(chr5:142,684,441–142,686,700) located in the intron of the gene FGF1 and also associated 

with increased FGF1 expression specifically in progenitors (Extended Data Figure 5g–5i). 

The C allele of rs11960262 matched the motif of EGR1 (Extended Data Figure 5j–5k), 

which suggests that EGR1 binding at this caPeak was associated with increased chromatin 

accessibility and increased expression of FGF1 in progenitors.

Allele Specific Chromatin Accessibility (ASCA)

We next tested for ASCA at heterozygous SNPs within accessible peaks. ASCA contrasts 

accessibility between two alleles within an individual at a given heterozygous SNP, so it is 

not susceptible to cross-individual confounding factors, such as population structure33. In 

total, we identified 1,602 significant progenitor ASCA and 3,288 significant neuron ASCA 

(FDR < 0.05; Supplementary Table 6). To determine if caQTLs also show ASCA, we 

retained significant caQTLs (non-clumped, FDR < 0.05) using the same heterozygous 

donors and read level criteria for ASCA, observing that 90.1% of filtered neuron caQTLs 

were shared with neuron ASCA (Fisher’s test: OR=51.48, p-value=1.32e-228) and 86.9% of 

filtered progenitor caQTLs were shared with progenitor ASCA (Fisher’s test: OR=45.54, p-

value=1.37e-239). This demonstrates extremely high overlap between caQTLs and ASCA 

(Figure 4a), which indicates minimal influence of cross-individual confounding effects on 

the caQTL results. Similarly, for all filtered caQTLs and significant ASCA in Figure 4a, we 

found high correlations of effect sizes between caQTLs and ASCA (r=0.61 for neurons; 

r=0.69 for progenitors), indicating a shared direction and degree of effect (Figure 4b). The 

alternative allele showed a slight bias, even after controlling reference mapping bias, for a 
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higher correlation with increasing chromatin accessibility from the reference allele (neuron 

log2(ALT/REF) are 53.4% positive, two-sided sign test p=0.034; progenitor log2(ALT/REF) 

are 52.5% positive, two-sided sign test p=0.121).

However, we also detected significant ASCAs that were not significant caQTLs (Figure 4b). 

These variants were found in larger peaks than those detected in both caQTL and ASCA 

(Extended Data Figure 6a). These ASCA-but-not-caQTL variants likely have an effect on 

the accessibility of a sub-region of the larger active RE. We posit that they are more 

detectable using ASCA because only reads containing the variant in the accessible region 

are tested, whereas they are not detectable in caQTLs, which integrate reads across the entire 

region (Extended Data Figure 6b). Other ASCA-but-not-caQTL sites were presumably due 

to lower power for caQTL detection (Extended Data Figure 6c).

We identified several loci that shared caQTLs, ASCA, and eQTLs. For example, previously 

described SETD9 locus also demonstrated strong ASCA at rs185220 in neurons and 

progenitors (Extended Data Figure 6d). We were also interested in FABP7 (also known as 

BLBP), which is a marker for radial glia that plays an important role in establishment of 

radial glial fibers spanning the cortical anlage during cortical development30 (Figure 4c). 

The C allele of rs144376334 was associated with increased chromatin accessibility of the 

caPeak (chr6:122,832,401–122,834,160) in both progenitors and neurons and increased 

expression of FABP7 (Figure 4d). The C allele of rs144376334 also showed increased 

ASCA in both progenitors and neurons (Figure 4e). rs144376334 disrupted several TF 

motifs that may drive the effect in both cell types, and we highlight JUN due to its higher 

expression in progenitors (Figure 4e; logFC = −1.22, FDR = 1.816794e-11)22,26. The motif 

disrupting allele was associated with decreased chromatin accessibility, consistent with 

activating REs (Figure 4g). These results suggest the potential regulatory mechanism 

underlying this locus in progenitors is that the genetic variation disrupts JUN binding to a 

distal RE leading to decreased expression of FABP7.

Cell-type specificity of caQTLs

To determine the cell-type specificity of ca/eQTLs, we estimated the posterior probability 

that the allelic effect is shared between the two cell types (m-value > 0.9). caQTLs showed a 

lower proportion of effect sharing between neurons and progenitors (45.6% and 41.0%) than 

eQTLs (78.0% and 56.7%) (Figure 5a). We found the estimated proportion of true 

alternative hypotheses that the variant is associated with the trait (π1) of the most significant 

neuron/progenitor caSNP-caPeak pairs in progenitors/neurons is 0.73/0.70; however, the π1 

of the most significant neuron/progenitor eSNP-eGene pairs in progenitors/neurons is 

0.92/0.77, providing additional support that caQTLs have higher cell-type specificity than 

eQTLs. We found 19%/35% of progenitor/neuron caPeaks overlapped with neuron/

progenitor caPeaks (Figure 5b). For ASCA, we found 24%/12% of progenitor/neuron ASCA 

are shared between cell types, which was in agreement with the cell-type specificity 

observed in caQTLs. These results suggest that genetic variants often impact chromatin 

accessibility only within specific cell-types.

We further characterized the cell-type specificity of caQTLs by assessing differential 

accessibility of caPeaks (Figure 5c). We found 71.0% of progenitor caPeaks were more 
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accessible in progenitors (LFC > 0). Similarly, 69.8% neuron caPeaks were more accessible 

in neurons (LFC < 0). This implies that a RE must be accessible to or bound by DNA-

binding proteins within a specific cell-type in order to observe genetic effects on that RE. 

We next characterized the location of caPeaks relative to promoters (Figure 5d). We found 

there was a higher percentage of cell-type specific caPeaks that were distal to promoters than 

shared caPeaks. This result indicates cell-type specific caQTLs are more likely to affect the 

chromatin accessibility of distal REs, which is consistent with observations that distal REs 

have higher cell-type specificity than promoters34.

To determine the direction and magnitude of the effect in caQTLs, we related the effect sizes 

of caQTLs or eQTLs between neurons and progenitors. We found that caQTLs showed a 

lower correlation between neurons and progenitors (r=0.73 and r=0.70) as compared to 

eQTLs (r=0.81 and r=0.81) (Figure 5e–5f; p value < 2.2e-16 in neurons and progenitors35), 

which is consistent with the observation that caQTLs showed a lower proportion of shared 

effects between neurons and progenitors than eQTLs (Figure 5a). Together, these results 

suggest that caQTLs have higher cell-type specificity than eQTLs, within the two cell types 

tested here.

Comparison to adult dorsolateral prefrontal cortex caQTLs

Previous work identified genetic variants associated with chromatin accessibility in adult 

post-mortem dorsolateral prefrontal cortex (DLPFC) using a sample of 272 individuals16. 

We tested whether the caQTLs identified in our work, modeling a prenatal time period, were 

also present in the adult cortex. We found 56% of adult peaks are shared with neurons and 

progenitors (Extended Data Figure 7a–b). We re-mapped caQTLs in neurons and progenitors 

using shared peaks and genetic variants with the adult data. We did not find any significant 

neuron/progenitor caQTLs shared with significant caQTLs in adult cortex. For the 27 

significant neuron caQTLs, we found the correlation (r=0.61) of effect sizes with adult 

caQTLs are higher than the correlation (r=0.34) in 35 significant progenitor caQTLs 

(Extended Data Figure 7c), which may be expected given that progenitors are not present in 

the adult cortex. Together, these results indicate that caQTLs have high temporal specificity, 

as well as cell-type specificity.

Prediction of disrupted transcription factor binding

One favored model of how genetic variation influences chromatin accessibility is that SNPs 

disrupt TF motifs, decreasing the probability of TF binding to REs, altering chromatin 

accessibility36. To identify which TF motifs are disrupted by cell-type specific caSNPs, we 

mapped TF motifs to the sequence surrounding the neuron-specific/progenitor-specific 

caSNPs and determined if an allele at the caSNP sufficiently decreases the relative entropy 

of TF motifs (Methods; Supplementary Table 7). We then performed an enrichment analysis 

to infer which TF’s binding is often affected by caQTLs within each cell type. In 

progenitors, we found an enrichment of caSNP disrupted REST and SOX11 motifs, which 

are known to contribute to neurogenesis32,37. In neurons, we found an enrichment of caSNP 

disrupted RARb motifs, which is involved in prefrontal synaptogenesis and axon 

development38 (Figure 6a). These results suggest that the motif disrupted TFs are involved 
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in neuronal differentiation, indicating that the genetic variants that impact the activity of REs 

by disrupting the binding of TFs play functional roles during neurogenesis.

We next tested the impact of the TF motif-disrupting alleles on chromatin accessibility. 

Among 532 tested motifs in progenitors and 514 tested motifs in neurons, we found that 

motif-disrupting alleles led to decreased accessibility for 40 (72.7% of significant TFs) TFs 

in progenitors and 44 (97.8% of significant TFs) TFs in neurons (Figure 6b–6c), such as the 

motif of POU3F2 (also known as BRN2) in progenitors and ASCL2 in neurons, which are 

both involved in neurogenesis39,40 (Figure 6d). Conversely, we found the motif-disrupting 

allele was associated with increased chromatin accessibility at the motif of ZEB1, a known 

transcriptional repressor41 (Figure 6e). These results suggest that binding of transcriptional 

activators is associated with increased chromatin accessibility. However, binding of 

transcriptional repressors is associated with decreased chromatin accessibility.

Regulatory mechanisms underlying GWAS loci

To investigate if genetic variants associated with brain related traits are enriched in 

differentially accessible peaks during neurogenesis, we calculated partitioned heritability 

enrichment (Figure 7a–7b). We found cell-type specific enrichments for neuropsychiatric 

disorders and associated behaviors in accessible regions. Genetic variants associated with 

several childhood or adult onset neuropsychiatric disorders or traits, including ASD, 

schizophrenia, major depressive disorder (MDD), neuroticism and depressive symptoms, 

showed significant partitioned heritability enrichment in progenitor peaks. With the 

exception of schizophrenia, these disorders did not show significant enrichment in neuron 

peaks. We observed partitioned heritability enrichment for both intelligence and educational 

attainment within neuron peaks and progenitor peaks. As a negative control, we did not 

observe enrichment of inflammatory bowel disease (IBD) heritability in differentially 

accessible peaks. These results are consistent with the model that genetic variants alter the 

function of REs during cortical neurogenesis, which then leads to risk for neuropsychiatric 

disorders or related traits in childhood or adulthood14,15.

