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Abstract

MicroRNAs (miRNAs) are involved in a diverse variety of biological processes through regu-

lating the expression of target genes in the post-transcriptional level. So, it is of great impor-

tance to discover the targets of miRNAs in biological research. But, due to the short length

of miRNAs and limited sequence complementarity to their gene targets in animals, it is chal-

lenging to develop algorithms to predict the targets of miRNA accurately. Here we devel-

oped a new miRNA target prediction algorithm using a multilayer convolutional neural

network. Our model learned automatically the interaction patterns of the experiment-vali-

dated miRNA:target-site chimeras from the raw sequence, avoiding hand-craft selection of

features by domain experts. The performance on test dataset is inspiring, indicating great

generalization ability of our model. Moreover, considering the stability of miRNA:target-site

duplexes, our method also showed good performance to predict the target transcripts of

miRNAs.

1. Introduction

MicroRNAs (miRNAs) are a class of short (approximately 21-nucleotide), non-coding RNAs

which can regulate gene expression at the post-transcriptional level. Upon loading into the

Argonaute (Ago) proteins [1], which are the catalytic components of the RNA-induced silenc-

ing complex (RISC) [2], miRNAs interact with the target mRNAs. These interactions result in

mRNA repression, destabilization and thus prevent the target genes from producing func-

tional peptides and proteins. There are more than 2,000 annotated humans miRNAs deposited

in miRBase (http://www.mirbase.org/) [3]. Because of the extensive targets, miRNAs are

involved in a variety of cellular pathways, from development to pluripotency to oncogenesis

and so on [4–7]. The induction of gene silencing and repression via miRNAs typically requires

complementary base pairing between specific regions of the miRNA and its target mRNA.

Canonical miRNA-mRNA interactions require the target site complementarity to the seed

sequence, nucleotides 2–8, of the miRNA [8]. However, there are many examples of functional
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miRNA-mRNA interactions that occur without perfect seed pairing, indicating the non-

canonical interactions [9,10].

There are multiple experimental techniques available to identify targets of miRNAs.

Through miRNA-overexpression studies combined by gene-expression analysis, a large num-

ber of miRNA:target-gene interactions have been identified [11,12]. Due to the complexity of

regulation network, many affected genes may not be the direct targets of miRNAs. Recently,

other methods are developed to investigate the direct interaction of miRNA and target sites,

such as CLIP-seq (cross-linking immunoprecipitation with sequencing), PAR-CLIP (photoac-

tivatable-ribonucleoside-enhanced CLIP), iCLIP (individual-nucleotide resolution CLIP) etc

[13–16]. All these methods can catch the miRNA:target hybrids in the RISC complex and iden-

tify lots of miRNA:target-site interactions through high-throughput sequencing.

In addition to experiment techniques, there are lots of computational prediction algorithms

developed to predict miRNA targets such as TargetScan, miRTarget3, and miRWalk etc [17–

19]. Most methods are mainly based on attributes of the mRNA sequence itself, thermody-

namic stability of the miRNA-mRNA duplex, evolutionary conservation, or statistical infer-

ence based machine learning [20]. Recently, some deep learning (DL)-based approaches were

developed to predict miRNA target sites and/or transcripts [21–23]. But, these methods also

depended heavily on the hand-crafted features of the miRNA-target duplex. Besides the deep

learning methods to predict the mirna-targets, there are other method to be used for the simi-

lar task [21]. Also, it has been shown that the finding such regulatory relationship can be used

for cancer subtyping [24]. Because of not fully understood rules that govern miRNAs targeting

process and different training datasets for different algorithms, there is limited overlap

between the targets that are predicted by various programs. So, it is still a challenge to develop

more reliable computation methods based on more accurate miRNA:target datasets.

Deep learning (DL), which can autonomously learn and identify patterns from raw data,

has been shown to be an effective method for classification tasks in domains with complex fea-

ture representation [25]. Convolutional neural networks (CNNs) are characteristic of convolu-

tion layers which can automatically extract features from input datasets and have showed great

success in image recognition [26–28]. The convolution layer, consisting of a combination of

linear convolution operation and nonlinear activation function, is usually followed by a pool-

ing layer which provides a typical down-sampling operation such as max-pooling [29].

Through using multiple convolution and pooling layers, CNN models can learn the patterns

from low to high levels in the training dataset [30].

