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Simple Summary: Pancreatic ductal adenocarcinoma is a leading cause of cancer death worldwide.
Due to the frequently late diagnosis, early metastasis and high therapy resistance curation is rare
and prognosis remains poor overall. To provide early diagnostic and therapeutic predictors, various
molecules from blood, tissue and other origin e.g., saliva, urine and stool, have been identified as
biomarkers. This review summarizes current trends in biomarkers for diagnosis and therapy of
pancreatic ductal adenocarcinoma.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is still difficult to treat due to insufficient meth-
ods for early diagnosis and prediction of therapy response. Furthermore, surveillance after curatively
intended surgery lacks adequate methods for timely detection of recurrence. Therefore, several
molecules have been analyzed as predictors of recurrence or early detection of PDAC. Enhanced
understanding of molecular tumorigenesis and treatment response triggered the identification of
novel biomarkers as predictors for response to conventional chemotherapy or targeted therapy. In
conclusion, progress has been made especially in the prediction of therapy response with biomarkers.
The use of molecules for early detection and recurrence of PDAC is still at an early stage, but there
are promising approaches in noninvasive biomarkers, composite panels and scores that can already
ameliorate the current clinical practice. The present review summarizes the current state of research
on biomarkers for diagnosis and therapy of pancreatic cancer.
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1. Introduction

According to current epidemiological studies, pancreatic ductal adenocarcinoma
(PDAC) is the 14th most common cancer type worldwide and the 7th leading cause of
cancer death [1,2]. The incidence rises with a greater emphasis on Europe and North
America amongst others due to risk factors associated with higher economic status [1,3],
including tobacco smoking [4], heavy alcohol consumption [4,5], obesity and high BMI [4,6],
diabetes mellitus [7], total serum cholesterol [8] and reduced physical activity [4].

Due to a lack of adequate screening methods and late onset of symptoms in early
stages, the prognosis for pancreatic cancer is still poor. At initial diagnosis, less than 20% of
all patients have a resectable disease, and accordingly the overall five-year survival rate
among patients with pancreatic cancer is <5% (16). Furthermore, up to 76.6% of patients
who underwent curative-intended surgical treatment develop early disease recurrence with
a median relapse free survival (RFS) of 11.7 months [9] and a five- year survival rate of
12–27% [10].

Conventional surveillance approaches are incapable to significantly improve postop-
erative survival [10,11]. Therefore, establishing biomarker-assisted surveillance has the
potential to predict early recurrence.

Diagnosis of PDAC is further hampered, as it commonly arises out of precusor lesions
that are usually not accessible to conventional diagnostics. Precursor lesions are namely
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Acinar to ductal metaplasia (ADM) and pancreatic intraepithelial neoplasias (PanINs)
which accumulate genetic alterations that ultimately lead to the development of an invasive
malignancy [12–15]. Intraductal papillary mucinous neoplasms (IPMNs) represent precur-
sor lesions with a special status, as they are accessible to conventional imaging techniques
and therefore can be risk classified based on imaging criteria [16]. However, having an
acceptable sensitivity of 83% in a pooled meta-analysis, these criteria lack adequate speci-
ficity [17]. Furthermore, up to 11% of radiographic low-risk classified pancreatic lesions
that underwent surgery were afterwards histologically confirmed as malignant lesions [17].
On the other hand, the risk of surgical overtherapy in patients with IPMN or mucinous
cystadenomas (MCN) is high, and guidelines for the management of precursor lesions of
pancreatic cancer are inconsistent [18]. Therefore, the development of new non-invasive
biomarkers is crucial to improve early diagnosis and surveillance of precursor lesions of
PDAC to aid surgical decision making.

Treatment of advanced stage PDAC includes various chemotherapy regimens. Even
with the most effective protocol the FOLFIRINOX (5-FU, Leucovorin, Irinotecan and Oxali-
platin) regimen median overall survival does not surpass 11.1 months [19]. Furthermore,
calculation of patient-related toxicity has gained importance due to the establishment of
new therapies and the intention to maintain a high quality of life during systemic therapy.
Therefore, biomarkers to predict treatment response and toxicity for targeted therapy and
classical cytoreductive agents are essential to individualize treatment.

