ecancermedicalscience

The effects of continued azacitidine treatment cycles on response in higher risk patients with myelodysplastic syndromes: an update

LR Silverman¹, P Fenaux², GJ Mufti³, V Santini⁴, E Hellström-Lindberg⁵, N Gattermann⁶, G Sanz⁷, AF List⁸, SD Gore⁹, JF Seymour¹⁰, J Backstrom¹¹, D McKenzie¹¹ and CL Beach¹¹

Abstract

The international, phase III, multi-centre AZA-001 trial demonstrated azacitidine (AZA) is the first treatment to significantly extend overall survival (OS) in higher risk myelodysplastic syndromes (MDS) patients (Fenaux (2007) *Blood* 110 817). The current treatment paradigm, which is based on a relationship between complete remission (CR) and survival, is increasingly being questioned (Cheson (2006) *Blood* 108 419). Results of AZA-001 show CR is sufficient but not necessary to prolong OS (List (2008) *Clin Oncol* 26 7006). Indeed, the AZA CR rate in AZA-001 was modest (17%), while partial remission (PR, 12%) and haematological improvement (HI, 49%) were also predictive of prolonged survival. This analysis was conducted to assess the median number of AZA treatment cycles associated with achievement of first response, as measured by IWG 2000-defined CR, PR or HI (major + minor). The number of treatment cycles from first response to best response was also measured.

Published: 08/12/2008 Received: 29/10/2008

ecancer 2008, 2:118 DOI: 10.3332/ecancer.2008.118

Copyright: © the authors; licensee ecancermedical science. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing Interests: The authors have declared that no competing interests exist.

Correspondence to LR Silverman. Email: lewis.silverman@mssm.edu

¹Division of Hematology, Mount Sinai School of Medicine, New York, NY, USA

²Hôpital Avicenne, Université Paris 13, Bobigny, France

³Department of Haematological Medicine, Kings College London, London, UK

⁴Hematology, Azienda Ospedaliera Careggi, Firenze, Italy

⁵Karolinska University Hospital, Stockholm, Sweden

⁶Heinrich-Heine University, Düsseldorf, Germany

⁷Department of Hematology, Hospital Universitario La Fe, Valencia, Spain

⁸H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA

⁹The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA

¹⁰Department of Haematology, Peter MacCallum Cancer Institute, Victoria, Australia

¹¹Celgene, Overland Park, KS, USA

Methods

Patients (pts) with higher risk MDS (FAB: RAEB, RAEB-T, or CMML and IPSS: Int-2 or High) were included. Pts were randomized to AZA (75 mg/m²/d SC x 7d q 28d) or to a conventional care regimen (CCR). AZA treatment was continued up to disease progression (or unacceptable toxicity), regardless of haematological response. Erythropoiesis stimulating agents were not allowed.

Results

In all, 358 pts were randomized (179 to AZA and 179 to CCR). Of the 179 AZA pts, 91 (51%) achieved a CR, PR or HI. For the 91 pts who achieved an IWG response, the median number of cycles to first response was three (range: 1–22), 81% of pts achieved a first response by six cycles, and 90% achieved a first response by nine cycles. For 57% of responders (n=52), their first response was their best response; the remaining 43% (n=39) had an improvement in their response status at a median of approximately four additional treatment cycles (range 1–11 treatment cycles) after their first response.

Conclusions

While many pts achieving a haematological response with AZA do so in early treatment cycles, continued AZA dosing can further improve pt responses. In the AZA-001 study, a significant OS benefit was observed compared with CCR. In this

study, AZA pts received a median of nine treatment cycles (range 1–39). For those achieving a response of HI or better, 90% did so by nine cycles; more than 40% of responders later achieved an improved response. In the absence of unacceptable toxicity or disease progression, continued AZA treatment is appropriate and may maximize patient benefit.

Conflicting interests

Silverman: Celgene: Speakers Bureau. Fenaux: Celgene: Consultancy, Honoraria, Research Funding; Ortho Biotech: Consultancy. Honoraria. Research Fundina: Roche: Consultancy, Honoraria. Research Fundina: Amaen: Consultancy, Honoraria. Research Funding; Cephalon: Consultancy, Honoraria, Research Funding; GSK: Consultancy, Honoraria, Research Funding; MSD: Consultancy, Honoraria, Research Funding. Mufti: Celgene: Honoraria, Speakers Bureau; Amgen: Honoraria, Speakers Bureau. Santini: Celgene: Honoraria: Novartis: Honoraria: J&J: Honoraria. Hellström-Celgene: Lindberg: Consultancy, Research Fundina. Gattermann: Celgene: Research Funding, Speakers Bureau. Sanz: Celgene: Membership on an entity's Board of Directors or advisory committees. List: Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Gore: Celgene: Consultancy, Equity Ownership, Research Funding. Seymour: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Backstrom: Celgene: Employment. McKenzie: Celgene: Employment. Beach: Celgene: Employment.