Lots of CNN architectures have been developed to address biological problems and showed

to be successful [31,32]. Here, we designed a multilayer convolutional neural network to pre-

dict the target sites of miRNAs without need of feature extraction in advance. To the best of

our knowledge, we first applied CNN to extract complex features from raw sequences of

miRNA:target-site duplex, which were used for prediction of miRNA targets. Our method can

also be used to predict the target gene of miRNAs through scanning the full length of gene

transcripts.

2. Materials and methods

2.1 Datasets preparation

MiRNA:Target-site datasets. To get a more reliable dataset, only the experiment-vali-

dated direct interactions of miRNAs and targets were collected. The positive miRNA:target

data were downloaded from three sources: 1. Study of miRNA interactome by CLASH (cross-

linking, ligation, and sequencing of hybrids) in HEK293 cells [33]. 2. Study of miRNAs to their

target sites in C. elegans using modified CLIP methodology and re-analysis of published
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mammalian AGO-CLIP data for miRNA-chimeras yielded ~17,000 miRNA:target-site interac-

tions [34]. 3. miRNA:target-site interaction data in MirTarBase with strong experimental evi-

dence (immunoblot, luciferase reporter assay, qRT-PCR) [35]. The miRNA sequences were

retrieved from miRBase [36]. All the data were merged followed by removing the duplicates of

miRNA:target-site sequences and the concatenated miRNA:target chimeras longer than 110 nt

(nucleotides). Finally, we got the positive dataset with 42,085 positive interactions with the

labels of “1” (S1 Table).

There are more than 557 thousands of miRNA:target-gene interactions deposited in Mir-

TarBase (Release 7.0) with strong or weak evidence. To generate the negative dataset, we made

pseudo combinations of miRNA and gene avoiding the miRNA: gene pairs in MirTarBase.

The cDNA sequences of genes in the pseudo combinations were retrieved from human

genome (GRCh38) and mouse genome (GRCm38) using SAMtools [37]. The pseudo target

sites were taken randomly from 3’UTR (untranslated region), 5’UTR or ORF (open reading

frame) of genes with a proportion of 7:2:1 and the overall length of each pseudo miRNA:target

chimera was set to be 110 nt (nucleotides). Altogether, we generated the negative dataset con-

taining 94,764 human (S2 Table) and 22,531 mouse (S3 Table) miRNA:pseudo-target site

interactions with the labels of “0”.

The negative and positive datasets were merged together and separated randomly into train

(149,439), validation (4,941) and test (5,000) datasets. In the 10-fold cross validation (CV)

experiments, the merged dataset was divided into 10 segments with about the same number of

miRNA:target chimeras (15 938). In each experiment, nine segments were used for training

while the remaining one was used for evaluating the performance of the model.

MiRNA:Target-gene datasets. To predict the target genes of miRNAs, the positive and

negative experiment-validated miRNA:target-gene pairs were downloaded from MirTarBase

and Diana TarBase respectively[35,38]. Next, we strictly selected the most convinced data. The

positive dataset was composed of all the interactions of miRNAs and genes with strong evi-

dence while the negative dataset only contained those with direct evidence of no interaction.

The data appearing both in the positive and negative dataset were removed. The mature

miRNA sequences were downloaded from miRBase database [39] and the transcripts

sequences of genes were retrieved from human cDNA (complementary DNA) annotation file

(Homo_sapiens.GRCh38.cdna.all.fa). Since there are many transcripts for one gene, we only

use the longest transcript and the shortest transcripts to represent positive and negative inter-

action genes, respectively. All the interactions of miRNAs and genes which we failed to retrieve

the sequences were removed from the datasets. The final experiment-validated positive dataset

(S4 Table) contains 7815 items and negative dataset (S5 Table) contains 281 items.

2.2 Sequence padding and vectorization

Since the contextual sequence around the target site in the mRNA has great impact on the

interaction [40], we considered both the direct interaction sequences and the contextual

sequences in mRNAs for our mode. So, the miRNA:target-site chimeras contain the contextual

sequences around the target sites, which keeps more information for the deep learning. Upon

inspecting the positive miRNA:target-site chimeras, we selected the positive data with the

length of no more than 110. Since different positive miRNA: target-site chimeras had different

lengths, we padded each positive sequence into the length of 110 for batch learning in the next

model training process. The padded sequences were randomly generated avoiding 4 continu-

ous pairing bases with corresponding miRNAs. Next, we generated pseudo miRNA: target-site

chimeras with each length of 110 nt to be the negative samples.
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To encode RNA sequences, the “one-hot” encoding was used for each base ("A":

[1,0,0,0],"U":[0,1,0,0],"G":[0,0,1,0],"C":[0,0,0,1]). After encoding, each miRNA:target-site chi-

mera can be represented by a 110 x 4 tensor, which was used in our supervised deep learning

(Fig 1).

