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Abstract: Cancer is predominantly considered as an environmental disease caused by genetic or
epigenetic alterations induced by exposure to extrinsic (e.g., carcinogens, pollutants, radiation) or
intrinsic (e.g., metabolic, immune or genetic deficiencies). Over-exposure to antibiotics, which is
favored by unregulated access as well as inappropriate prescriptions by physicians, is known to have
led to serious health problems such as the rise of antibiotic resistance, in particular in poorly developed
countries. In this review, the attention is focused on evaluating the effects of antibiotic exposure on
cancer risk and on the outcome of cancer therapeutic protocols, either directly acting as extrinsic
promoters, or indirectly, through interactions with the human gut microbiota. The preponderant
evidence derived from information reported over the last 10 years confirms that antibiotic exposure
tends to increase cancer risk and, unfortunately, that it reduces the efficacy of various forms of cancer
therapy (e.g., chemo-, radio-, and immunotherapy alone or in combination). Alternatives to the
current patterns of antibiotic use, such as introducing new antibiotics, bacteriophages or enzybiotics,
and implementing dysbiosis-reducing microbiota modulatory strategies in oncology, are discussed.
The information is in the end considered from the perspective of the most recent findings on the
tumor-specific and intracellular location of the tumor microbiota, and of the most recent theories
proposed to explain cancer etiology on the notion of regression of the eukaryotic cells and systems
to stages characterized for a lack of coordination among their components of prokaryotic origin,
which is promoted by injuries caused by environmental insults.

Keywords: antibiotics; cancer risk; dysbiosis; gut microbiota; human tumor microbiome; symbiotic
imbalances; therapeutic outcomes; tumor origin

1. Bacterial Contributions to Eukaryotic Origins and Human Biology

In the continuous process through which living creatures kept progressively attaining levels of
increasing structural and functional complexity, bacteria appeared much earlier than humans on the
earth’s biosphere. Initially, bacterial populations interacted among themselves through mechanisms
that contributed to increase their own diversity as well as their ability to colonize a wide range of
environments. Then, as stated by the endosymbiosis theory [1,2], it was the stable symbiotic coalescing
of different bacterial types that gave rise to a new type of more complex organisms, such as the earliest,
unicellular eukaryotes. Since its first formal proposal over 50 years ago, although the endosymbiosis
theory of eukaryogenesis has been challenged [3,4], reevaluated [5–7] and expanded [8–10], its validity
has been largely supported [11,12]. Today, it is widely accepted that the symbiotic contributions of
different structural and functional features by specialized prokaryotic organisms, particularly the
mitochondria and chloroplast precursors, represent a fundamental transition that enabled eukaryotes
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to restructure their genomes and the acquisition of a tremendous bioenergetics potential for a much
wider niche expansion, environmental adaptation, colonization and diversification, ultimately leading
to the permanent establishment of organismal multicellularity.

In addition to setting up the foundation for the development of the enormous diversity and
complexity attained by eukaryotic organisms, prokaryotic organisms, in general, and bacteria in
particular, have provided another key beneficial role by coexisting with diverse host organisms,
including humans, and establishing mutualistic interactions with them. In humans, large amounts
of bacteria coexist in almost every organ and on all surfaces directly exposed to components of the
external environment (e.g., skin, nasopharyngeal and oral cavities, lungs) or to byproducts derived
from the digestion of dietary compounds (e.g., gastrointestinal system). The human endogenous
commensal bacterial population most frequently studied and, therefore, the best characterized is what
used to be called the “intestinal flora”, which more recently is indistinctively referred to as the gut
“microbiota” or “microbiome”, although these terms are frequently confused and misused [13,14].
The term “microbiota” is correct when used to refer to the repertoire of strains of microorganisms in a
given ecosystem [15]. The term “microbiome” is popularly believed to have been coined by Joshua
Lederberg in the early 2000s [16]. In fact, the first microbiome notion was introduced in the 1800s by
Sergey Winogradski, from a microbial ecology perspective, to refer to a microbial ecosystem (“microbe”
plus “biome”) as a whole. Nevertheless, its current meaning departs from such a notion, and relates
solely to the genomes of the microbial species inhabiting a particular ecosystem [17,18].