We found genetic variants associated with the cortical global surface area showed significant 

partitioned heritability enrichment in progenitor peaks, as well as the surface area of 

multiple cortical subregions including caudal anterior cingulate, entorhinal, lateral occipital, 

lingual, and pericalcarine1. (Figure 7b). Genetic variants associated with the thickness of the 

entorhinal cortex, but not average thickness across the entire cortex, also showed significant 

partitioned heritability enrichment in progenitor peaks. These results are consistent with the 

radial unit hypothesis, which posits that expansion of the neural progenitor pool in prenatal 

development leads to alterations in adult cortical surface area42.

To study the cell-type specific gene-regulatory impact of genetic variants associated with 

neuropsychiatric disorders and brain structure traits, we performed a co-localization analysis 

of progenitor/neuron caQTLs with existing GWAS data (Supplementary Table 8). We 

identified overlapped signals (pairwise LD r2 > 0.8 between the GWAS index and caQTL 

index) and then performed a conditional analysis to verify that the two variants mark the 

same locus (Methods). We found co-localized loci in neuropsychiatric disorders, including 

schizophrenia, MDD, neuroticism and bipolar disorder, as well as IQ and educational 
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attainment (Figure 7c). We also found co-localizations with global surface area and other 

brain structure associated loci1. We found additional ASCA sites located within GWAS loci 

(Extended Data Figure 8a; Supplementary Table 9). These results suggest that SNPs impact 

risk for brain-relevant traits and disorders by regulating the activity of REs in these two cell 

types during mid-fetal brain development, and provide a framework for exploring the 

mechanistic bases for these specific loci.

We next investigated regulatory mechanisms underlying co-localized loci using cell-type 

specific caQTLs. Combining fetal cortical/cell-type specific eQTL data, we found a co-

localized locus across progenitor specific caQTLs, fetal cortical eQTLs and MDD GWAS 

(Figure 7d). We found more than 30 SNPs in high LD with an MDD GWAS index SNP 

(rs1950826). Eight of these variants were located in a caPeak (chr14:41,604,471–

41,610,540). We prioritized one putatively causal SNP by testing for ASCA, finding that the 

A allele of the caSNP rs1950834 (protective allele for MDD), was associated with decreased 

accessibility of this caPeak in progenitors (Figure 7e–7f and 7h), which is consistent with 

luciferase reporter assay in previous work43. We also found the A allele of rs1950834 was 

associated with decreased expression of lncRNA AL121821.1 (ENSG00000258636) in fetal 

cortex and progenitors (Figure 7g). After conditioning on the MDD index SNP, rs1950826, 

the caQTL was no longer significant, indicative of co-localization (Figure 7d). We found 

evidence to support that this SNP disrupts the binding of ETV1 (Figure 7i; Methods)22. This 

suggests that the protective mechanism of this locus for MDD is via the protective allele at 

the caSNP disrupting ETV1 binding at an RE in progenitors, decreasing chromatin 

accessibility of this caPeak, and resulting in decreased expression of lncRNA AL121821.1.

As an additional example, we detected a co-localized locus between a neuron specific 

caQTL and schizophrenia GWAS (Extended Data Figure 8b). We found the C allele 

(schizophrenia protective allele) of rs9930307 was associated with decreased chromatin 

accessibility of a neuron caPeak (chr16:9,805,221–9,805,420) within an intron of GRIN2A 
(Extended Data Figure 8c). This caSNP was also a neuron-specific ASCA site, providing 

further evidence of this allele’s impact on chromatin accessibility (Extended Data Figure 

8c). After conditioning on the schizophrenia index SNP (rs7191183) in the caQTL analysis, 

the caSNP was no longer significant (Extended Data Figure 8b). The motif of TP53 was 

disrupted by this caSNP (Extended Data Figure 8d–8e). Using a luciferase reporter assay, we 

found the C allele decreased the activity of this enhancer which is consistent with the caQTL 

result (Extended Data Figure 8f; Supplementary Table 10).

Discussion

Our caQTL analysis identified regulatory mechanisms underlying risk variants for 

neuropsychiatric disorders and brain-relevant traits. Currently, the function of individual 

non-coding brain-relevant risk loci is commonly understood through co-localization with 

eQTLs in adult post-mortem brain tissue or chromatin interaction11,13. Our work is able to 

complement previous studies in several ways: (1) caQTLs allow fine mapping of causal 

variants within LD-blocks by identifying putatively causal variants within peaks; (2) cell-

type specific caQTLs can prioritize cell-types mediating the risk for neuropsychiatric illness 

because genetic effects on REs are highly cell-type specific; (3) most previous eQTL studies 
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have been performed in post-mortem adult brain cortex10,44, but cell-types contributing to 

the heritability for multiple disorders and traits are not present at this time period suggesting 

that temporal specificity matters for understanding risk for these disorders15; and (4) 

integration of caQTL, eQTL, and brain-trait GWAS allows a more complete understanding 

of regulatory mechanisms leading to risk for neuropsychiatric disorders, where non-coding 

genetic variants disrupt TF binding to REs, affecting chromatin accessibility, influencing 

expression of genes, leading to downstream risk for neuropsychiatric disorders. While we 

prioritized TFs driving the regulatory effects based on motif disruption and expression in the 

cell-types of interest, further experimental validation using complementary techniques (e.g. 

ChIP-seq) is necessary to determine if the caSNP does disrupt binding of the prioritized TF. 

Our study provides a resource to understand the impact of genetic variation on gene 

regulation during human cortical neurogenesis and provides an additional layer of 

information to explain the function of common variants associated with risk for 

neuropsychiatric illness and brain-related traits.

We found schizophrenia risk variants are enriched in progenitor REs (Figure 7a), consistent 

with previous post-mortem human studies45, but contrary to a mouse gene expression study 

that found enrichments in neuronal but not progenitor cell types46. Given that the mouse 

study may miss human specific REs and assigns variants to genes by proximity, we believe 

that our findings in combination with previous literature suggest that genetic alterations in 

both human progenitor and adult neuronal REs contribute to risk for schizophrenia12,15,45.

We provide evidence to support that caQTLs have higher effect sizes and more cell-type 

specificity than eQTLs in the two cell types we measured. This suggests that there are a 

limited number of mechanisms whereby genetic variation impacts chromatin accessibility, 

including TF binding to DNA, whereas there are considerably more mechanisms by which 

variation can impact transcript levels, such as altering TF binding, impacting methylation, or 

altering miRNA binding sites47–49. This also suggests that caQTL analyses will identify 

more genetic variants involved in gene regulation than eQTLs given a limited sample size. 

However, because our comparison was conducted between only two cell types, other cell-

type specific caQTL and eQTL studies will be necessary to confirm the higher cell-type 

specificity of caQTLs more broadly.

caQTL analysis is able to prioritize causal variants associated with REs, but cannot be used 

directly to predict the genes regulated by these elements. Most caQTLs did not result in 

changes in gene expression in either cell types or in bulk fetal cortical tissue. Previous work 

has suggested that multiple transcription factors, including those that translocate to the 

nucleus after response to an external stimulus, are needed to change gene expression levels 

at certain loci50. caQTLs may therefore be more likely to co-localize with risk loci even in 

the absence of external stimuli (context-independence), whereas eQTLs would require 

additional stimuli (context-dependence). This also suggests that future work identifying ca/

eQTLs in response to environmental stimuli relevant to neural proliferation, differentiation, 

or function will be especially useful to interpret GWAS risk loci.
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Methods

Data availability

Data generated in this manuscript (including metadata) can be accessed via dbGaP 

(phs001958.v1.p1; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs001958.v1.p1).

The RNaseq and genotype dataset used for fetal cortical eQTL analysis are available at 

dbGaP with accession number: phs001900. REST ChIP-seq data in H1 embryonic stem cells 

and neurons differentiated from H1 cells are available via the ENCODE portal (https://

www.encodeproject.org/) with the following identifiers: ENCSR000BTV and 

ENCSR000BHM.

Code availability

All code used in this manuscript is deposited on bitbucket at https://bitbucket.org/

steinlabunc/celltypespecificcaqtls_wasp/src/master/.

Tissue acquisition and cell culture of phNPCs:

Human fetal brain tissue was obtained from the UCLA Gene and Cell Therapy Core 

following IRB regulations. The tissue is often fragmented during acquisition from the 

surgical procedure. In the lab of Daniel Geschwind, flat, thin pieces of tissue that have the 

morphology of developing cortex were selected, and in some cases the tissue was 

sufficiently intact to be certain of cortical identity. Presumed cortical tissue from 14–21 

gestation weeks was dissociated into a single cell suspension, cultured as neurospheres, 

plated for a low number of passages (2.5 ± 1.8 s.d.) on laminin/fibronectin and polyornithine 

coated plates, and then cryopreserved as human neural progenitors (HNPs) following our 

previous work18.

Cryopreserved HNPs were shipped to UNC Chapel Hill after a signed material transfer 

agreement by both institutions. All proliferation, differentiation, sorting, library preparation, 

and analysis were performed at UNC Chapel Hill (following IRB regulations under the 

Office of Human Research Ethics). In total, HNPs from 92 donors were cultured (34% are 

female and 66% are male).

Donors were thawed in “rounds” of approximately 10 donors, so as to create a manageable 

workload of cell-culture (Extended Data Figure 1a). Donors were randomly assigned into 

groups and thawed 3 weeks apart. We performed specific experimental events on the same 

day of the week and had the same interval of time between events for each round. 