2.3 Architecture of the proposed multi-layer convolutional neural network

The designed architecture and parameters of the deep convolutional neural network (CNN)

were showed in Table 1. In the model, the input sequences were first convolved by sixteen ker-

nels with the size of 2 over a single spatial dimension (filters: 16, kernel size: 2) followed by

max pooling. Second, the output tensors flowed through the second convolution layer (filters:

32, kernel size: 3) and max-pooling layer. And then there were the third convolution layer (fil-

ters: 64, kernel size: 4) and max-pooling layer, followed by the last convolution (filters: 128,

kernel size: 5) and max-pooling layer. All the max-pooling layers took the maximum value

with the size of 2.

After multi-layer convolution and max-pooling operations, all the extracted features were

passed to a fully-connected layer (units: 128). The last layer is only one unit obtained by the

Sigmoid activation function on the probability of the miRNA:target-site chimeras. The activa-

tion functions for other layers, if needed, are chosen to be “relu”. For generalization of our

model, we added two dropout layers [41] before fully-connected layers as showed in Table 1 as

well as L2 regularization [42] on the parameters of the fully-connected layer with 128 units.

The total number of parameters was 166,001, mostly due to the fully-connected layers.

Fig 1. Schematic illustration of encoding the miRNA:target-site chimera. The miRNA and target sequence are

concatenated and padded to 110 nucleotides/bases long. Using “one-hot” encoding, the padded chimera is represented

by a 110 x 4 tensor.

https://doi.org/10.1371/journal.pone.0232578.g001

Table 1. The structure and parameters of our CNN model.

Layer (type) Output Shape #Parameters

conv1d_1 (Conv1D) (None, 110, 16) 144

max_pooling1d_1 (MaxPooling1D) (None, 55, 16) 0

conv1d_2 (Conv1D) (None, 55, 32) 1568

max_pooling1d_2 (MaxPooling1D) (None, 28, 32) 0

conv1d_3 (Conv1D) (None, 28, 64) 8256

max_pooling1d_3 (MaxPooling1D) (None, 14, 64) 0

conv1d_4 (Conv1D) (None, 14, 128) 41088

max_pooling1d_4 (MaxPooling1D) (None, 7, 128) 0

flatten_1 (Flatten) (None, 896) 0

dropout_1 (Dropout) (None, 896) 0

dense_1 (Dense) (None, 128) 114816

dropout_2 (Dropout) (None, 128) 0

dense_2 (Dense) (None, 1) 129

Total params: 166,001

https://doi.org/10.1371/journal.pone.0232578.t001
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2.4 Model training and evaluation

The loss function we employed was the cross entropy [43] between the predicted values and

the actual labels (“1” or “0”). The Adam optimizer was applied to learn the network weights in

a back-propagation fashion [44]. During the training process, the generalization error was also

monitored using validation dataset. The training process was not stopped until the loss on

evaluation dataset did not decrease any more. After training, the learned parameters as well as

the model structure were stored.

Using the trained model, we calculated the classifier performance on the test dataset in

terms of sensitivity, specificity, F1-Score, Matthews Correlation Coefficient and accuracy. (TP:

true positive, TN: true negative, FP: false positive, FN: false negative)

Sensitivity:

Sen: ¼
TP

TPþ FN
ð1Þ

Specificity:

Spe: ¼
TN

TNþ FP
ð2Þ

F1-Score:

F1 ¼
2 � TP

2 � TPþ FPþ FN
ð3Þ

Matthews Correlation Coefficient (MCC):

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ � ðTPþ FPÞ

p ð4Þ

Accuracy:

Acc: ¼
TPþ TN

TPþ TNþ FPþ FN
ð5Þ

Also, we plotted the receiver-operating characteristic curve (ROC) with the calculated area

under the ROC curve (AUC). With decreasing thresholds on the decision function used, cor-

responding false positive rates (fpr) and true positive rates (tpr) were computed. ROC curve

was drawn based on a series of fpr and tpr.

2.5 Code implementation and availability

Because only a single candidate site to be classified as positive is required for long target

sequences, the model is particularly sensitive to false positive. Hence, we filtered out the candi-

date sites of mRNA using RNAhybrid with the minimum free energy (MFE) of miRNA:target

duplexes < = -20 kcal/mol [45].