Over the last 10 years there has been an impressive renaissance in basic and clinical research related
to the human microbiota and microbiome. The availability of improved culturing and sequencing
methodologies [19–21], along with advances brought about by functional studies, have provided
a wealth of knowledge on the role of the microbiota as a complex “organ” that performs essential
roles in balancing health and disease states in humans [22–25]. The gut microbiota is known to
establish a gut-organ network [26] that supports interactions with non-colonic microbiota [27] and
with central homeostatic-regulatory controls, such as the immune system [28–30], the endocrine
system [31], metabolism [32,33], the intrinsic circadian clock [34], brain function [35], and others.
Through this network, the gut microbiota influences the onset, severity and outcome of diseases
that cause high levels of morbidity and mortality among humans, including cardiovascular [36,37],
liver [38], autoimmune [39] or infectious diseases [40], as well as cancer [41]. Although there are always
nomenclature discontents [42], the terms eubiotic and dysbiotic, particularly the latter, have been
used routinely to distinguish between the “good” (balanced in itself and with the host) and the “bad”
(imbalanced) states of the gut microbiota [43,44]. While the distinction between the two states has
been shown not to be a black-and-white case [45,46], it has been generally accepted that the beneficial
and disease-promoting roles of the microbiota are associated with its eubiotic and dysbiotic stages,
respectively [47,48].

Some microbes coexisted and coevolved with humans through mutualistic interactions and
performed fundamental roles in maintaining our physiological and metabolic homeostasis in response
to changes in our intrinsic and extrinsic environments. However, other microorganisms assumed
utterly invasive roles and became pathogenic to humans, thus posing health risks and threatening
human survival. Ultimately, the outcome of competitive interactions between commensal members
of our microbiota and potential pathogens would become a key life/death determining factor for
human beings [49]. Recent methodological advances (e.g., high-throughput DNA sequencing) in
paleomicrobiology [50–52] have allowed substantial progress in expanding our understanding on
the appearance of human infectious microorganisms, their co-evolution with humans, the health
conditions of past human populations, and the overall global ecological interactions across time.
Accordingly, we know now that microbial pathogens, particularly bacteria, have been infecting humans
for thousands of years [53–55]. It is currently estimated that the most recent common ancestors of
Helicobacter pylori, which infects human stomachs, dates to the time of appearance of the anatomically
modern humans [53]; Mycobacterium tuberculosis, the etiological agent of tuberculosis, has been around
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for less than 6000 years [53,54] and Yersinia pestis, which caused the plague, has spread globally
for at least 5000 years [53,55]. Data derived from paleomicrobiology along with written historical
records have clearly shown that, at times, certain pathogenic bacteria spread at high rates and their
transmission acquired epidemic or even pandemic proportions (Table 1). However, it has become also
clear that the progression of human civilization to more sedentary ways of life (e.g., the transition
from hunter-gatherer communities to societies with agriculturalist and pastoralist economies) followed
by the creation of ever larger cities and the establishment of better ways of communication between
cities allowed the appearance of sustained infections by human-adapted bacterial pathogens [56,57],
many of which were of zoonotic origin, transmitted from animals in various ways [58–60].

Table 1. Records of widespread human bacterial infections.

Time Period Main Bacterial Agents(s) Geographic Distribution

5000–1500 BC Yersinia pestis
Helicobacter pylori

Paleomicrobiology records suggest frequent infectious
diseases

XIV Century BC Francisella tularensis
The Hittite Plague was most likely a case of tularemia,

a zoonotic, possibly fatal disease in humans, that
spread through the Middle East

430–426 BC
Salmonella enterica, serovar

Typhi identified as a
possible cause

Plague of Athens, ancient Greece, later spread
through war with infected animals to a wider

geographical region

541–544 AD Yersinia pestis Justinian Plague, spread through Asia, North Africa,
Europe and the Arabian Peninsula

1347–1351
Later outbreaks:

1616–1619
1629–1631
1656–1658
1665–1666
1720–1722

Yersinia pestis

Black Death—Bubonic plague, widely spread through
Europe and Asia

Massachusetts Plague, North America
Italian Plague—Milan

—Naples
Great Plague of London (England)
Great Plague of Marseille (France)

1817–1824 Vibrio cholerae Cholera epidemic—India, China and
Southeastern Asia

1894 Yersinia pestis Bubonic plague—India and China

1899–1923 Vibrio cholerae
Cholera pandemic—Started in India and spread over

the years to the Middle East, North Africa, Eastern
Europe and Russia

1994 Yersinia pestis Indian Bubonic Plague

Information about the treatment of bacterial infections through the early years of the 20th century
has been recorded in writings from ancient Greece, where Hippocrates became the founder of modern
medicine [61,62]. With his conception of disease as an imbalance affecting the four basic bodily fluids
(or “humors”) and of treatments as ways to help nature restore the lost balance, Hippocrates influenced
the way clinical practice was carried out through the centuries [63] essentially globally and all the
way to the modern world. Control and treatment of diseases involved the use of procedures such
as bloodletting, dietary interventions, consumption of laxatives, management of rest and exercise,
and others. Bacterial infections were no exception and, with the inclusion of amputations in extreme
cases, were treated according to the principles of the “humor theory” until the discovery of penicillin
by Alexander Fleming in 1928 and its clinical availability in the late 1930s [64,65]. The beneficial
effects of penicillin were immediately appreciated, as its use saved thousands of lives during WWII
and resulted in a substantial increase of the human life expectancy in a rather short time. However,
even as early as 1945 there were already warnings about the need for a sensible use of penicillin by
both patients (to avoid self-medication) and by physicians (to use appropriate dosing protocols) as
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there were already some signs of the development of penicillin resistance. Unfortunately, the reaction
of many physicians and scientists to solve the resistance problem was to focus on the identification and
isolation of novel antibiotics, rather than concentrating on introducing corrective behavioral measures.
Although, initially, the use of additional newer antibiotics cured many bacterial infections, antibiotic
resistances continued to rise and, at some point, no antibiotics were available to treat certain infections
(e.g., MRSA, methicillin-resistant Staphylococcus aureus; MDR-TB, multidrug-resistant Mycobacterium
tuberculosis) [66]. After many years with no new antibiotics available, efforts are currently on the way
to discover compounds that may exert their antibiotic activity through pathways less favorable for the
development of resistance mechanisms by the targeted bacterial populations [67,68]. The introduction
of other kinds of compounds (e.g., bacteriophages, enzybiotics, and others) as alternatives to the use of
antibiotics that do not lead to drug-resistance effects will be discussed later in this review.

2. Bacteria and Cancer

There are a number of converging associations between prokaryotic microorganisms, particularly
bacteria, and the incidence of cancer in the animal kingdom, including humans [69,70]. Similar to the
case of infectious diseases, written records from different cultures [71–74] and paleo-oncology/pathology
data [75–78] clearly show that cancer is indeed an ancient disease (Table 2). In fact, the earliest hominid
cancer described to date corresponds to a 1.7 million-year-old osteosarcoma case characterized in South
Africa [79]. Interestingly, similarly to bacterial infections, cancer treatments were also based on the
“humor theory” through the mid-19th century, with progressive incorporation of improved surgical
techniques [80,81]. It was not until the 1890s that X-rays were used as the first form of radiotherapy [82],
around 1940 for the beginning of chemotherapy [83], after 1970 for the use of antibodies [84], and much
more recently for the use of protocols targeting the immune checkpoints [85], bringing immunotherapy
to the first line of currently available anticancer therapies. It is worth mentioning this point that the
term “chemotherapy” was first introduced in the early 1900s by the German biochemist Paul Ehrlich to
refer to the use of chemicals to treat diseases, in particular infectious diseases [83]. Currently, the term
chemotherapy is most frequently understood as referring to the use of chemicals for the treatment
of cancer. Nevertheless, the concept seems to be appropriately interchangeable between anticancer
and antimicrobial treatments, because diverse antibiotics with activity as DNA alkylating agents (e.g.,
Adriamycin, also called doxorubicin, and other anthracyclines produced by Streptomyces spp.) are used
in anticancer regimens [83], and various drugs used in cancer chemotherapy (e.g., cisplatin, which is
still used today as the standard of care for human cancers such as testicular tumors) are also known to
have antimicrobial activity [86].