Due to the high importance of new biomarkers for early diagnosis of occurrence and
recurrence of PDAC as well as treatment response in advanced-stage tumor disease, this
has been a field of interest over the past years. This review aims to outline the current state
of research and the implementation of new biomarkers in clinical practice.

2. The Role of Biomarkers in Diagnosis of Pancreatic Ductal Adenocarcinoma

Due to limited therapeutic options in advanced PDAC, early detection is even more
important for prognosis. The development of diagnostic biomarkers is a promising step for
screening high-risk populations.

2.1. CA19-9, CEA and Other Carbohydrate Antigens

Cell surface carbohydrate structures are associated with different roles in intercellular
communication, structural and protective characteristics, and cell proliferation. Since
changes in carbohydrate structure in tumor cells have been proved to be specific for
different tumor entities [20], these molecules have been investigated for cancer diagnosis.

CA19-9 is probably the most extensively validated and investigated biomarker regard-
ing diagnostic but also prognostic and surveillance capacity [21]. Therefore, it is the only
FDA-approved biomarker for diagnosis and monitoring of PDAC [22]. For the diagnosis of
PDAC in symptomatic patients, a systematic meta-analysis determinate a median speci-
ficity of 82% and a median sensitivity of 79% from pooled data of 2283 patients [22]. These
results have been replicated in more recent studies on the use of CA19-9 in the diagnosis
of PDAC [23–25]. Nevertheless, several limitations of CA 19-9 have been identified that
impair the value of this biomarker. First, approximately 5–10% of the Caucasian population
have a strongly reduced production of CA19-9 due to dependence on the Lewis antigen [22].
Therefore, current studies aimed to define different types of CA19-9 secretion in consider-
ation of the patient’s Lewis antigen status and other features [26,27]. Furthermore, there
are several distracting conditions in which an elevation of CA19-9 has limited validity, like
obstructive jaundice, liver cirrhosis, (chronic) pancreatitis and cholangitis [28]. Hence, the
diagnostic value in symptomatic patients, especially considering the differentiation be-
tween malignant and benign cause of obstructive jaundice is limited, and require repetitive
measurements after relief of jaundice [22]. Additionally, the low positive predictive value
of CA19-9 restrains its application as a screening instrument for larger populations [29].

Other carbohydrate antigens have been evaluated regarding their diagnostic value for
the early diagnosis of pancreatic cancer. Previous studies have linked CA125 and CA72-4
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to PDAC [30] as well as CA50, CA199 and CA242 [31–33]. A solitary diagnostic potential
could not be verified for any of these carbohydrate antigen biomarkers; however, they
might help to discriminate between benign and malignant pancreatic lesions in combination
with CA19-9 [30].

Similarly, CEA elevation has lower sensitivity and specificity than CA19-9 in early
diagnosis of PDAC [23,34]. Thus, CEA seems to have a greater value as a prognostic marker,
especially with regard to advanced PDAC when combined with CA19-9 [35].

2.2. Micro-RNA, Circulating Tumor DNA (ct-DNA) and Circulating Tumor Cells (CTCs)

Micro-RNAs are small non-coding RNAs that regulate genetic expression post tran-
scriptionally and have been found to be dysregulated in several cancers [36]. A major
advantage of micro-RNA as a diagnostic tool is its deposition in different tissue and body
fluids like pancreatic tissue, urine, blood, stool and pancreatic juice. Therefore, various
(combined) micro-RNA panels have been investigated for early diagnosis of PDAC [37,38].

In a small cohort of six stage I PDAC patients, three micro-RNAs, miR-143, miR223,
and miR30e were significantly higher expressed in the urine compared to healthy controls
and to stage II-IV PDAC patients [39]. Analysis of salvia from another seven patients with
PDAC compared to patients with IPMN (n = 2), pancreatitis (n = 4) and healthy controls
(n = 4) showed that hsa-miR-21, hsa-miR-23a, hsa-miR-23b and miR-29c were significantly
upregulated, with a sensitivity of up to 85.6% and a specificity of 100% [40]. In stool
samples of 30 PDAC patients, MiR-21 and miR-155 levels were elevated and miR-216 levels
decreased compared to 10 patients with chronic pancreatitis, (CP) resulting in a combined
sensitivity and specificity of 83.33% [41]. In a case control study including 409 PDAC, 25 CP
and 312 healthy participants, two blood-derived micro-RNA panels were established that
could better distinguish PDAC patients from healthy controls compared to CA19-9 [42].