Experimental events included thawing cells, feeding cells, splitting cells, counting and 

plating cells, washing cells prior to differentiation, coating plates with attachment factors, 

adding virus, lifting cells for sorting, sorting, and ATAC-seq library preparation. As much as 

possible, the same researcher performed the same experimental events. We documented if a 

different researcher performed an experimental event in the database described below. To 

determine the impact of different rounds, we cultured cells from the same donors in different 
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rounds as technical replicates, for progenitors (N_donor=11, N_replicate=13, in round 1–

7,12 and 13) and neurons (N_donor=4, N_replicate=4, in round 2,6,12 and 13).

We used PBS with 5μg/ml Fibronectin (Sigma-Aldrich; SLBN9832V) and 10μg/ml Poly-L-

Ornithine(Sigma-Aldrich;P3655–500MG) to make the coating stock for proliferation and 

PBS with 5μg/ml Laminin (Life Technologies; 23017015) and 10μg/ml Poly-L-

Ornithine(Sigma-Aldrich;P3655–500MG) for differentiation.

We prepared 1x proliferation media using Neurobasal A (Life Technologies; 10888–022) 

with 100μg/ml Primocin (Invivogen; ant-pm-2), 10% BIT 9500 (Stemcell Technologies; 

09500), 1% Glutamax (100x) (Life Technologies; 35050061), 1μg/mL Heparin (Sigma-

Aldrich; H3393–10KU), 20μg/ml EGF/FGF (Life Technologies;PHG0313/PHG0023), 

2ng/mL LIF (Life Technologies; PHC9481) and 20 ng/mL PDGF (Life Technologies; 

PHG1034). And we prepared 2x proliferation media using Neurobasal A with 100μg/ml 

Primocin, 10% BIT 9500, 1% Glutamax (100x), 1μg/mL Heparin, 40μg/ml EGF/FGF, 

4ng/mL LIF and 40 ng/mL PDGF (all items have the same lot number with 1x proliferation 

media). Then, we prepared 1x differentiation media using Neurobasal A (Life Technologies; 

10888–022) with 100μg/ml Primocin (Invivogen; ant-pm-2), 2% B27 (Life Technologies; 

17504–044), 1% Glutamax (100x)(Life Technologies; 35050061), 10ng/mL NT-3 (Life 

Technologies; PHC7036) and 10ng/mL BDNF (Life Technologies; PHC7074). The 2x 

differentiation media used Neurobasal A with 100μg/ml Primocin, 2% B27, 1% Glutamax 

(100x), 20ng/mL NT-3 and 20ng/mL BDNF (all items have the same lot number with 1x 

differentiation media).

We thawed cells on a Monday (Extended Data Figure 1a). HNPs were cultured for 8 days 

using full feeds of proliferation media (1x proliferation media). On day 9, HNPs were split 

1:2 and proliferated with half feeds of proliferation media with twice the concentration of 

growth factors (2x proliferation media) from day 10 to day 14. On day 15, HNPs were split 

1:3 and proliferated with half feeds of 2x proliferation media from day 16 to day 21. On day 

22, cells were plated for differentiation onto 8 × 6-well plate wells per donor at a 

concentration of 42,000 cells/cm2 (differentiation library preparation wells). Two × 6-well 

plate wells were also plated for ATAC-seq preparation of progenitor cells (progenitor library 

preparation wells) in 1x proliferation media. On day 23, all differentiation wells were 

washed three times with Neurobasal A and then fed with 1x differentiation media (see media 

descriptions below). On day 24, the progenitor cells in proliferation media were lifted with 

trypsin and ATAC-seq libraries were prepared for progenitors. From day 24 through day 84 

cells were half fed every Monday, Wednesday and Friday with 2x differentiation media. 

Virus for labeling neurons (AAV2-hsyn1-eGFP; https://www.addgene.org/50465/; acquired 

from the UNC Vector Core;64) was added at 20,000 MOI for library preparation wells on 

day 64. On day 84, cells were lifted using Papain (Worthington) with DNase (Worthington) 

and sent to cell sorter (BD FACS Aria II or Sony SH800S) to sort for live neurons labeled 

with GFP (data were analysed using the native softwares from these two sorters). Labeled 

GFP neurons were collected and aliquoted for immediate ATAC-seq library preparation of 

the neuron cell-type.
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All cultures were visually evaluated and ranked with a subjective measure of cell health 

before ATAC-seq library preparation. Cell health was based on morphology and growth with 

the highest rank of 2 (mostly healthy cells by brightfield microscopy) and the lowest ranking 

(many dead cells) of 0.

Immunocytochemistry

HNPs were plated onto polyornithine/laminin coated German glass coverslips at ~80,000 

cells/cm2. Proliferation and 8 week differentiated cultures were fixed with 4% 

paraformaldehyde in parallel with samples being processed for ATAC-seq. Fixed cells were 

permeabilized with 0.1% Triton X-100/PBS, blocked with 10% normal goat serum in 0.1% 

Triton X-100/PBS, and subjected to immunocytochemistry. Coverslips were treated with the 

following primary antibodies in 0.02% Tween-20/PBS overnight at 4°C: Pax6 (1:300, 

BioLegend, Catalog#:901301, Lot#:B277104), Sox2 (1:300, Cell Signaling Technology, 

Catalog#:3579, Lot#:5), Sox2 (1:500, EMD Millipore, Catalog# AB5603, Lot#: 3187396), 

GFP (1:500, Millipore, Catalog#: AB16901, Lot#:2712295), HOPX (1:1000, Sigma-

Aldrich, Catalog#:HPA030180, Lot#: C105752), Nkx2.1 (1:500, Millipore, Catalog#: 

MAB5460, Lot#:3074948), Tbr2 (1:300, eBioscience, Catalog#: 14-4877-82, Lot#: 

2042087), Gad67 (1:500, EMD Millipore, Catalog#: MAB5406, Lot#: 3015328), TUBB3 

(1:1000, BioLegend, Catalog#: 801202, Lot#: B249869), Satb2 (1:200, Santa-Cruz, 

Catalog#: sc-81376, Lot#: 132317), Ctip2 (1:500, Abcam, Catalog#: ab18465, Lot#: 

GR3242845–3). Coverslips were then treated with the following secondary antibodies for 1 

hour at RT at 1:1000 dilution: Goat anti-RB AF488 (Thermo Fisher, Catalog#: A-11034, 

Lot#: 1812166), Goat anti-RB AF568 (Thermo Fisher, Catalog#: A-11011, Lot#: 1832035), 

Goat anti-CH AF488 (Thermo Fisher, Catalog#: A-11039, Lot#: 1759025), Goat anti-RT 

AF647 (Thermo Fisher, Catalog#: A-21247, Lot#: 2119156), Goat anti-MS AF488 (Thermo 

Fisher, Catalog#: A-11001, Lot#: 1939600), Goat anti-MS AF568 (Thermo Fisher, 

Catalog#: A-11031, Lot#: 2026148).

Library Preparation for human neural progenitors and neurons

Library preparation was conducted using the published ATAC-seq protocol65. ATAC-seq 

libraries were prepared immediately following cellular dissociation. Progenitor nuclei were 

counted using a hemocytometer while neuron nuclei were counted during sorting. 50,000 

nuclei were aliquoted into the first step of the ATAC-seq published protocol. Libraries were 

prepared following the published instructions except that the last clean up step was modified 

to use KAPA pure beads (AmpureXP beads at a 1:1 ratio to remove dNTPs, salts, primers or 

primer dimers) instead of Qiagen Minelute clean-up kit. All libraries were sequenced to a 

minimum depth of 13.6M and an average depth of 25.5M using 50 bp PE sequencing on an 

Illumina HiSeq2500 or MiSeq machine (Extended Data Figure 1b). In total, we acquired 98 

ATAC-seq libraries from progenitors (Ndonor=85, Nlibraries replicated=13) and 70 ATAC-seq 

libraries from neurons (Ndonor=66, Nlibarary replicated=4). All libraries were sequenced to an 

average depth of 25.5 (± 7.21 s.d.) million read pairs (Extended Data Figure 1b), which 

resulted in an average depth of 14 (± 4.8 s.d.) million reads pairs per sample after filtering 

for mitochondrial contamination and duplicates. We performed a sensitivity analysis for read 

depth vs peak calling that showed greater than 15 million filtered read pairs per library led to 
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a fewer number of new peaks called, indicating a reasonable balance between read depth and 

peaks called on the libraries generated here (Extended Data Figure 2a).

Recording technical variables and randomization

To reduce the impact of batch effects on interpretation of our results, we attempted to either 

have no batches when possible (e.g., perform all experiments using the same lot of a 

reagent) or when this was not possible, randomize technical variables (round a donor was 

thawed in, sequencing pool) such that they had minimal correlation with variables of 

interest. In order to extensively document the impact of technical variables on outcome 

measures, we maintained a relational MySQL database which allowed us to keep track of 

many technical and biological variables throughout each experimental event. Each 

downstream ATAC-seq library preparation therefore is able to be tracked back to all 

technical and biological variables associated with its cell culture. The variables recorded 

were:

Media: Basal media lots, growth factor lots, supplement lots, antibiotic lots; Virus: Lot 

number; Donor: sex inferred from genotype; gestation week; Culture: passage, round, thaw 

date, each split date, split ratio, trypsin lot, PBS lot, polyornithine lot, fibronectin lot, plate, 

and well position, cells per well, date of virus addition, differentiation time, date of 

differentiation media addition, person plating for differentiation, virus used, person 

performing splits, person performing virus addition, virus lot, virus multiplicity of infection 

(MOI), laminin lot, dissociation lot, person performing dissociation of neuronal cultures; 

Cell sorting: Sort date and time, number of live cells, number of GFP+ cells, total number of 

cells, FACS machine; ATAC-seq library preparation: number of cells input to the library 

preparation, person performing the cell lifting, lysis date, PBS lot, lysis buffer batch, 

Illumina Kit lot, PCR master mix lot, PCR clean up kit lot, number of time pipetting up and 

down during lysis, number of times pipetting up and down during transposase reaction, 

transposase reaction volume, barcode indices used for multiplexing of each sample, number 

of PCR cycles added in the ATAC-seq protocol, final DNA concentration after library 

preparation complete; Sequencing: sequencing date, sequencing company, type of 

sequencer, read length.