Most likely, the most direct association between bacteria and human cancer derives from the
fact that certain bacterial infections cause cancer [87]. Bacteria induce carcinogenesis through two
main mechanisms: (a) the induction of chronic inflammatory processes leading to cancer in various
human organs, or (b) the production of carcinogenic metabolites, which is frequently the case for colon
cancer [87]. Perhaps the best known instance of bacteria-induced cancer is that of Helicobacter pylori,
which causes gastric MALT (mucosa-associated lymphoid tissue) lymphoma. As the H. pylori infection
can spread by contaminated food or water and is transmitted by mouth-to-mouth contact, it is frequently
acquired during childhood, and it is estimated to be present in over 60% of the world’s population,
being particularly frequent in developing countries [87]. Prolonged H. pylori infection ultimately
leads to chronic inflammation, a process that dramatically changes the gastric mucosa and stimulates
regenerative cell proliferation as well as the production of reactive oxygen species (ROS) and of reactive
nitrogen species (RNOS), which together may result in point mutations, deletions and/or translocations
in the DNA of the host cells, thereby triggering the onset of the carcinogenic process [88]. The possible
association of H. pylori with other types of cancer such as those in the colon [89], lung [90,91] and
pancreas [90,92] has also been reported. Fortunately, treatment with antibiotics alone or in combination
with agents that may prevent the development of antibiotic resistance can eradicate the H. pylori
infection and, consequently, prevent the development of cancer [93–95].
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Table 2. Brief history of cancer.

Time Period Civilization(s) People/Events

2500–1500 BC
ca. 1825 BC
ca. 1538 BC

Ancient Egypt

Earliest descriptions
Medical Papyri
Papyrus Cahun
Papyrus Ebers

1400–1100 Chinese Oracles written to provide earliest documentation on
cancer cases

475–221 BC Chinese

Writings
“Inner Cannon of Yellow Emperor” on etiological

factors (e.g., diet, depression, body deficiencies),
symptoms and pathology

“The Classic Mountains and Seas” on treatments
with different types of seaweeds.

460–310 BC Greek

Hippocrates
Described several cancer types, with drawings

Coined the term “karkinos” (for “crab”) based on
the appearance of tumors

Treatments based on “Humor Theory”
(diet, bloodletting, laxatives)

25 BC–50 AC Roman

Celsus
Coined the term “cancer” (Latin for “crab”)
Cancer was appreciated as being common
enough to be widely studied and recorded

130 AD–210 AC Greece

Galen
Coined the term “oncos” to refer to the swelling

associated with all tumors
Recognized the differences between malignant

(“karkinos”) and non-malignant tumors
Use the suffix “-oma” (still used for tumor types)

Established modern concept of Oncology

III–VII Century AC Western Europe
Medical Handbooks (Orebasius, Aetios of Amida,

Paul of Aegina) compiled with more detailed
descriptions and drawings of various tumor types

648 AC Chinese Surgery used for the first time to remove tumors

VII–XIV Century AC ARAB and
MuslimCultures

Scholars (Avicenna, Rhazes, Al Zahrawi, Ibn al Nafis),
mainly in the Caliphate of Cordoba (what is now

Spain) made important advances:
Invention of surgical tools

First removal of early-stage breast cancer
Realization that successful treatment was

possible if detected early

XV–XVIII
Century AC European Avicena’s “The Cannon of Medicine” remained the

Standard in cancer management

XVIII Century AC to
Present
ca. 1940
ca. 1970
recently

Worldwide

Advances in surgical techniques
Discovery of Radiation and therapeutic use of X-rays