Additionally, it has been shown that micro-RNA can be used as a biomarker for
precursor lesions of pancreatic cancer [43–46], which makes it interesting as a potential
screening tool in the asymptomatic population.

Another potential diagnostic tool is liquid biopsy in the form of circulating tumor DNA
(ct-DNA) or circulating tumor cells (CTCs). The most limiting factor in early stages of PDAC
is the low amount of ct-DNA and CTCs restricting the feasibility as biomarkers [47,48].
However, it can be assumed that with increasing sensitivity of ct-DNA and CTC detection
techniques, the role of these biomarkers will gain importance. The quantity of circulating ct-
DNA in patients with PDAC is significantly higher than in patients with IPMN and healthy
controls [49]. Furthermore, the presence of GNAS and KRAS mutation in circulating ct-
DNA can help to distinguish patients with premalignant IPMNs from benign pancreatic
tumors [49]. A combination biomarker panel including the quantitative amount of ct-
DNA, CA19-9 and Thrombospondin-2 could significantly improve the diagnostic power of
CA19-9, especially in the detection of potentially curable stage I PDAC patients and the
discrimination from CP and IPMN [50]. In addition to the only quantitative measurement,
different approaches have tried to identify specific alterations in ct-DNA as a possible tool
for non-invasive diagnosis of PDAC. For example, 5-hydroxymethylcytosine signatures
or differently methylated markers in ct-DNA of PDAC patients were found compared to
healthy controls [51,52].

2.3. Metabolomics

During carcinogenesis, specific metabolic changes occur that could be used for early
detection of pancreatic cancer. In the case of pancreatic cancer progression, cancer cells
undergo metabolic reprogramming including an upregulation of glycolysis and the pentose
phosphate pathway as well as alterations in amino acid metabolism which lead to drug
resistance and tumor progression [53]. Interestingly, specific metabolic changes can be
detected up to 18 months before conventional PDAC diagnosis. Even more up to 30 months
before PDAC diagnosis patients developed hyperglycemia, followed by precachexia with a
decrease of serum lipids, body weight and abdominal subcutaneous fat [54]. In the urine of
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96 early stage PDAC patients a specific six-metabolite panel (trigonelline, glycolate, hippu-
rate, creatine, myoinositol and hydroxyacetone) was upregulated compared to 56 healthy
controls [55]. Another case-control study including 914 PDAC patients could reveal an
advantage for a nine metabolites panel mainly consisting of complex lipids, fatty acids
and related metabolites, compared to CA19-9 in discriminating early stage PDAC from
CP [56]. The authors claimed clinical significance of the panel with a negative predictive
value of 99.8% that would have allowed to change the diagnostic workup and treatment
stratification for one third of the patients included [56].

To discriminate PDAC from distal cholangiocarcinoma can be challenging. A nine-
metabolite biomarker panel, consisting of mainly lipids, amino acids and CA19-9 allowed
to distinguish PDAC (n = 38) form distal cholangiocarcinoma patients (n = 34), with a AUC
of 0.888 [57].

In conclusion, specific metabolic PDAC signatures are detectable, but larger clinical
trials validating these are urgently warranted. To date metabolic biomarkers can sup-
port the diagnostic power of CA19-9 especially in discriminating benign from malign
pancreatic lesions.

2.4. Further Biomarker Approaches

Finally, a plethora of further biomarkers aiming to improve diagnostic accuracy in
early-stage PDAC are published to date.