Randomization was performed multiple times. First, randomization was performed to assign 

each donor to a thawing “round”. Randomization was performed at this stage by randomly 

ordering all donors and selecting those to go in each round (generally about 10 donors per 

round). After culture and library preparation were complete, randomization was performed 

to assign each library preparation to a pool for sequencing. Randomization was performed 

using custom R code to minimize the correlation of sequencing pool with concentration of 

the library, barcode index (assuring that no barcodes were represented in more than one 

pool), cell type (either neuron or progenitor), round cells were cultured in, and donor.

ATAC-seq data pre-processing

Sequencing reads were first quality controlled via fastqc (v0.11.7) to check for sequence 

quality in each library. We observed high quality sequencing for all libraries (PHRED > 20, 

average duplication rate = 43.07% which is almost entirely mtDNA contamination 
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(Extended Data Figure 1e) which is in agreement with previous studies using the same 

ATAC-seq method15, and average GC content = 45%) (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequencing adapters were removed 

using BBMAP/BBDUK (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/

bbduk-guide/). We also calculated the number of total reads, the number of unique non-

mitochondrial reads, duplicate rate, mitochondrial duplicate rate, TSS enrichment score, and 

FRiP score (The fraction of reads in called peak regions) for neuron samples and progenitor 

samples to check the library quality using atacqv66.

Then, sequencing reads were mapped to the human genome including decoy sequences 

(GRCh38/hg38) using bwa mem67 (v0.7.17) and WASP68 to remove mapping bias at any bi-

allelic SNP using imputed genotype data from each sample. Duplicate reads were then 

removed using WASP. Only uniquely mapped reads mapping to chr 1–22, X and Y were 

kept (mitochondrial genome and unmapped contigs were removed) using samtools69 (v1.9). 

Sequencing reads mapped to ENCODE blacklist regions (http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/encodeDCC/wgEncodeMapability/

wgEncodeDacMapabilityConsensusExcludable.bed.gz, converted to hg38 using UCSCtools/

liftOver (v320), were then removed by bedtools70 (v2.26).

We did a sensitivity analysis for peak calling using pre-processed bam files. It showed 

acquiring 9x higher read depth resulted in only 70,000 additional peaks by MACS271 https://

github.com/taoliu/MACS (Extended Data Figure 2a). So we reasoned that our acquired 

sequence depth obtained a reasonable balance between additional read depth and number of 

peaks called. We calculated the insert size of pre-processed bam files using Picard tools 

(v2.18.22). The insert size histogram shows clear periodicity representative of preferential 

Tn5 binding around nucleosomes (Extended Data Figure 2b).

To ensure independence, we randomly selected one library from each donor for each cell-

type (technical replicates where one donor was cultured multiple times for a given cell-type) 

were excluded. Peaks were called for these selected samples (N_Neuron=61, 

N_Progenitor=76) using CSAW72 (v1.16.1). For CSAW, peaks were identified in 10 bp bins 

with average read number greater than 5 across all samples (both neurons and progenitors). 

Bins directly next to each other (100 bp minimum distance) were merged to call a peak. In 

total, CSAW identified 90,227 peaks.

R v3.4.1 was used for all subsequent analyses. The number of reads within each CSAW-

called peak were counted and then normalization factors for each peak across samples were 

calculated accounting for GC content, peak width, and total number of unique non-

mitochondrial fragments sequenced using conditional quantile normalization73 from the cqn 

package (v1.28.1). Variance stabilizing transformed (VST) counts were calculated using 

DESeq260 (v1.22.2) for batch effect correction and differential accessibility analysis by 

limma61 (v3.38.3).

As two different sorters were used to sort GFP+ neurons (63 neuron cell lines (Ndonor=61) 

for one sorter and 7 cell lines (Ndonor=5) for another sorter), and we detected that sort 

location had a strong effect on PCA from neuron samples, sorter locations in neuron VST 

Liang et al. Page 16

Nat Neurosci. Author manuscript; available in PMC 2021 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz
https://github.com/taoliu/MACS
https://github.com/taoliu/MACS


counts were first corrected (limma batcheffectremove()) (Extended Data Figure 2c). 

Corrected neuron VST counts and progenitor VST counts were combined so that the 

potential batch effect from cell culture rounds were corrected (limma removeBatchEffect).

Mycoplasma contamination checks

To check if there was any contamination from mycoplasma while in culture, we downloaded 

98 mycoplasma genomes (from NCBI) and then mapped all ATAC-seq data to every 

mycoplasma genome. Less than 0.01% of each ATAC-seq sample mapped to any 

mycoplasma genome, which demonstrated that our cultures were not contaminated with 

mycoplasma.

Replicate correlations, principal component analysis, and correlation with technical 
factors

To determine the reliability of our experiment, we cultured the same donor multiple times. 

We correlated the batch corrected VST counts in CSAW peaks for neuron and progenitor 

replicates either within donors or calculated correlations across donors (Extended Data 

Figure 2d). The correlations of replicates within donors are higher than that of samples 

across donors in both neuron and progenitor samples.

The principal component analysis for batch corrected VST counts for all samples was done 

using the prcomp() R function. Then, the correlations for the first 10 PCs with technical and 

biological variables that we recorded were calculated using R. The technical variables 

include round of cell culture and sorter locations (only in neurons). Significant correlations 

with technical variables were removed after batch correction (Extended Data Figures 2e–2f).

ATAC-seq differential accessibility analysis

In order to find differentially accessible peaks across cell type controlling for technical 

factors, the dependent variable was the batch corrected number of reads within CSAW peaks 

and the linear regression model independent variables included a regressor for cell type 

(neuron or progenitor) and a factor regressor for donor IDs included in the analysis.

Enrichment of peaks within annotated regions of the genome

Enrichment of differentially accessible peaks within annotated genetic regions of the 

genome or epigenetically annotated regions of the genome was calculated using the ratio 

between the (#bases in state AND overlap feature)/(#bases in genome) and the [(#bases 

overlap feature)/(#bases in genome) × (#bases in state)/(#bases in genome)] as described 

previously by the Roadmap Epigenomics Consortium74. The significance of this enrichment 

was calculated using a binomial test as in the GREAT algorithm75.

Chromatin state definitions from an imputed 25-state model were derived from fetal brain 

tissue (E081) and other in vivo tissues/cell types by the Roadmap Epigenomics project74,76 

and acquired from (http://www.broadinstitute.org/~jernst/MODEL_IMPUTED12MARKS/) 

after liftOver to hg38 (0.001% of peaks could not be lifted over). We generated the 

following combined states by merging states of similar genomic context:
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Promoter(2_PromU, 3_PromD1, 4_PromD2, 22_PromP, 23_PromBiv), Enhancer 

(13_EnhA1, 14_EnhA2, 15_EnhAF, 16_EnhW1, 17_EnhW2, 18_EnhAc), 

Heterochromatin (21_Het), Quiescent (25_Quies), Transcribed (1_TssA, 5_Tx5’, 

6_Tx, 7_Tx3’, 8_TxWk, 9_TxReg, 10_TxEnh5’, 11_TxEnh3’, 12_TxEnhW), 

Polycomb (24_ReprPC) and ZNF_Rpts (20_ZNF/Rpts).

Locations of ATAC-seq peaks in fetal brain tissue were acquired from previously published 

work15. After liftOver to hg38, 0.001% of peaks could not be lifted over.

Gene ontology analysis at the TSS for differentially accessible peaks (Extended Data Figure 

3) was completed by first overlapping differentially accessible peaks with a region 2kb 

upstream and 1kb downstream of the TSS of genes defined by Homo sapiens gene ensembl 

version 78 GRCh38.p12. Protein-coding genes with promoter overlapped with selected 

differentially accessible peaks (|LFC|>0.5) were input into the TopGO77 package (v2.34.0), 

with all protein-coding genes as background.

Gene based annotations of the genome were derived from Homo sapiens gene ensembl 

version 78 (GRCh38.p12) for plotting loci.

Differential transcription factor binding analysis

We performed an analysis to identify motifs with differential prevalence in differentially 

accessible peaks (Supplementary Table 2, Figure 3b). To avoid the bias caused by different 

numbers of progenitor peaks and neuron peaks, here we only used top 2000 progenitor peaks 

with highest LFC, and top 2000 neuron peaks with lowest LFC.

Potential transcription factor binding sites were called in the human genome using 

TFBSTools (v1.4.0) with a minimum score threshold of 80% based on position weight 

matrices from the JASPAR201678 core database, selecting vertebrates as the taxonomic 

group. Only the most recent version of the PWM for a given TF was used. To select regions 

of the genome that are highly conserved among vertebrates, and likely functional, 100-way 

phastCons79 scores > 0.4 in regions ≥ 20 bp were saved (downloaded from UCSC genome 

browser). Only TFBS sites within conserved regions were retained for further analyses. 

Differential motif enrichment analysis was performed using a logistic regression model to 

identify motifs present more often in progenitor peaks as compared to neuron peaks, or vice 

versa. Logistic regression explicitly controlled for differences in peak width and peak 

conservation between progenitor and neuron differentially accessible peaks. The analysis 

was implemented in R as: glm(TFBS ~ ProgenitorNeuron + peakwidth + 

conservedbppercent, family = “binomial”). The dependent variable (TFBS) was a binary 

representation of whether each differentially accessible peak contained a motif of a TF or 

not. The independent variable of interest marked whether a peak was progenitor 

(ProgenitorNeuron=1) or neuron (ProgenitorNeuron=0). Other covariates included peak 

width (peakwidth) and the percentage of the peak with conservation (conservedbppercent) as 

defined above. Significant differential motif enrichment was determined by FDR adjusted P-

value < 0.05 threshold of the ProgenitorNeuron covariate. progenitorTFs were defined as 

significantly differentially enriched motifs present more often in progenitor peaks as 

Liang et al. Page 18

Nat Neurosci. Author manuscript; available in PMC 2021 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compared to neuron peaks, whereas neuronTFs were defined as significantly differentially 

enriched motifs present more often in neuron peaks as compared to progenitor peaks.