First use of Chemotherapeutic protocols
First use of Immunotherapy approach

Introduction of Immune Checkpoint Inhibitors

A third point of convergence between bacteria and cancer relates to the role, mentioned above,
of the human microbiota as a global homeostasis regulator by which it provides protection against
a number of diseases, including cancer. After carcinogenic exposures, a well-balanced microbiota,
with regard to both the strain diversity and the relative size of the various bacterial components, could be
a key determinant of the outcome of the pro-carcinogenic process, allowing the onset of tumor formation
or not. In this scenario, although a small percentage of cancer cases have a genetic component [96],
it is important to consider the fact that cancer is an environmental disease [97,98], and cancer risk can
be possibly influenced by extrinsic factors (e.g., diet, pollutants, carcinogens, or lifestyle) as well as by
intrinsic factors (e.g., epigenetic signaling, microbiota composition, detoxifying proficiency, or immune
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competence). In this context, antibiotics are the kind of compounds that have the potential of modifying
cancer risk due to their ability to act as extrinsic environmental chemical carcinogenic factors (direct
action) and to alter the normal balance of the microbiota towards a more pro-carcinogenic composition
(indirect action). The obviously beneficial action of antibiotics against bacterial pathogens may be,
therefore, outweighed by the possibility of inducing a parallel increase in cancer risk.

The significance of this issue is highlighted by (a) the over-exposure of humans to antibiotics
through self-medication or by sharing prescriptions with friends or relatives in many communities,
regions and countries where antibiotics can be accessed without prescription [99], a societal problem that
can be easily solved with appropriate guidance [100]; and (b) by misguided indication and inappropriate
dosing schemes prescribed by physicians and medical institutions [101,102] for the treatment of clinical
cases not even involving bacterial infections, in many cases to simply satisfy the demands of patients to
be prescribed “anything” to sense that they are adequately taken care of. In addition to these instances of
uninformed, unnecessary, unjustified and inadequate antibiotic use that still make us question the safety
of antibiotics in the 21st century [103,104], cancer patients are being exposed frequently to antibiotics as
prophylactic or therapeutic components of their anticancer treatment protocols, particularly during
postoperative periods after surgery [105–107] as well as while patients are immunosuppressed by the
action of chemotherapeutic drugs [108,109]. In addition, it is possible that, either through their own
direct carcinogenic action or by indirectly modifying the microbiota, antibiotic exposure may alter the
response of cancer patients to therapy by lowering its effectiveness, thereby resulting in the appearance
of secondary cancers, the progression to advanced stages, including metastasis or tumor recurrence.
These two aspects of the possible influence of antibiotics on cancer risk and therapeutic outcomes have
been studied from two main points of view: epidemiological analyses directly studying the association
between antibiotic exposure and cancer incidence, and evaluations of the possible involvement of
indirect antibiotic effects on the microbiota in promoting cancer onset and development. As evidenced
by publication records over the last 10 years (Figure 1), results from the latter type of studies have been,
and continue to be, reported at a higher frequency than the epidemiological data. The next sections
will examine the connection between antibiotic exposure and cancer risk and its effects on treatment
effectiveness and outcomes for cancer patients.
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3. Antibiotics and Cancer Risk

As correctly expressed by McCormack and Boffetta in the title of one of their articles (“Today’s
lifestyles, tomorrow’s cancers: trends in lifestyle risk factors for cancer in low- and middle-income
countries”) [110], the reality is that it is precisely in those countries where not only the unregulated
consumption of antibiotics happens more frequently, but also where, unlike what happens in developed
counties [111], accurate records of cancer incidence are not periodically updated or not even maintained
at all. Given this situation, epidemiological assessments about antibiotic exposure and cancer risk are
very valuable. In the course of the last fifteen years, studies on possible effects of antibiotic exposure
on cancer risk have focused primarily on the cancer types more frequent in humans, and generally
have been designed to include cohorts of cancer patients and randomly selected non-cancer patients
as controls.