2.4.1. Multimarker Panels

Most biomarkers have been identified as a part of multimarker panels in combina-
tion with CA 19-9. As an example, the combination of eight proteins (S100A11, ITGB5,
PPY, ERBB3, SCAMP3, RET, 5_NT, CEACAM1) allowed sufficient discrimination between
71 early stage I/II PDAC patients and 72 healthy individuals (AUC 0.85) [58]. Further
potential biomarkers that have shown an improvement of diagnostic accuracy in combi-
nation with CA19-9 are Thrombospondin-2 [50,59] and Cyfra 21-1 [60]. Especially for the
identification of early-stage, potentially resectable PDAC a combined biomarker panel of
plasma tissue factor pathway inhibitor (TFPI), tenascin C (TNC-FN III-C), and CA 19-9
levels improved discrimination of early stage PDAC from benign pancreatic lesions [61]. In
line, also inflammatory cytokines can improve diagnostic discrimination between benign
and malignant pancreatic lesions in patients with obstructive jaundice as shown for a
biomarker panel of IL-8, CXCL10 and IL-15 [62].

2.4.2. Alternative Splicing Variants and Methylation

Alternative splice variant proteins are potential biomarkers for early- and advanced
stage PDAC and are currently evaluated in a preclinical setting [63]. By using data from the
Cancer Genome Atlas, Yu et al. could identify different alternative splice variants that were
significantly associated with overall survival in pancreatic cancer, e.g., DAZAP1, RBM4,
ESRP1, QKI, and SF1 [64]. Nevertheless, no biomarker for the early diagnosis of pancreatic
cancer has been established based on alternative splice variant proteins so far.

A promising approach is the analysis of specific methylation signatures of cfDNA
for non-invasive diagnosis of PDAC and its precursor lesions. For example, a high DNA
promoter methylation of BNC1 and ADAMTS1 was demonstrated to be specific for serum
of PDAC patients with a promising opportunity to be further evaluated as a liquid biopsy
biomarker [52]. On the other hand, quantitative DNA methylation levels of specific genes
in cfDNA can be used to distinguish PDAC from CP and benign biliary obstruction, for
example NPTX2, SPARC, and UCHL1 methylation levels [65]. These changes in DNA
methylation in the course of carcinogenesis from (inflammatory) precursor lesions to
invasive PDAC have the potential to function as biomarkers for the surveillance of risk
groups by periodic analysis of gene-specific methylation state [65].
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2.4.3. Exosomes

Exosomes are small extracellular vesicles containing nucleic acids, proteins and lipids
secreted by multivesicular bodies through exocytosis [66]. To identify exosomes, specific
intravesicular proteins can be used, e.g., synthenin-1 [67]. In a discovery-stage clinical study,
Kitagawa et al. investigated the expression of four exosomal mRNA molecules (mRNAs:
CCDC88A, ARF6, Vav3, and WASF2) and five exosomal small nucleolar RNA molecules
(snoRNAs: SNORA14B, SNORA18, SNORA25, SNORA74A, and SNORD22) from 27 PDAC
patients compared to 13 healthy controls, whereby they could achieve a AUC of >0.9 for
the diagnosis of early stage PDAC [68]. Another interesting aspect of exosome is the tumor
specific expression of exosome surface proteins, which can be used as biomarkers for
PDAC. Castillo and colleagues characterized six PDAC-specific exosome surface proteins
containing CLDN4, EPCAM, CD151, LGALS3BP, HIST2H2BE, and HIST2H2BF [69]. These
proteins were found to be part of the tumorspecific “surfaceome” of PDAC exosomes
and were suggested as a biomarker panel for the diagnosis of PDAC by the authors. With
circulating levels of Glypican-1 (GPC1) as a specific proteoglycan on cancer exosome surface
healthy individuals, patients with benign pancreatic and different stages of pancreatic
cancer could be adequately distinguished. Furthermore, levels of GPC1 correlated with
tumor burden and with pre- and post-surgical survival [70].

2.4.4. Radiomics

Unlike the previously presented biomarkers, several approaches have tried to combine
radiologic imaging technology with specific molecules that improve the detection of PDAC,
mostly in a preclinical setting. For example, Bausch et al. have evaluated Plectin-1 as a
contrast agent for single photon emission computed tomography in an orthotopic and liver
metastasis murine model of PDAC and showed that Plectin-1 expression was upregulated
in PDAC tissue [71]. Another approach is the use of established biomarkers for pancreatic
cancer tissue as an immunological target for multimodal imaging, mostly as immuno-
positron emission tomography (PET) with radiolabeled high-affinity specific antibodies.
Lohrmann and colleagues have developed a CA19-9 antibody HuMab-5B1 that showed a
high uptake in PDAC tissue, especially regarding the detection of lymph node metastasis by
using immuno-PET technology in a phase I clinical trial [72]. To distinguish inflammatory
from malignant processes, radiolabeled neurotensin analogues for PET CT imaging have
been evaluated in several preclinical studies with promising results for the diagnosis of
PDAC [73].