Genotype pre-processing

Genotyping was performed using Illumina HumanOmni2.5 or HumanOmni2.5Exome 

platform. SNP genotypes were exported into PLINK format. SNP marker names were 

converted from Illumina KGP IDs to rsIDs using the conversion file provided by Illumina. 

Quality control was performed in PLINK v1.90b380 (Extended Data Figure 4a). SNPs were 

filtered based on Hardy-Weinberg equilibrium (--hwe 1e-6), minor allele frequency (--maf 

0.01), individual missing genotype rate (--mind 0.10), variant missing genotype rate (--geno 

0.05) resulting in 1,760,704 directly genotyped variants. Multidimensional scaling (MDS) 

analysis of genotypes from all individuals used in the study was completed in PLINK 

v1.90b3. We did not see a strong effect of genotyping batch on genotype data based on 

MDS1 and MDS2 from different genotyping batches. We used PLINK v1.90b3 to call sex 

from genotype data. For the samples with unknown sex from genotype data, we ploted PCA 

(PC1 vs PC2) of ATAC-seq reads on sex chromosomes (chromsome X and Y) to identify sex 

(Extended Data Figure 4b).

Sample Swap and contamination Identification

Quality controlled genotype data and BAM files were used to identify any sample swaps 

between the ATAC-seq and genotyping data using VerifyBamID v1.1.381. We removed any 

BAM file with [FREEMIX] > 0.02 or [CHIPMIX] > 0.02 (N_donor=5), and corrected 

sample swaps (N_donor=7). After this filtering step, our sample size was 76 unique donors 

for progenitor samples and 61 unique donors for neuron samples for the caQTL studies.

Imputation

Filtered genotype data were pre-phased by SHAPEIT82 v2.837. Minimac483 (v1.0.0) was 

used to impute the filtered genotyped markers using reference haplotype panels from the 

1000 Genomes Project (The 1000 Genomes Project Consortium Phase 3) that contain a total 

of 37.9 million SNPs in 2,504 individuals from any ancestry, including those from West 

Africa, East Asia and Europe. We separated chrX into pseudoautosomal regions and non-

pseudoautosomal regions, then pre-phased and imputed them separately.

After genotype imputation, we extracted the genotypes for all individuals assayed for 

chromatin accessibility. Imputed genotype data were filtered for variant missing genotype 

rate < 0.05, Hardy-Weinberg equilibrium p-value < 1 × 10−6 and minor allele frequency 

(MAF) 1%. We retained variants with imputation quality Rsquared > 0.3 by Minimac4, 

resulting in ~13.6 million SNPs.

caQTL mapping

We calculated multidimensional scaling (MDS) for genotype data of our samples and 

genotype data from HapMap3 (https://www.sanger.ac.uk/resources/downloads/human/

hapmap3.html) following the protocol from ENIGMA consortium (http://

enigma.ini.usc.edu/wp-content/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.pdf). We 
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identified multiple ancestries of donors of our samples in the MDS plot (MDS1 vs. MDS2) 

(Extended Data Figure 4c).

To control for population stratification and cryptic relatedness of our samples when mapping 

caQTLs, we ran caQTL analysis with EMMAX23, which accounts for population structure 

using a genetic relatedness or kinship matrix. We used the emmax-kin function (-v -h -s -d 

10) to create the IBS kinship matrix for each tested genetic variant from non-imputed 

genotype data excluding all genetic variants on the same chromosome with the tested 

genetic variant84.

We performed proximal caQTL mapping using a window of 100 kb up- and down-stream of 

the center of 90,227 csaw peaks using VST normalized read counts of each peak for each 

donor (Extended Data Figure 4a). We performed caQTL analysis separately in neurons and 

progenitors using imputed genotype data. To prevent results driven by only one minor allele 

homozygous donor, we retained the variants where the number of minor allele homozygous 

donors is not 1 and at least 2 heterozygous donors. In addition to the kinship matrix84, for 

the progenitor caQTLs, we include sorter locations, the first 10 genotype MDSs and 8 PCs 

across VST counts of the chromatin accessibility data. For neurons, we include the first 10 

genotype MDSs and 7 PCs of VST counts of the chromatin accessibility data. These PC 

numbers were chosen to maximize the number of caQTLs for each cell-type. Nominal 

EMMAX p-values were corrected for multiple testing using the software eigenMT85 and 

Benjamini–Hochberg FDR correction86 within neuron caQTLs and within progenitor 

caQTLs separately (eigenMT-FDR < 0.05). We retained the most significant caSNP for each 

significant caPeak that survives the eigenMT-FDR threshold, and defined the caSNP-caPeak 

pair as the most significant caQTL for a given caPeak. The percent variance explained was 

calculated using the method from a previous study87.

Identify correlated caPeaks

To identify correlated caPeaks, we defined primary caPeaks as the caPeaks harboring 

caSNP(s). We then defined secondary caPeaks as peaks which are associated with the caSNP 

of a primary peak. We calculated Perason’s correlation between the primary caPeak and all 

caPeaks within +/− 2Mbp from the center of its secondary caPeak (including the secondary 

caPeak), then corrected the Pearson’s correlation p-value using the Benjamini–Hochberg 

FDR correction86. If the secondary caPeak was significantly (FDR < 0.05) correlated with 

the primary caPeak, this caSNP-caPeak pair was classified as “caSNP in correlated caPeak”.

Allele specific chromatin accessibility

We used GATK tools to extract allele specific read counts for every SNP. We first filtered for 

SNPs within each donor that had sufficient read depth by retaining SNPs with total counts 

greater than or equal to 10 for neuron and progenitor samples, separately. Then to calculate 

allele specific chromatin accessibility, we retained those SNPs with average read counts for 

all heterozygous donors greater than or equal to 15. Finally, we retained only those SNPs 

that meet these previous thresholds for at least 5 heterozygous donors. DESeq2 was used to 

calculate the LFC (Alternative read counts/Reference read counts) for filtered SNPs across 

all heterozygous donors. The non-heterozygous donors were excluded from the differential 
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analysis for each SNP using sample-specific weights, and maximum likelihood estimation 

was used for dispersion estimation followed by Wald tests of the estimated LFC. FDR < 0.05 

was used as the threshold for significance.

Bulk fetal brain eQTL mapping

Bulk fetal cortical wall eQTL data described in a previous publication14, was re-analyzed in 

this study with the following modifications: (1) we used a linear mixed model implemented 

in EMMAX to more stringently control for population stratification, and (2) we add 23 more 

donors to the analysis because these donors were genotyped after the publication of the 

previous manuscript. rRNA-depleted RNA-seq data from flash frozen human fetal brain 

cortical wall tissues derived from 235 donors at 14–21 gestation weeks were used for eQTL 

analysis. 41% samples in the progenitor eQTL analysis were overlapped with the samples in 

fetal brain eQTL analysis, and 36% samples in the neuron eQTL analysis were overlapped 

with the samples in fetal brain eQTL analysis. Gene based annotations of the genome were 

derived from Homo sapiens gene ensembl version 92 (GRCh38) for eQTLs. Only genes 

which are expressed in more than 5% of donors with at least 10 counts were included in the 

analysis. VST normalized expression values were used as phenotypes for eQTL analysis. 

Genomic DNA from human fetal brain cortical wall tissues derived from 235 donors at 14–

21 PCW was extracted. Each donor tissue was genotyped on a dense array (Illumina Omni 

2.5+Exome) and imputed to a common reference panel (1000 Genomes; described above). 

Variants were retained in the analysis if there were at least 2 heterozygous donors and no 

homozygous minor allele donors, or if there were at least 2 minor allele homozygous 

donors. For the effect size comparison analysis fetal brain eQTL vs caQTLs (Figure 2e–2f), 

we subsampled fetal brain eQTL donors to the same sample size as the caQTL while 

maintaining the population composition similar to the larger donor list.

Cis-eQTL analysis was performed by evaluating association between each gene’s expression 

and variants within ±1 Mb window of transcription start site of each gene by implementing 

linear mixed model association software, EMMAX88. All markers on the chromosome of 

this candidate marker were excluded from the IBS kinship matrix generated with emmax-kin 

function (-v -h -s -d 10), and added as a random variable into linear mixed model for 

association test. In addition to kinship matrix, 10 MDS components of genotype and first 10 

PCs of gene expression were included into the covariate matrix. After association, nominal 

p-values were corrected for multiple testing using the eigenMT and Benjamini Hochberg 

FDR correction, and associations with lower than 5% eigenMT-FDR threshold value were 

accepted as significant. We retained only the most significant eSNP for each significant 

eGene in this study.

M-value calculation

Using Metasoft (v2.0.1)62, we calculated m-values between caQTLs and eQTLs. First, we 

selected the most significant caSNP for a given caPeak in either neurons or progenitors. 

Then, we found the SNP-Gene pair corresponding to that caSNP in bulk fetal brain or in the 

cell type specific eQTL (for sharing in Figure 2d). The caSNP may or may not be an eSNP 

and the eSNP may be associated with multiple genes. Then, we selected the most significant 

eSNP for an eGene and found the corresponding SNP-Peak pairs in neuron/progenitor 
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caQTL analysis (for sharing in Figure 2f, Extended Data Figure 4e). The eSNP may not be a 

caSNP and the eSNP may be associated with multiple peaks. We calculated the m-values for 

SNPs in all the SNP-Peak-Gene combinations we found above. The SNP-Peak-Gene 

combinations with m-value greater than 0.9 in both caQTL and eQTL analysis are identified 

as shared SNP-Peak-Gene combinations.

Using the same approach, we identified shared neuron/progenitor SNP-Peak-Gene 

combinations using the most significant neuron/progenitor caSNPs and the most significant 

neuron/progenitor eSNPs.

Overlap of caQTLs with eQTLs

To identify RE-gene pairs neurons/progenitors, we listed SNPs with pairwise LD r2 > 0.8 

with the caSNPs in the caPeak using genotype data from neuron samples/progenitor 

samples, separately, then we listed SNPs with pairwise LD r2 > 0.8 with index eSNP using 

the LD matrix from neuron samples/progenitor samples for cell type specific eQTL analysis. 