In studies related to breast cancer, the data suggested an association between antibiotic
consumption and cancer risk. Although in some studies the association was qualified as weak [112,113],
other studies reported a clearly positive association with the number of prescriptions and the cumulative
days of antibiotic use [114,115]. While in some studies the same patterns of association were observed
with all classes of antibiotics tested [114,115], a better association was reported by different antibiotic
classes [112,116]. The situation was not clear with regard to lung cancer, as the data provided insufficient
evidence to support or refute a possible carcinogenic effect of antibiotics [117]. The information from
studies on colorectal cancer (CRC) seems more conclusive, most likely due to the greater number of
studies published much more frequently because of the general trend of increased scientific interest
in the gut microbiota. Most CRC-related studies report an association, even at the adenoma stage,
with both timing and duration of antibiotic exposure [118–120]. In addition, and more importantly,
some of these studies allowed the dissociation between the effects of antibiotic usage on the risk of
colon cancer vs. rectal cancer, as the data consistently showed a positive association between antibiotic
use and colon cancer, but there was either no association or a negative correlation with cancer of the
rectum [121–123].

In more general studies of other digestive cancers (esophagus, stomach, small intestine,
hepatobiliary, and pancreas), positive associations were found between certain antibiotic classes
and particular tumor types, which increased with dose [124,125]. Positive associations were found
between the use of penicillins and esophageal, gastric and pancreatic cancer, with clearer dose-response
effects in the latter type [124]. Nitroimidazoles and quinolones showed more modest associations
with all digestive tumor types investigated [125]. Studies on non-melanoma skin cancer showed
that there was an increased risk of developing skin cancer associated with the use of photosensitive
antibiotics [126–130]. Exposure to antibiotics such as ciprofloxacin, ketoconazole, and sulfamethoxazole
increased the risk of developing basal cell carcinoma (BCC), whereas the use of doxycycline and
sulfamethoxazole increased the risk of squamous cell carcinoma (SCC) [126,127,129]. Although some
studies associated the use of tetracycline with BCC risk [126,127], it was also reported that the use of
tetracycline demonstrated positive interactions regarding simultaneous UV light exposure and the risk
of SCC [129]. An association was also observed between the use of moxifloxacin and an increased
risk of developing SCC during the first year after lung post-transplantation [128]. In addition, the use
of a mathematical model also predicted, and somehow confirmed, that the risk of developing skin
cancer is positively associated with the use of antibiotics [130]. Finally, two large multi-tumor type
studies [131,132] are worthwhile mentioning. In the first one [131], researchers followed for a period
of six years the number of cancers diagnosed in a sample of 3,112,624 individuals with no previous
history of cancer, and analyzed that information with regard to the patterns of antibiotic usage in the
study population. Data from this study showed that cancer incidence increased with the number
of prescriptions, and that the extent of the association of the relative risk with antibiotic exposure
varied with tumor type, being greatest in tumors of endocrine glands, followed in decreasing order by
cancers of the prostate, breast, lung, colon and ovary [131]. The second multi-tumor type study [132],
the largest reported to date, reported results from the systemic review of about 7.9 million individuals
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showing that, on average, antibiotic use increased cancer risk by about 18%, although the effect varied
with tumor type: 30% increased incidence of lung, pancreatic and genitourinary cancers; smaller risk
increases (6–8%) for CRC, gastric cancer and melanoma; and no association was found with esophageal
or cervical cancer. With regard to antibiotic types, the highest risk was associated with the use of
β-lactams, cephalosporins and fluoroquinolones [132].