2.4.5. Outlook

More recent approaches make use of multi-omics analysis, integrating comprehensive
analysis of genetic, epigenetic, transcriptional alterations and changes in protein expression,
metabolites, and microorganisms extracted from large data sets [74]. With increasing insight
of carcinogenesis by the analysis of large data sets supported by deep learning algorithms,
new biomarkers are developed that pledge a further improvement in the diagnosis of
early-stage PDAC [75,76].

3. Biomarkers as Predictors for Therapy Response and Targeted Therapy in PDAC

Another field of interest are biomarkers that can be used as predictors for therapy
response and to spare toxicity. Several new therapeutic targets have been discovered
and linked to individual tumor characteristics which can be considered as biomarkers
for targeted therapy. Nevertheless, todays guidelines only recommend an evaluation of
therapeutical efficacy with a comparative imaging technique using the RECIST criteria [11].

3.1. Prognostic Biomarkers for Cytostatic Chemotherapy

In consideration of the ECOG performance status, different chemotherapy regimens
are established in metastatic or locally advanced PDAC [11]. In ECOG 0 to 1 FOLFIRINOX
(5-FU, leucovorin, irinotecan, oxaliplatin) and gemcitabine/nab-paclitaxel have shown
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highest potency regarding survival times [19,77]. For gemcitabine/nab-paclitaxel response
a CA19-9 association was shown, with the greatest reduction in the risk of death in patients
with CA19-9 levels ≥ 59xULN and in those with a serum level decrease over 90% (me-
dian overall survival 13.5 months (CA19-9 decrease >90%), 8.2 months (CA19-9 decrease
<90%) [77]. Similarly clear associations with CA19-9 levels were not associated with other
substances like the VEGF receptor inhibitor axitinib [78].

For adjuvant therapy, it has been shown that patients with a postoperative CA19-9
level > 90 U/mL did not benefit from adjuvant chemotherapy after surgery [79]. Further-
more, Lee et al. evaluated the feasibility and clinical utility of ctDNA for perioperative
chemotherapy in PDAC. In their study, they showed that 83% of patients with preoperative
detectable ctDNA recurred after curative-intended resection defining a subgroup that might
specifically benefit from neoadjuvant treatment [80]. Postoperative detection of ctDNA was
linked to an increased risk of relapse and significant worse overall survival (OS) [80].

For gemcitabine several studies have identified different biomarkers as predictors for
therapy response due to its dependence on physiologic nucleosid transporter proteins [81].
Human ENT1 (hENT1) expression has shown to be a prognostic biomarker for response to
gemcitabine [82–86]. An analysis from the ESPAC-3 trial cohort revealed in 434 PDAC pa-
tients for low tumor hENT1 expression a mOS of 17.1 months compared to 26.2 months for
patients with high tumor hENT1 expression [84]. Therefore, evaluating hENT1 expression
could be decision relevant before gemcitabine induction [84,87,88]. High levels of deoxycy-
tidine kinase (dCK), which transforms gemcitabine in its active form via phosphorylation,
has been associated with improved OS in gemcitabine-treated patients [89]. Vice versa, a
high expression of tumor ribonuclotid reductase (RRM1/2) has shown to decrease the effect
of gemcitabine [90], and therefore has been identified as a relevant therapeutic target [91].
Other predictive biomarkers are e.g., enzymes that are involved in the metabolization of
gemcitabine like cytidine deaminase and deoxycytidylate deaminase [92]. In conclusion,
reliable data on the clinical feasibility of these approaches is still poor but biomarkers
involved in gemcitabine resistance are a promising target for the development of new
targeted therapeutics.