The implemented cnnMirTarget was based on the well-trained CNN model using the train-

ing dataset and can be used to predict whether miRNAs can target candidate sequences or

even full length of mRNAs. The cnnMirTarget takes the inputs of miRNAs and the target

sequences as parameters. If the target sequence provided is less than 110, it will be padded into

110 with the same strategy described in the methods 2.2. For long mRNA sequences, all the

candidate sites are filtered out using RNAhybrid followed by prediction using the trained

CNN model. The final prediction result is based on the maximum prediction value of all the
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candidate sites. If the output value is greater than the threshold of 0.5, the prediction result is

“True”, and otherwise “False”.

The cnnMirTarget source code, which is written in python with keras library, is freely avail-

able through GitHub (https://github.com/zhengxueming/cnnMirTarget).

2.6 Prediction performance comparison with other methods

We next tested the performance of the cnnMirTarget and compared with that of other state-

of-the-art target prediction software tools on the experiment-validated positive and negative

miRNA:target-gene datasets (see section 2.1). All the predicted datasets of miRTarget3

(miRDB v5.0), metaMIR and TargetScan (v7.0) were downloaded from each website and

searched for each miRNA:target-gene pair in the positive and negative interactions [46–49].

Since the miRTarget3 and TargetScan had no negative datasets available, the miRNA:target-

gene pairs not found in their interaction datasets were considered as negative. Based on the

searched results, the performance was evaluated by sensitivity, specificity, F1-Score, MCC and

accuracy.

3 Results

3.1 Performance of our model on the test miRNA:Target-site dataset

For the training/evaluation/test dataset splitting, the model was trained on the training dataset

with enough epochs, evaluated on the evaluation dataset and finally the performance was

tested on the test dataset. In the 10-fold CV, we trained our model with the nine folds while

the remaining one fold was used for testing the performance in each time. For conciseness, we

showed the average performance along with standard error (SE) for the 10-fold CV experi-

ments (Table 2).

As shown, we got similar values of sensitivity (column 2), specificity (column 3), F1-score

(column 4), MCC (column 5) and accuracy (column 6) for different dataset splitting strategies

in our model. In the training/evaluation/test dataset splitting, the overall accuracy of predic-

tion is 97.36% and all the other values are more than 93%, indicating high generalization per-

formance of our trained model.

To further evaluate our model, we plotted the ROC curve of prediction on the test dataset.

As shown in Fig 2, the AUC of ROC curve is 99.50%, indicating high performance for recog-

nizing the target sequences of the miRNAs.

3.2 Comparison with other methods

Since our CNN model showed high performance to predict the target sites of miRNAs, we

wanted to test the performance and compare with other methods on predicting target genes of

miRNAs. Due to the long length of mRNAs, there was great possibility of false positive as

described in the methods 2.5. So, we introduced a filter step to find the candidate sites in the

cnnMirTarget. To get the most reliable interaction dataset of miRNAs and genes, we carefully

Table 2. Performance of our CNN model to predict miRNA:Target-site interactions.

Dataset partition methods Sen.(%) Spe.(%) F1(%) MCC(%) Acc.(%)

train/evaluation/test 94.82 98.26 94.97 93.18 97.36

10-fold CV 93.95± 2.91 97.16± 1.25 94.76± 0.86 92.2± 1.02 97.11± 0.52

The performance on the test dataset (row two) and one-fold dataset (row three) unseen in the training processes was shown as sensitivity (column 2), specificity

(column 3), F1-Score (column 4), MCC (column 5) and accuracy (column 6). For the 10-fold CV, the performance was shown as mean ± standard error (SE).

https://doi.org/10.1371/journal.pone.0232578.t002
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selected the experiment-validated positive and negative datasets as described in methods 2.1.

Because of the small number of negative data available, the merged dataset is highly imbal-

anced. To classify targets or non-targets of miRNAs, the threshold we used here is 0.5.

The prediction performance for miRTarget3, metaMIR, TargetScan7 as well as our cnnMir-

Target was evaluated on the experiment-validated positive and negative miRNA:target-gene

datasets (described in section 2.1). The prediction results for miRTarget3, metaMIR, TargetS-

can7 as well as our cnnMirTarget were showed in the Table 3. The true positive and true nega-

tive interactions predicted by our cnnMirTarget are 5,179 and 162 respectively. Compared

with miRTarget3 and TargetScan7, cnnMirTarget has better performance on the positive data-

set (Column 2). On the other hand, cnnMirTarget has better performance on the negative

dataset than metaMIR (Column 3).

Although miRTarget3 and TargetScan7 have high specificity, they missed many true

miRNA:gene interactions (low sensitivity: 12.80% and 18.62%, respectively). And metaMIR

has comparably higher sensitivity, but with many false positives (low specificity: 25.62%).