4. Antibiotics and Cancer Therapy Outcomes

A number of reports have been published during the last few years on the possibility that
the prophylactic antibiotic treatment of cancer patients, which is deemed a necessary approach to
prevent infections after surgery or during chemotherapy, may affect the outcome of their cancer
treatment. After early encouraging reports showing that the use of anthracyclines such as doxorubicin,
epirubicin or idarubicin to treat various tumor types resulted in the potentiation of the patient’s
anti-tumor immunity [133], and data from other studies showed that antibiotic treatment had no
deleterious effects on the response of non-small cell lung carcinomas (NSCLC) to treatment with the
immune checkpoint inhibitor (ICI) nivolumab [134,135], results from preclinical chemo-immunotherapy
protocols combining cyclophosphamide chemotherapy with adoptive T-cell (ACT) immunotherapy,
using a mouse model of B-cell lymphoma, demonstrated that prophylactic use of broad-spectrum
antibiotics reduced the efficacy of cyclophosphamide and impaired the therapeutic effects of ACT [136].
Since then, most studies have reported negative effects of antibiotic exposure leading to diminished
levels of efficacy of ICIs in immunotherapy protocols for the treatment of a variety of tumors, including
lung tumors/NSCLC [137–144], advanced or metastatic renal cell carcinoma [137,141,142,144], urothelial
carcinoma [141], and melanoma [141,143,144]. In addition, more recently, it has been reported that
antibiotic use had a negative impact on the response of patients with locally advanced head-and-neck
tumors to treatment protocols involving chemotherapy or radiotherapy [145]. The abundance of
reports describing the negative effects of antibiotic exposure on the response of cancer patients to
different types of therapeutic modality strongly suggests that the final outcome may be related to a
unifying element, and that such element is the state of intrinsic microbiota.

5. Central Regulatory Role of the Microbiota

As indicated above, over the last ten years there has been an extraordinary interest in the human
microbiota, in particular with regard to its critical ability to maintain the health/disease balance
through our lives. It is now clear that the microbiota plays a number of central regulatory roles related
to environmental risks [146], antibiotic response [147], tumor progression [148], or the response to
cancer therapy [149–151]. The basic mechanisms by which microbiota imbalances stimulate cancer
development can be divided into two broad types: genetic and epigenetic. Genetic mechanisms relate
to inducing DNA damage, interfering with the DNA-damage response and, consequently, leading to
the accumulation and transmission of mutations in the host DNA. In addition, microbiota dysbiosis
has substantial epigenetic effects, including changes in global DNA methylation, histone acetylation,
chromatin remodeling and other epigenetic abnormalities [152]. Microbiota imbalances trigger some
of these genetic and epigenetic pro-carcinogenic effects through enzymes, toxins, metabolites such
as short-chain fatty acids (SCFAs), or other products either secreted by gut microbes or generated as
byproducts from their metabolic conversion of dietary components and other ingested xenobiotics [152].
It is through interactions with cellular receptors and cell signaling cascades that the microbial-derived
secreted or metabolic products mediate the microbiota’s positive or negative, in modulating the
therapeutic response of cancer patients. As a target for antibiotics action [153], it seems highly likely
that diverse levels of microbiota dysbiosis may boost the negative effects of antibiotic exposure on
both the enhancement of cancer risk and the efficiency dampening of chemotherapy, immunotherapy
and radiotherapy protocols. In this context, it seems quite obvious that the introduction in the
clinic of strategies that may allow microbiota modulation may be a key step towards providing an
optimum biological framework to facilitate cancer prevention and treatment [154]. The decrease
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in gastric cancer attained by eradicating H. pylori is a clear example of the anticancer potential of
microbiota modulation [155]. It seems, therefore, possible that taking into consideration the status of
their microbiome may improve the use of antimicrobial agents, as well as the treatment outcomes for
cancer patients [156]. Protocols for microbiota modulation may provide tools to achieve predictive
information on cancer treatment outcomes [157–159].

6. Alternative Approaches

On the basis of the information presented above, the most urgent issue is to promote a change in
the patterns of antibody utilization [160] as a way to decrease not only cancer risk, but also the increased
risk for all causes of mortality associated with long-term antibiotic use in late adulthood [161] as well
as possible risks passed to the offspring during different stages of pregnancy [162]. Alternatively,
efforts should be made to identify or develop new antibiotics that may have both antimicrobial and
anti-tumor activities [163,164]. The selection of antibiotics with anti-tumor activity may be done by
taking into consideration: (a) their mechanism of action, by taking advantage of properties such as their
genotoxicity [165,166], their apoptosis-inducing potential [167,168], their ability to block tumor-specific
signaling pathways [169], their epigenetic modulatory effects [170,171], or other relevant molecular
mechanisms [172,173]; and (b) the lowest possible deleterious effects on the microbiota, as in the case of
rifaximin [174,175], that has broad-spectrum against both Gram-positive and Gram-negative bacteria
and, on the basis of its unique absorbability, solubility and pharmacokinetic properties may in fact
correct microbiota dysbiotic imbalances [176].