Regarding biomarkers predicting therapy response to nab-paclitaxel, several studies
have assumed that the expression of SPARC (secreted protein acid and rich in cysteine)
in PDAC stroma plays a role as a predictive biomarker [93]. However, this hypothesis
was disproved for the treatment response to nab-paclitaxel [94,95] but high cytoplasmatic
SPARC expression was associated with a worse response to gemcitabine [96,97].

For 5-FU therapy, resistance was linked to overexpression of multidrug resistance-
associated protein 5 [98] and various metabolic enzymes [99]. Last, dihydropyrimidine
dehydrogenase (DPD) has been established as a significant biomarker for 5-FU therapy.
Upregulation of DPD [100] and upstream TUG1 [101] have been associated with a worse
response to 5-FU based therapy. On the other hand, DPD deficiency has been related to
5-FU toxicity and therefore worse prognosis [102]. For that reason, today it is guideline
recommended to test patients for DPD deficiency before using regimens containing 5-FU,
Capecitabin or Tegafur [103].

Regarding therapeutical response to irinotecan, high carboxylesterase 2 expression
was associated with increased OS in mFOLFIRINOX treatment [104]. Nanoliposomal
Irinotecan, seems less effective on pancreatic cancer cells with high circulating levels of
IL-8 as a marker for TAK1 activation [105].

For oxaliplatin, it has been shown that an upregulation of the nucleotide excision
pathway is crucial for poor response to platin-based chemotherapy [106]. Therefore,
molecules involved in nucleotide excision pathways have been identified as potential
predictive biomarkers for platin-based chemotherapy, especially ERCC1 [107,108]. Fur-
thermore, recent studies have shown that alterations of DNA mismatch repair genes (see
below) in PDAC are a positive predictive marker for a therapy response to a platin-based
chemotherapy regimen [109]. Table 1 summarizes current evidence on biomarkers and
individual drugs.
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Table 1. Biomarkers as predictors for therapy response to specific cytostatic drugs.

Drug Biomarker Source Prognosis Evidence Ref.

Gemcitabine

hENT1-high Tumor ↑ IB [84]

Exosomal miRNA-106b Blood ↓ Preclinical [110]

Deoxycytidine kinase Tumor ↓ Preclinical [89]

SPARC Tumor ↓ Preclinical [96]

Nab-Paclitaxel CA19-9 Blood ↓ IB [77]

5-FU

Multidrug resistance
associated protein 5 Tumor ↓ Preclinical [98]

Dihydropyrimidine
dehydrogenase Tumor ↓ IB [100]

Irinotecan Carboxylesterase 2 Tumor ↑ III [104]

Nal-Irinotecan IL8 Blood ↓ Preclinical [105]

Oxaliplatin
ERCC1 Tumor ↓ III [107]

BRCA1/2, PALB2 Serum ↑ III [111]

3.2. Predictive Biomarkers for Targeted Therapy in PDAC

The most commonly mutated gene in PDAC is KRAS, which can be found in >90%
of patients [112]. So far only the small subset of KRASG12C mutated patients can be
targeted by FDA-approved sotorasib or adagrasib. In a phase 1 trial, sotorasib achieved
in 9 patients with different solid tumors a stable disease in six and a partial response
(PR) in one patient [113], with none of those diagnosed with PDAC. Regarding adagrasib,
the CRYSTAL-1 phase 2 clinical trial showed promising results in KRASG12C-mutated
heavily pretreated solid tumors, including one patient with PDAC with a confirmed partial
response [114]. Disappointingly, in PDAC only 3% of patients harbor a KRASG12C [115].

Biomarkers that gain growing interest are alterations of the DNA damage repair
(DDR) including mutations of BRCA1/2, PALB2, ATM/ATR, CHEK2 and RAD51. Several
studies proved effectivity of PARP inhibitors e.g., olaparib, talazoparib and rucaparib
in patients’ DDR alterations [116–118]. In the phase 3 POLO trial maintenance therapy,
olaparib significantly prolonged progression-free survival compared to placebo in germline
BRCA1/2 mutation carrier (7.4 months vs. 3.8 months) [119]. BRCA testing at least in
advanced stage PDAC patients should be a standard of care testing [109].