We labelled the caPeak and the eGene as an RE-Gene pair if any SNP from the above two 

categories is overlapped in neurons/progenitors (Supplementary Table 5).

To identify RE-gene pairs in fetal bulk cortical tissue eQTLs we listed SNPs with pairwise 

LD r2 > 0.8 with the caSNPs in the caPeak using genotype data from neuron samples/

progenitor samples, separately, then we listed SNPs with pairwise LD r2 > 0.8 with index 

eSNP using the LD matrix from fetal brain samples for fetal bulk cortical eQTLs. We 

labelled the caPeak and the eGene as a RE-Gene pair if any SNP from the above two 

categories is overlapped in fetal brain tissues (Supplementary Table 5).

Estimation of sharing via π1

The R package ‘qvalue’ (v2.20.0)89 was used to estimate the π0 of the input nominal p 

values of the cell type specific eQTL and caQTL data, then we used 1 minus the estimated 

π0 to get π1. We found all the neuron SNP-Peak pairs using the most significant progenitor 

caSNP-caPeak pairs, then used the nominal p values of the neuron SNP-Peak pairs to 

estimate the proportion of true neuron caQTLs in the SNP-Peak pairs (π1). In the same way, 

we estimated the proportion of true progenitor caQTLs using the most significant neuron 

caSNP-caPeak pairs. For neuron eQTLs, we listed all the neuron SNP-Gene pairs using the 

most significant progenitor eSNP-eGene pairs, then used the nominal p values of the neuron 

SNP-Gene pairs to estimate the proportion of true neuron eQTLs in the SNP-Gene pairs 

(π1). Similarly, we estimated the proportion of true progenitor eQTLs using the most 

significant neuron eSNP-eGene pairs.

Comparison to adult dorsolateral prefrontal cortex caQTLs

We acquired adult DLPFC ATAC-seq data from Sage Bionetworks-Synapse website via the 

psychENCODE Knowledge Portal under the accession number [syn5321694] https://

www.synapse.org/#!Synapse:syn532169416. To calculate the overlap of caQTLs between 

cultured neural cells and adult DLPFC, we first extracted read counts within adult DLPFC 

peaks in ATAC-seq data from neurons and progenitors. We found 65,573 DLPFC peaks have 

an average read counts greater than 5 across all neuron and progenitor samples, and these 
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peaks demonstrate cell-type/tissue type specificity in chromatin accessibility as visualized in 

a PCA plot (Extended Data Figure 7a–b). Then using the shared peaks and the same SNPs 

with DLPFC caQTL, we re-mapped caQTLs in neurons and progenitors using the same 

models as previously described. We found 27 significant neuron caQTLs and 35 significant 

progenitor caQTLs using the same eigenMT-FDR threshold as previously used in caQTL 

mapping in neurons and progenitors. Using the same SNP-Peak pairs from DLPFC caQTLs, 

we found the π1 is 0.001 in neuron caQTLs and 0.04 in progenitor caQTLs, which indicates 

a highly temporal specificity in caQTLs. We also found low correlations of effect sizes in 

significant neuron/progenitor caQTLs and DLPFC caQTLs (Extended Data Figure 7c).

Determining the impact of caSNPs on motifs

In order to determine if genetic variation within peaks impacts transcription factor (TF) 

binding motifs, we used motifBreakR (v1.14.0)90 to map known TF motifs to the sequence 

surrounding the neuron-specific/progenitor-specific significant caSNPs located in an ATAC-

peak have significant association with the caPeak (parameter setting: threshold = 1e-4). All 

annotated motifs (in total 630 TF motifs) are from JASPAR2016 vertebrate in MotifDb 

(1.26.0)91. We calculated the relative entropy (parameter setting: method=”ic”) for reference 

allele and alternative allele, then only kept the TFBSs which are strongly affected by the 

SNPs (motifbreakR parameter setting: effect=”strong”). We calculated the enrichment of 

neuron and progenitor caSNP-disrupted motifs in accessible peaks using the binomial test75. 

First, we found all TFBSs for a given TF in accessible regions (n) and calculated the fraction 

of base pairs of the motif compared to the overall base pairs of accessible peaks. Then, we 

counted the number of SNP-disrupted motifs for this TF (k). The final step was to calculate 

P=Prbinom(x>=k|n,p) using the binomial test to get the significance of the enrichment. We 

further filtered the enrichment results by differential expression from the same set of cells, 

and only kept the TFs with cell-type specific caSNP-disrupted motifs significantly enriched 

in accessible regions and significantly differentially expressed in the cell type26.

To determine if the motif disrupting allele is associated with increased/decreased chromatin 

accessibility, we first identified the motif-disrupting allele. The motif-disrupting allele 

decreases the relative entropy of the position possibility matrix of a TFBS. Then, we aligned 

the motif-disrupting allele with the effect allele for caQTLs. Finally, we used linear 

regression to determine the relationship between decreased relative entropy and effect size 

for all motif-disrupting alleles for this TFBS (lm(effect size ~ decreased relative entropy+0). 

We fit the line through zero because we assume that if a motif is not disrupted by an allele, it 

will also have no effect on chromatin accessibility. The significance of the coefficient for 

effect size on decreased relative entropy was tested and the p-values adjusted to control 

FDR86 (Figures 6c–6f).

Partitioned Heritability

Partitioned heritability was measured using LD Score Regression v1.0.092 to identify 

enrichment of GWAS summary statistics among differentially accessible peaks. First, an 

annotation file was created which marked all HapMap3 SNPs that fell within neuron peaks 

or progenitor peaks. To avoid bias caused by different numbers of progenitor peaks and 

neuron peaks, we randomly selected the same number of neuron peaks as progenitor peaks. 
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LD-scores were calculated for these SNPs within 1 cM windows using the 1000 Genomes 

European data. These LD-scores were included simultaneously with the baseline distributed 

annotation file from92. Subsequently, the heritability explained by these annotated regions of 

the genome was assessed from these genome-wide association studies: Attention-Deficit/

hyperactivity disorder93, autism spectrum disorder94, IQ95, major depressive disorder96, 

Bipolar disorder97, schizophrenia98, insomnia99, educational attainment100, subjective well-

being101, depressive symptoms101, neuroticism102, anorexia nervosa103, anxiety104, 

Alzheimer’s disease105, epilepsy106, Parkinson’s disease107, brain structures1.

The enrichment was calculated as the heritability explained for each phenotype within a 

given annotation divided by the proportion of SNPs in the genome corresponding to the 

annotation and Benjamini–Hochberg FDR correction86 was used to correct for multiple 

comparisons.

Co-localization with GWAS data

We used conditional caQTLs to detect the co-localization of caQTLs with multiple GWAS 

datasets, which are previously listed above in the “Partitioned Heritability” section. First, to 

identify co-localized loci: 1) we listed SNPs with pairwise LD r2 > 0.8 with the caSNPs in 

the caPeak using genotype data from neuron samples and progenitor samples, separately; 2) 

we listed SNPs with pairwise LD r2 > 0.8 with index GWAS SNP (p<5e-8 and exhibited the 

strongest association in upstream/downstream 100kb from the center of this caPeak) using 

the LD matrix from European genotype data from 1000 Genome project phase 3 with 

population code EUR. Second, we labelled the caPeak as a potentially co-localized locus if 

any SNP was shared between the above two categories. Third, we performed a conditional 

caQTL analysis for significant (eigenMT-BH FDR < 0.05) caSNPs conditioning on the 

index GWAS SNP108. If the caQTL is no longer significant (eigenMT-BH FDR > 0.05), then 

we called the caQTL as a co-localized locus with this GWAS trait.

Luciferase reporter assay

DNA fragments of differentially accessible chromatin peaks containing SNPs for functional 

validation were synthesized using Thermo Fisher Scientific’s Gene String service. 

Fragments were amplified by PCR with primers containing KpnI and HindIII restriction 

sites. Digested fragments were then cloned into the multiple cloning region of the pGL4.23 

vector (Promega), containing a minimal promoter upstream of the luc2 luciferase reporter 

gene. To generate corresponding alternate alleles, we performed site-directed mutagenesis 

on the cloned, insert-containing luciferase plasmids using the Q5 Site-directed mutagenesis 

kit (NEB). All cloned sequences were verified by Sanger sequencing for the correct 

mutations and analyzed by NanoDrop to ensure high concentration and transfection-grade 

quality. Oligonucleotide sequences used for cloning are listed in Supplementary Table 10.

Human NPCs grown in 96 well plates were co-transfected with 120 ng/well luciferase 

reporter plasmid and 30 ng/well renilla control plasmid (pRL-SV40; Promega) using 

Lipofectamine STEM Transfection Reagent (Thermo Fisher). NPCs were then cultured for 

72 hours prior to processing with the Dual-Glo Luciferase Assay System (Promega). 

Luciferase and renilla expression was measured using a CLAIROStar Plus Plate Reader 
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(BMG Labtech). Each luciferase reading was then normalized by its corresponding renilla 

reading to control for transfection efficiency and to calculate RLU. A total of 8 unique 

donors with at least 3 well replicates per plasmid per donor were used for analysis.

REST ChIP-seq data in H1 cells and neurons differentiated from H1 cells

We acquired the alignments of REST ChIP-seq data in H1 embryonic stem cells and neurons 

differentiated from H1 cells from the ENCODE portal8,9 (https://www.encodeproject.org/) 

with the following identifiers: ENCSR000BTV and ENCSR000BHM. We normalized the 

read counts by library sizes then plotted the coverage using Gviz109.

Extended Data

Extended Data Fig. 1. 
Flowchart for cell culture and pre-processing of ATAC-seq data.
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(a) Flowchart of cell culture for 17 rounds.

(b) The FACS gates for sorting EGFP+ neurons.

(c) Images of immunofluorescence for cell markers in progenitor cultures. Immunolabeling 

experiments were repeated in at least 10 unique donor cell lines with similar results. The 

scale bar presents 100 μm.

(d) Images of immunofluorescence for cell markers in 8-week differentiated cultures. 

Immunolabeling experiments were repeated in at least 10 unique donor cell lines with 

similar results. The scale bar presents 100 μm.