Microbiota modification techniques provided an obvious second main alternative, which can be
accomplished by the use of probiotics, prebiotics or symbiotic supplements [177,178] or, more directly,
by fecal microbiota transplantation (FMT) [179,180]. Currently available FMT methods [181] make it
possible to reverse dysbiotic processes of the microbiota [182] as well as provide, at the same time,
new opportunities for improved cancer management protocols [183].

Finally, there is also the possibility of substituting antibiotics for other agents that may have similar
advantages with regard to their antimicrobial activity, but do not create collateral problems related to
resistance, microbiota dysbiosis, or the decrease in the response to anti-tumor therapies. Although
agents with dual antimicrobial and anti-tumor activities would be ideal, combined applications of
mono-therapeutic agents may easily provide the same effect. Two types of agents to be considered in
this class are bacteriophages [184–187] and enzybiotics [188–191], which have attracted substantial
attention in recent times, and can be used in prophylactic and therapeutic applications in antimicrobial
and anticancer protocols. Bacteriophages have been engineered for medical applications [192] in
ways allowing them to retain their antibacterial activity [185] and have been used as anticancer drug
delivery systems [186,192], their possible effects on anti-tumor immunity and the response to anticancer
therapy must be further evaluated. The same is even more needed with regard to enzybiotics, poorly
immunogenic enzymes from bacteriophages or other natural origin able to highly specifically act as
antimicrobial agents [187], as our current knowledge about their potential use in anticancer strategies
is extremely limited.

7. Conclusions and New Perspectives

Interactions between antibiotics and the microbiota regulate their respective contributions to the
carcinogenic process (by modulating cancer risk and tumor initiation) and to the response of cancer
patients to different anticancer therapies, leading to effective cures or to progression of tumors to
advanced, metastatic stages. Figure 2 illustrates this dual regulatory interaction. Alternatives to the
use of antibiotics that either do not cause or only cause minor levels of microbiota dysbiosis provide
potentially useful strategies to keep the carcinogenic process under control. However, there is another
factor that must be taken into consideration: the human tumor microbiome.
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The fact that bacteria found in human tumors were not the result of contamination was established
about 100 years ago, and it has been only recently that technological advances have allowed the
establishment of tumor microbiome signatures as distinct from those derived from genomic analyses
of the normal microbiota. Nevertheless, detailed characterization of the tumor microbiota has not
progressed at a fast pace, due to the limitations imposed by the very low bacterial biomass present
in the tumors. Despite this situation, a very exciting finding has been very recently [193] reported
demonstrating that different tumor types have distinct microbiome signatures, which has important
implications from a diagnostic point of view, and even more importantly that the tumor microbiota is
composed of intracellular bacteria. Understanding the contribution of tumor type-specific, intracellular
bacteria to the balance of the normal microbiota and the effects of antibiotics in the context of cancer
risk and therapy efficiency will definitely require the application of system biology approaches [194].

Interestingly, this finding brings us back to the world of prokaryotes that provide specific
functions while being intracellular residents, as a possible case of what could be called “oncologic
symbiosis”. Furthermore, the intracellular location of the tumor microbiota connects it to some of the
most recent theories on the origin of tumors [195,196]. One of these notions sees the roots of cancer
etiology as grounded in the two transitions (from prokaryotic to eukaryotic, and from unicellular to
multicellular beings) that ultimately lead to the establishment of higher organisms [195]. The other,
the so-called “Systemic-Evolutionary Theory of Cancer (SETOC)”, proposes that, as a consequence of
long-term injuries caused by cancer-promoting factors, cancer results from a process of regression of
the eukaryotic cells towards a situation in which its prokaryotic component assumes uncoordinated
behaviors, which ultimately break the integration of the components of the endosymbiotic cellular
system [196]. It will be extremely interesting to see whether the newly identified intracellular
prokaryotic cells of the tumor microbiota play any role in these proposed regressive processes.
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