As in other tumor entities, immune checkpoint inhibitors have also shown encouraging
results in PDAC [116,117]. As predictors for immunotherapy, a high tumor mutational bur-
den (TMB), measured in mutation per megabase, high microsatellite instability (MSI-high)
and mismatch repair deficiency (dMMR) (enhanced expression of MLH1, MSH2, MSH6 or
PMS2) were identified [117]. In a phase 2 trial, pembrolizumab markedly improved PFS
and OS in patients with dMMR/MSI-high solid tumors [120]. Therefore, current guidelines
recommend routine testing of MSI-high and dMMR in patients with PDAC. Although,
again, only about 1% of PDAC patients are eligible [121].

In a phase 3 trial, the EGFR-inhibitor erlotinib added a marginal but significant benefit
on PFS and OS combined with gemcitabine compared to only gemcitabine. Interestingly,
the EGFR expression on tumors was not determinant, but the clinical appearance of a rash
under erlotinib was prognostic [122].

A promising approach in targeted therapy is to address fusion of tropomyosin receptor
kinase gene 1, 2 or 3 (NTRK1,2,3), which is present in <1% of PDAC [123]. In case of detected
fusion, a TRK inhibitor therapy (e.g., entrectinib, larotrectinib) proofed benefit in two phase
2 trials [118]. The analysis of total 4 PDAC patients with NTRK or SCL4-ROS1 fusion
revealed PR after treatment with entrectinib [124] or larotrectinib [125].

Further less established potential biomarkers in PDAC could be ALK rearrangements
and their inhibition by e.g., crizotinib, ceritinib, alectinib [126,127], or the targeting of NRG1
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fusion in KRAS wildtype patients with a EGFR-targeted therapy (Afatinib, Erlotinib) [128].
In 3 PDAC patients with NRG1 fusion, EGFR-targeted therapy resulted in a PR in two of
them [128]. Loss of CDKN2A, present in up to 47% of PDAC patients, can be targeted by
CDK4/6 inhibitors (palbociclib, ribociclib, abemaciclib) [118], but today evidence in PDAC
relies only on preclinical studies [129].

In conclusion, several biomarkers have been identified as predictors for the effectivity
of chemotherapeutical regimens and targeted therapies (see Table 2). However, data quality
in PDAC remains mainly poor and their clinical value will have to be explored in future
studies. At the present stage, these biomarkers can help to predict therapy response and
toxicity of established chemotherapeutical substances and facilitate individual treatment.

Table 2. Biomarkers as predictors for therapy response to targeted therapies.

Drug Target Biomarker Frequency Evidence Ref.

Pembrolizumab PD-1 MSI-high, dMMR, TMB-high <1% IIa [120]

Olaparib PARP BRCA1/2, PALB2, ATM/ATR,
CHEK2, RAD51 mutation 14–24% Ib [119]

Larotrectinib
Entrectinib TRK NTRK-fusion <1% IIa [125]

Ceritinib
Crizotinib
Alecitinib

ALK ALK rearrangement <1% IV [126]

Afatinib
Erlotinib EGFR NRG1 fusion <1% IV/III [128]

Trametinib BRAF BRAF deletion 1% IV [130]

Sotorasib KRAS G12C KRAS G12C mutation 1% IV [113]

Palbociclib
Ribociclib

Abemaciclib
CDK4/6 Loss of CDKN2a 47% IV [129]

4. The Role of Biomarkers in Surveillance after Curative Surgery

Finally, to improve postoperative surveillance after curatively-intended surgery with
biomarkers could be highly valuable.

Regarding the clinical use of serum biomarkers for postoperative surveillance, the only
established molecule is CA19-9 in current clinical use [10]. Despite a moderate specificity
of maximum 89% and sensitivity of maximum 89% [131], studies have shown that elevated
CA19-9 can precede radiographic detected recurrence up to three to six months [132]. Li
and colleagues showed that early detection of CA19-9 as a marker for PDAC recurrence
after resection can improve patients’ prognosis regarding disease-free survival by early start
of a salvage chemotherapy [133]. The preoperative elevation of CA19-9 > 210 U/mL and
postoperative elevation of CA19-9 > 37 U/mL were shown to be independently associated
with an early recurrence of PDAC [134].