(e) Box plot for total sequence depth (forward reads and reverse reads), unique read number 

(forward reads and reverse reads), duplicate rate, mitochondrial duplicate rate, TSS 

enrichment and the fraction of reads in called peak regions (FRiP score) in neurons (N=61) 

and progenitors (N=76) compared to previously published data (N_GZ=3 biologically 

independent samples with 3–4 replicates for each sample, N_CP=3 biologically independent 

samples with 3 replicates for each sample)15. The center of the box is median of the data, the 

bounds of the box are 25th percentile and 75th percentile of the data, and the whisker 

boundary is 1.5 times the IQR. Maximum and minimum are the maximum and minimum of 

the data.
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Extended Data Fig. 2. 
ATAC-seq data QC.

(a) Peak calling versus library sequencing depth. We observed a slower rise in the number of 

new peaks called after 15 millions filtered read pairs. This indicates a reasonable balance 

between read depth and number of peaks called using an average of 14 million read pairs 

after filtering in our samples.

(b) Insert size histograms for 3 randomly selected neuron and progenitor samples.

(c) PCA plot for ATAC-seq data (N=137) before batch correction (left) and after batch 

correction (right), colored by sorter. We corrected normalized reads within ATAC-seq peaks 

in neurons by sorter locations. Then, we corrected normalized reads within ATAC-seq peaks 

in neurons and progenitors by cell culture round.

(d) Correlations of batch corrected normalized reads across donors and within donors. 

Correlations within donors was significantly higher than correlations across donors in 
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progenitor (n=15). Correlations within donors were higher than correlations across donors in 

neurons (n=4), but not significant (p=0.07). P values are estimated by two-sided wilcoxon 

tests. The center of the box is median of the data, the bounds of the box are 25th percentile 

and 75th percentile of the data, and the whisker boundary is 1.5 times the IQR. Maximum 

and minimum are the maximum and minimum of the data.

(e) Correlations between PC1 to PC10 from normalized reads in neurons with known 

technical and biological factors.

(f) Correlations between PC1 to PC10 from batch correction normalized reads in progenitors 

with known technical and biological factors.

Extended Data Fig. 3. 
Annotating differentially accessible peaks during neuronal differentiation.

(a) Gene ontology (GO) enrichment of differentially accessible peaks at the TSS. Progenitor 

peaks (left) and neuron peaks (right) showed enrichment for GO terms related to 

proliferation and differentiation, as expected.

Liang et al. Page 28

Nat Neurosci. Author manuscript; available in PMC 2021 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(b) TFs with significantly differentially enriched conserved binding sites in differentially 

accessible peaks. The statistical test identifies TFs likely involved in neural progenitor 

proliferation and maintenance (progenitorTFs; top) or neurogenesis and maturation 

(neuronTFs; bottom). The top 30 significantly enriched TFs were shown in this figure, and 

the full list can be found in Supplementary Table 2. Within progenitorTFs, we found TFs 

previously characterized to have key roles for neural stem cell renewal and reprogramming, 

such as SOX252,53, and those known to be required for the maintenance of stem cells in 

cortex, such as NR2F1, ETV5, and SP254–56. Within neuronTFs, NEUROG2 and LMX1A 
were identified, which are known to drive neuronal differentiation57,58, as well as TFs shown 

to induce neuronal identity from fibroblasts, including ASCL2 and the POU family39. 

NeuronTFs also included CUX1/2, a marker for layer II-III neurons59,60 and other laminar 

markers such as TBR1 and FOXP1.

(c) Schematic of known functions for selected progenitorTFs and neuronTFs.
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Extended Data Fig. 4. 
Features of caQTLs.

(a) Flowchart for caQTL data analysis.

(b) PCA plot for ATAC-seq data on sex chromosomes (chrX and chrY), colored by sex from 

genotype data, showing sex could be called using ATAC-seq data.

(c) MDS plot for genotype data of HapMap3 and donors in this study, colored by 

populations from HapMap3 data. ASW: African ancestry in Southwest USA; CEU: Utah 

residents with Northern and Western European ancestry from the CEPH collection; CHB: 

Han Chinese in Beijing, China; CHD: Chinese in Metropolitan Denver, Colorado; GIH: 

Gujarati Indians in Houston, Texas; JPT: Japanese in Tokyo, Japan; LWK: Luhya in Webuye, 

Kenya; MEX: Mexican ancestry in Los Angeles, California; MKK: Maasai in Kinyawa, 

Kenya; TSI: Toscans in Italy; YRI: Yoruba in Ibadan, Nigeria.

Liang et al. Page 30

Nat Neurosci. Author manuscript; available in PMC 2021 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(d) Neuron and progenitor caPeaks enrichment at epigenetically annotated regulatory 

elements from fetal brain (Epigenetics Roadmap ID = E081).

(e) Comparison of percent variance explained (r2) for shared neuron/progenitor caQTLs and 

fetal brain eQTLs (subset to the same sample size). P values are estimated by two-sided 

paired student-t tests. The center of the box is median of the data, the bounds of the box are 

25th percentile and 75th percentile of the data, and the whisker boundary is 1.5 times the 

IQR. Maximum and minimum are the maximum and minimum of the data.

Extended Data Fig. 5. 
Examples of fine-mapping and regulatory mechanisms underlying eQTLs.

(a) Co-localization of a progenitor-specific caQTL and fetal cortical eQTL for ETFDH.

(b) caQTL for rs11544037 and the labeled peak in progenitor (N=76). P-values are estimated 

by a mixed linear effects model using a two-sided test (Methods).
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(c) eQTL of ETFDH in bulk fetal cortex (N=235). P-values are estimated by a mixed linear 

effects model using a two-sided test (Methods).

(d) The expression of TFs whose motifs are disrupted by rs1154403722 (logFC=−0.32, 

FDR=7.55e-18)26.

(e) The motif Logo of RAD21, where the red box shows the position disrupted by 

rs11544037. Schematic cartoon of mechanisms for rs11544037 regulating chromatin 

accessibility and gene expression.

(f) Luciferase signals for alleles of rs11544037 in progenitors (N=8). P-value is from two-

sided paired t-tests.

(g) Co-localization of a progenitor-specific caQTL and eQTL for FGF1.

(h) CaQTL for rs11960262 and the labeled peak in progenitor (N=76). P-values are 

estimated by a mixed linear effects model using a two-sided test (Methods).

(i) eQTL of ETFDH in progenitors (N=85). P-values are estimated by a mixed linear effects 

model using a two-sided test (Methods).

(j) The expression of TFs in which motifs are disrupted by rs11960262.

(k) The motif Logo of EGR1, where the red box shows the position disrupted by 

rs11960262. Schematic cartoon of mechanisms for rs11960262 regulating chromatin 

accessibility and gene expression.

(For box plots in (b-c), (f) and (h-i), the center of the box is the median, the bounds of the 

box are 25th percentile and 75th percentile of the data, and the whisker boundary is 1.5 

times the IQR. Maximum and minimum are the maximum and minimum of the data.)
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Extended Data Fig. 6. 
Features of ASCA.

(a) Density plot for caPeak length from shared caQTLs and ASCA, and from peaks only 

significant in ASCA in neurons (top) and progenitors (bottom). P values are estimated by 

two-sided Student’s t-tests.

(b) The neuron ASCA (caSNP: rs62332390; caPeak: chr4:148,441,611–148,46,300; P 

values are estimated by the negative binomial generalized linear models from DESeq2 using 

a two-sided test61) is not a significant caQTL (N=61; P values are estimated by the mixed 

linear model using a two sided test) in neurons because the caPeak was very wide (4,689bp) 

and only the region near the ASCA SNP shows an association with genotype.

(c) The neuron ASCA (caSNP:rs77191441; caPeak:chr5:116,571,961–116,576,710; P 

values are estimated by the negative binomial generalized linear models from DESeq2 using 

a two-sided test61) is not a significant caQTL (N=61; P values are estimated by the mixed 

linear effects model with a two-sided test) in neurons due to low minor allele frequency 

leading to less power to detect a caQTL.

(d) ASCA between rs185220 (see Figure 3) and chromatin accessibility in progenitors (left) 

and neurons (right). P-values are estimated by the negative binomial generalized linear 

models from DESeq2 using a two-sided test61.

(For box plots in (b) and (c), the center of the box is the median, the bounds of the box are 

25th percentile and 75th percentile of the data, and the whisker boundary is 1.5 times the 

IQR. Maximum and minimum are the maximum and minimum of the data.)
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Extended Data Fig. 7. 
Comparison to adult dorsolateral prefrontal cortex (DLPFC) caQTLs.

(a) Shared accessible peaks overlap at epigenetically annotated regulatory elements from 

different tissues. Accessible peak bp percentage overlapped with epigenetically annotated 

regulatory elements. From left to right, tissues ordered by bp percentage overlap with 

enhancers and promoters. Shared peaks overlap with both adult and fetal regulatory 

elements.

(b) PCA plot for read counts from shared peaks in adult DLPFC, neurons and progenitors.

(c) Correlations of effect sizes for significant neuron caQTLs and the same SNP-Peak pairs 

in adult DLPFC (left). Correlations of effect sizes for significant progenitor caQTLs and the 

same SNP-Peak pairs in adult DLPFC (right).
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Extended Data Fig. 8. 
An example of a neuron-specific caQTL leading to regulatory mechanisms underlying 

GWAS loci.

(a) Numbers of colocalizations between ASCA and GWAS loci.

(b) The neuron-specific significant caQTL (caSNP: rs9930307; caPeak: chr16: 9,805,221–

9,805,420) co-localized with schizophrenia GWAS locus (index SNP: rs7191183).

(c) Box plot for the caQTL (left, N=61; P values are estimated by the mixed linear effects 

model using a two-sided test) and ASCA (right) (caSNP: rs9930307; caPeak: chr16: 

9,805,221–9,805,420; P values are estimated by the negative binomial generalized linear 

models from DESeq2 using a two-sided test61).

(d) he expression of TFs in which motifs are disrupted by rs9930307.

(e) The motif logo of TP53 and the position disrupted by rs9930307.