Overall, our algorithm outperforms other methods for predicting miRNA-mRNA interactions

indicated by F1-Score, MCC as well as accuracy.

4. Discussion

Different from traditional machine learning algorithms, deep learning can automatically

extract patterns from canonical and non-canonical pairing between the miRNAs and its tar-

gets. In this study, we used four layers of convolution followed by max-pooling operations in

our model, which extract features hierarchically from miRNA:target-site chimeras. By using

Fig 2. The ROC curve of our CNN model. The model trained on the training dataset was used to predict the test

dataset. The ROC curve was plotted based on the prediction results of the test dataset. The area under the ROC curve

(AUC) was calculated and showed.

https://doi.org/10.1371/journal.pone.0232578.g002
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two dropout layers and the L2 regularization in the first dense layer, our model showed little

generalization error on the evaluation dataset during the training process. The high perfor-

mance of trained model on test dataset showed the learned features can be used to predict the

interaction sites of miRNAs with high accuracy. In summary, our trained CNN-based model

can predict the interaction of miRNAs:target-sites with high performance.

In machine learning especially deep learning, it is vital important to collect large amounts

of reliable data. For miRNA targets prediction, different methods used different datasets to

train their models. So, there is little overlap among them, which makes the prediction of

miRNA targets difficult and challenging. In this study, we only chose the experiment-validated

data mainly from high-throughput sequencing. Different from other rule-based machine

learning methods, the convolutional neural network need equal amount of positive and nega-

tive datasets to train the model. Since it is harder to collect the data of negative miRNA:target-

site interactions, we generated a large negative dataset as described in methods.

Although our methods showed great performance on the test dataset to predict target sites,

the accuracy to predict target genes of miRNAs was dramatically decreased. Since one gene

can express different transcripts under different conditions, an experiment-validated miRNA:

target-gene interaction does not mean that the miRNA can target any transcript of the gene. In

fact, we found much controversial data appearing both in positive and negative experiment-

validated miRNA:target-gene interaction dataset.

Different from predicting the target sites of miRNAs, there are harder to predict the interac-

tions of miRNAs and genes because of many other factors involved the process. For an exam-

ple, the secondary structure of mRNA may affect the accessibility of miRNA [50]. Moreover,

the stability of miRNA:target hybrids has great importance on the interactions [45]. Although

we filtered out the candidate sites using RNAhybrid, the minimum free energy (MFE) should

be carefully selected. Also, there exist many weak binding sites in some mRNA. So, the syner-

gistic effects should be considered [51].

Furthermore, there are complicated molecular interaction networks in the cell, which affect

the interactions of miRNAs and target mRNAs. The binding sites on mRNA can be occupied

by other proteins or RNAs and the miRNA:mRNA interactions may be eliminated by cir-

cRNAs [52]. Also, Ago protein binding sites in mRNA may bring mRNAs to miRNAs, which

leads to interactions [53]. In brief, there are many factors that can affect the interaction of miR-

NAs and mRNAs, which should be taken into consideration to improve our model in the

future.

So far, there are tens of computational prediction algorithms to predict miRNAs targets

[54]. But, owing to the great difference of prediction results for different predictors, the predic-

tion of miRNA target is still a challenge. Here, we designed the CNN model to learn both

canonical and non-canonical interactions automatically from experiment validated miRNA:

Table 3. Prediction performance of different algorithms on the experiment-validated miRNA: Gene interactions.

Algorithm #predicted positive #predicted negative Sen.(%) Spe.(%) F1(%) MCC(%) Acc.(%)

cnnMirTarget 5179 162 66.27 57.65 78.99 9.21 65.97

miRTarget3 1000 263 12.80 93.59 22.64 3.53 15.60

metaMIR 5131 72 65.66 25.62 78.01 -3.37 64.27

TargetScan7 1455 272 18.62 96.80 31.36 7.33 21.33

The experiment-validated positive dataset contains 7815 interactions, while the negative dataset contains 281 pseudo-interactions. Column 2: number of predicted

positive interactions in the positive dataset for each algorithm. Column 3: number of predicted negative interactions in the negative dataset for each algorithm. Column

4–8: Sensitivity (Sen.), Specificity (Spe.), F1-Score, MCC, Accuracy (Acc.).

https://doi.org/10.1371/journal.pone.0232578.t003
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target-sites chimeras. The results showed that our model is very successful to predict the target

sites of miRNA, but there are great room to improve the performance on predicting miRNA:

target-gene interaction.
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