Like its use in early diagnosis of PDAC, CEA has shown to be inferior to CA19-9 with
a sensitivity of 50% and a specificity of 65% in postoperative surveillance of PDAC (102).

Today, there is no sufficient evidence or well-defined test to use cfDNA or CTCs in
postoperative surveillance [135–137]. A systematic meta-analysis assessed 19 studies with
a cumulative 1872 patients regarding cfDNA, CTC and exosomale DNA in diagnosis and
surveillance of PDAC with first promising significance levels [138].

In 157 PDAC patients measurement of plasma soluble iC3b, the cleavage product of
complement factor C3b, showed recurrence up to 4 months before imaging (AUC 0.85),
what could even be further improved combined with CA19-9 (AUC 0.92) [139].

In conclusion, for now the only applicable biomarker for postoperative surveillance
of PDAC remains CA19-9. Despite interesting approaches for the improvement of post-
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surgery monitoring, previous studies have mainly focused on predicting patients‘ prognosis
than on developing biomarkers for postoperative surveillance. Moreover, a recent sys-
tematic review of Wang et al. showed a devastating summary of current research: Only
CRP to albumin ratio, neutrophil-lymphocytic ratio and lactat dehydrogenase showed an
association regarding prognosis of PDAC [140]. Other promising approaches that were
included in their review lacked sufficient evidence [140].

5. Conclusions

Pancreatic ductal adenocarcinoma is a leading cause of tumor death. Due to a lack of
sufficient methods for early detection and adequate surveillance after curative surgery, the
prognosis remains worse. Therefore, current interest of research is the development of new
biomarkers to improve prognosis of PDAC.

Regarding biomarkers for early diagnosis, CA19-9 is still the only approved tumor
marker. Nevertheless, cell free DNA, circulating tumor cells, and tumor-specific microRNA
are promising approaches to enhance diagnostic accuracy. Furthermore, metabolic changes
in PDAC function as a starting point for the development of tumor-metabolic based
biomarkers. The near future will probably supply combined biomarker panels that could
replace CA19-9.

Additionally, current therapeutic procedures in metastatic or locally advanced tumor
stages are enhanced by the development of predictive biomarkers for response to targeted
therapy as well as established chemotherapy regimens. Some of these markers like hENT1
are already near clinical application, while other markers like DPD for toxicity of 5-FU have
been implemented, see Figure 1.
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Figure 1. Established biomarkers to direct decision making in pancreatic cancer. Summary of
biomarkers which should be considered for therapy decision in PDAC based on sufficient clinical
evidence. For advanced PDAC, NTRK, KRASG12C, germline BRCA1/2, and MSI/dMMR should be
tested for targeted therapy. To avoid excessive toxicity, DPD-mutation should be evaluated before
therapy with a fluoropyrimidine. CA19-9 should be tested regularly before adjuvant therapy and
can guide therapy in advanced disease. (gBRCA1/2 = germline BRCA1/2; MSI = microsatellite
instability; dMMR = deficient mismatch repair; DPD = dihydropyrimidine dehydrogenase).
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In conclusion, biomarkers that should be considered for decision making in pancreatic
cancer based on clinical evidence are summarized in Figure 1. BRCA1/2 germline testing
has shown to predict therapy response to platin-based chemotherapy based on sufficient
clinical evidence and can be considered for targeted maintenance therapy with PARP
inhibitors. Before using a fluoropyrimidine-based chemotherapy regimen, DPD testing
should be performed to avoid severe toxicity. For targeted therapy in advanced stage
PDAC, NTRK fusion, KRASG12C mutation and MSI/dMMR testing should be routinely
performed. Finally, CA19-9 can predict therapy response to a gemcitabine/nab-paclitaxel
chemotherapy regimen as well as adjuvant chemotherapy after surgery.

Last, the development of biomarkers to predict early recurrence of PDAC after resec-
tion is still lacking. Despite the investigation of prognostic biomarkers to identify high-risk
patients for early recurrence, no biomarker but CA19-9 is used for monitoring after surgery.

To conclude, the progress in the understanding of pathogenetic changes in PDAC
and the improvement of genetic diagnostics are assumed to supply precise non-invasive
biomarkers for PDAC in the near future.
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