(f) The box plot for luciferase signal for alleles of rs9930307 in progenitors (N=8). P value 

is from two-sided paired student-t tests.

(For box plots in (c) and (f), the center of the box is median of the data, the bounds of the 

box are 25th percentile and 75th percentile of the data, and the whisker boundary is 1.5 

times the IQR. Maximum and minimum are the maximum and minimum of the data.)
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Figure 1: 
Profiling genome-wide chromatin accessibility in progenitors and neurons.

(a) Schematic cartoon of experimental design. SOX2 and PAX6 immunolabeled neural 

progenitors (left), showing over 90% of cells were radial glia. EGFP labeled differentiated 

neurons (right), showing expected neuronal morphology.

(b) Percentage of accessible peak base pairs (bp) detected in these cultures overlapped with 

epigenetically annotated regulatory elements from multiple tissues. From top to bottom, 

tissues ordered by bp percentage overlap with enhancers and promoters.

(c) PCA plot of ATAC-seq read count after batch effect correction colored by cell types, 

showing two separate clusters for progenitors and neurons.

(d) MA plot for differentially accessible peaks between progenitors and neurons. All peaks 

can be found in Supplementary Table 1.

(e) ATAC-seq coverage plot (average normalized read counts) for promoters of neuron 

expressed gene SYT13, showing higher accessibility in neurons than progenitors (LFC=

−1.16, FDR=3.28e-35). ATAC-seq coverage plot (average normalized read counts) for 
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promoter of progenitor expressed gene EMX2, showing higher accessibility in progenitors 

than neurons (LFC=1.62, FDR=1.12e-32).

(f) Enrichment of neuron/progenitor peaks with differentially accessible peaks from fetal 

brain tissue15. GZ: neural progenitor-enriched region encompassing the ventricular zone 

(VZ), subventricular zone (SVZ), and intermediate zone (IZ); CP: the neuron-enriched 

region containing the subplate (SP), cortical plate (CP), and marginal zone (MZ).
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Figure 2: 
Chromatin accessibility quantitative trait loci (caQTL) in progenitors and neurons.

(a) caQTL schematic.

(b) Number of the most significant caSNPs relative to the distance from the center of the 

caPeaks (left: neuron caQTLs; right: progenitor caQTLs). The most significant caQTLs for 

each caPeak can be found in Supplementary Table 3.

(c) Numbers of caQTLs in different functional categories.

(d) Schematic cartoon of fetal cortical14 and cell-type specific eQTLs26 (Left). Percentage of 

neuron/progenitor caQTLs with shared effects in fetal cortical and cell-type specific eQTLs 

(All shared caQTLs and eQTLs can be found in Supplementary Table 4.).

(e) For the most significant caSNP for each caPeak, correlation of effect sizes between 

shared caQTLs and eQTLs in neurons (left) and progenitors (right).
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(f) Comparison of percent variance explained (r2) for shared caQTLs and eQTLs (subset to 

the same sample size) in neurons and progenitors. We found 500 (e)caSNP-caPeak-eGene 

combinations in neurons and 1,025 (e)caSNP-caPeak-eGene combinations in progenitors. 

We observed higher percent variance explained for caQTLs than eQTLs in both neurons and 

progenitors. P values are estimated by the two-sided paired t-test. The center of the box is 

median of the data, the bounds of the box are 25th percentile and 75th percentile of the data, 

and the whisker boundary is 1.5 times the IQR. Maximum and minimum are the maximum 

and minimum of the data.
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Figure 3: 
Fine-mapping and regulatory mechanism underlying eQTLs.

(a) Co-localization of caQTL and eQTL for SETD9. ChIP-seq data of REST binding in H1 

cells and neurons differentiated from H1 cells8,9.

(b) The association between rs185220 and chromatin accessibility of the labeled peak in 

progenitors (top, N=76) and neurons (bottom, N=61). P values are estimated by a linear 

mixed effects model (Methods) using a two-sided test.

(c) The association between rs185220 and expression of SETD9 in the mid-gestation cortex 

(top, N=235), progenitors (middle, N=85) and neurons (bottom, N=74). P values are 

estimated by a linear mixed effects model (Methods) using a two-sided test.

(d) The expression of TFs in which motifs are disrupted by rs185220. vRG: ventricular 

Radial Glia; oRG: outer Radial Glia; PgS: Cycling progenitors (S phase); PgG2M: Cycling 

progenitors (G2/M phase); IP: Intermediate progenitors; ExN: Migrating excitatory; ExM: 
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Maturing excitatory; ExM-U: Maturing excitatory upper enriched; ExDp1: Excitatory deep 

layer 1; ExDp2: Excitatory deep layer 2.

(e) The motif Logo of REST, where the red box shows the position disrupted by rs185220. 

Schematic cartoon of proposed mechanism for rs185220 regulating chromatin accessibility 

and gene expression.

(f) The box plot for luciferase signal for alleles of rs185220 in progenitors (N=8). P value is 

from a two-sided paired t-test.

(For box plots in (b) (c) and (f), the center of the box is median, the bounds of the box are 

25th percentile and 75th percentile of the data, and the whisker boundary is 1.5 times the 

IQR. Maximum and minimum are the maximum and minimum of the data.)
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Figure 4: 
Allele Specific Chromatin Accessibility (ASCA).

(a) Numbers of shared/non-shared significant caQTLs and significant ASCA in neurons 

(left) and progenitors (right). All significant ASCA in neurons and progenitors can be found 

in Supplementary Table 6.

(b) Correlation of effect sizes for caQTL and ASCA from (A) neurons (top) and progenitors 

(bottom).

(c) Co-localization of caQTL and ASCA in progenitors and neurons as well as mid-gestation 

cortical eQTL for FABP7.

(d) Association between rs144376334 and expression of FABP7 in mid-gestation cortex 

(left, N=235), chromatin accessibility of the labeled peak in progenitors (middle, N=85) and 

neurons (right, N=74). P values are estimated using a linear mixed effects model with a two-

sided test (Methods). The center of the box is median of the data, the bounds of the box are 
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25th percentile and 75th percentile of the data, and the whisker boundary is 1.5 times the 

IQR. Maximum and minimum are the maximum and minimum of the data.

(e) ASCA detected at rs144376334 in progenitors (left) and neurons (right). P values are 

estimated using the negative binomial generalized linear model from DESeq2 with a two-

sided test (Methods).

(f) The expression of TFs whose motifs are disrupted by rs144376334.

(g) The motif logo of JUN with boxed position disrupted by rs144376334.
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Figure 5: 
Cell-type specificity of caQTLs.

(a) Percentage of caQTLs (left)/eQTLs (right) with shared effects in neurons and 

progenitors.

(b) Numbers of overlapped/non-overlapped caPeaks (left; P-value estimated to be less than 

the floating point precision value) and ASCA (right) between neurons and progenitors. P 

values are estimated by two-sided fisher’s exact tests.

(c) Differential accessibility of progenitor caPeaks (left) and neuron caPeaks (right).
(d) Numbers of caPeaks distal to promoters or proximal to promoters for neuron-specific 

caQTLs, progenitor-specific caQTLs and shared caQTLs between neurons and progenitors. 

P values are estimated by the two-sided two-proportions z-test.

(e) Correlations of effect sizes of caQTLs between neurons and progenitors (left: progenitor 

caQTLs vs. the same caSNP-caPeak pairs in neurons; right: neuron caQTLs vs. the same 

caSNP-caPeak pairs in progenitors).
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(f) Correlations of effect sizes of eQTLs between neurons and progenitors (left: progenitor 

eQTLs vs. the same eSNP-eGene pairs in neurons; right: neuron eQTLs vs. the same eSNP-

eGene pairs in progenitors).
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Figure 6: 
Prediction of disrupted transcription factor (TF) binding due to genetic variation.

(a) Enrichment of caSNP-disrupted motifs in accessible peaks in progenitors or in neurons.

(b) Schematic of TF motifs disrupted by caSNPs associated with decreased/increased 

chromatin accessibility.

(c) Numbers of TFs where the motif-disrupting allele was associated with increased/

decreased chromatin accessibility in progenitors (left) and neurons (right). For most TFs, the 

motif-disrupting allele was associated with decreased chromatin accessibility in progenitors 

and neurons.

(d) Examples of TF motifs disrupted by caSNPs associated with decreased chromatin 

accessibility in progenitors (POU3F2; left) and neurons (ASCL2; right).
(e) Disrupting ZEB1 (a transcriptional repressor) binding motif was associated with 

increased chromatin accessibility in progenitors and neurons.
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Figure 7: 
Cell-type specific caQTLs lead to regulatory mechanisms underlying GWAS loci.

(a) Partitioned heritability enrichment. P values are estimated from LD score regression 

(two-sided test) and corrected by FDR (Methods). Data are presented as mean values +/− 

SE.

(b) Partitioned heritability enrichment demonstrated a significant (FDR < 0.05) enrichment 

of heritability for surface area of the full cortex and other subregions within progenitor 

peaks.

(c) Numbers of colocalizations between caQTLs and GWAS loci.

(d) A colocalized locus between progenitor-specific caQTL and MDD GWAS.

(e) Association between rs1950834 and chromatin accessibility of the labeled peak in 

progenitors (N=76). P values are estimated by the mixed effects linear model using a two-

sided test.
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(f) ASCA of rs1950834 in progenitors. P values are estimated by the negative binomial 

generalized linear models from DESeq2 using a two-sided test (Methods).

(g) Association between rs1950834 and expression of lncRNA AL12182.1 in fetal brain 

(left, N=235) and progenitors (right, N=85). P values are estimated by the linear mixed 

effects model with a two-sided test.

(h) Zoomed in plot of caPeaks colored by genotype at rs1950834.

(i) The expression of TFs in which motifs are disrupted by rs1950834.

(j) The motif logo of ETV1 where the boxed region is disrupted by rs1950834.

(For box plots in (e) and (g), the center of the box is median of the data, the bounds of the 

box are 25th percentile and 75th percentile of the data, and the whisker boundary is 1.5 

times the IQR. Maximum and minimum are the maximum and minimum of the data.)
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