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Abstract: Acute myocardial infarction (AMI), one of the most severe and fatal cardiovascular dis-
eases, remains the main cause of mortality and morbidity worldwide. The objective of this study
is to investigate the potential biomarkers for AMI based on bioinformatics analysis. A total of
2102 differentially expressed genes (DEGs) were screened out from the data obtained from the gene
expression omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) ex-
plored the co-expression network of DEGs and determined the key module. The brown module was
selected as the key one correlated with AMI. Gene Ontology and the Kyoto Encyclopedia of Genes
and Genomes pathway enrichment analyses demonstrated that genes in the brown module were
mainly enriched in ‘ribosomal subunit’ and ‘Ribosome’. Gene Set Enrichment Analysis revealed that
‘TNFA_SIGNALING_VIA_NFKB’ was remarkably enriched in AMI. Based on the protein–protein
interaction network, ribosomal protein L9 (RPL9) and ribosomal protein L26 (RPL26) were identified
as the hub genes. Additionally, the polymerase chain reaction (PCR) results indicated that the expres-
sion levels of RPL9 and RPL26 were both downregulated in AMI patients compared with controls, in
accordance with the bioinformatics analysis. In summary, the identified DEGs, modules, pathways,
and hub genes provide clues and shed light on the potential molecular mechanisms of AMI.

Keywords: hub genes; acute myocardial infarction; WGCNA; GSEA; bioinformatics

1. Introduction

According to the updated data of Heart Disease and Stroke Statistics (2020 Edition),
cardiovascular disease (CVD) remains the leading cause of death globally, leading to
17.8 million (95% CI, 17.5–18.0 million) deaths worldwide in 2017, which remarkably
aggravates the global health burden [1]. Acute myocardial infarction (AMI), one of the
most severe cardiovascular diseases, is characterized by the sudden depletion of blood
flow to the myocardium, with high morbidity and mortality. It affected an estimated
7.29 million people in 2015 [2]. With the increase in the life expectancy of the population,
effective strategies to prevent and treat AMI have become more urgent than ever. Studies
have shown that the immune system has a pivotal impact on the pathophysiology of
coronary artery disease [3]. As the core component of the immune system, peripheral
blood consisting of immune cells, such as lymphocytes, monocytes, and neutrophils, likely
regulates the process of AMI. Recent evidence that neutrophil amplifies granulopoiesis
after myocardial infarction [4], suggests that identifying the change in peripheral blood
during AMI may pave novel therapeutic avenues for AMI.
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Gene chips, a high-sequence approach to detecting transcriptome changes, have
been widely applied in most disease research, including CVD in the post-genome era [5].
Attributed to a mass of expression data from gene chips, the correlation between genes and
disease can be readily investigated.

Weighted gene co-expression network analysis (WGCNA) is an effective technique for
processing transcriptome data, as it clusters tightly connected genes into different modules
and explores the correlation between modules and traits of interest; it does not only focus
on the differentially expressed genes [6]. Scale-free co-expression network analysis using
WGCNA has been conducted in most disease research [7–9].

In this study, we re-analyzed the gene expression profile of GSE with 14 AMI patients
and 10 controls. The differentially expressed genes were obtained by the ‘limma’ package in
R software. WGCNA was conducted to build a gene co-expression network. Gene ontology
and KEGG pathway enrichment analysis were performed in the key module. Hub genes in
the key module were determined and validated by quantitative RT-PCR.

2. Materials and Methods
2.1. Data Sources

A workflow of the present study is presented in Figure 1. The mRNA expression
profile microarray GSE, deposited by Park et al. [10], was downloaded from the free
public database Gene Expression Omnibus (GEO). It contains peripheral blood from AMI
patients and controls. The data were processed on platform GPL6106 (Sentrix Human-6 v2
Expression BeadChip, Bethesda, MD, USA), including 24 samples, 14 from AMI patients
and 10 from controls.
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2.2. Identification of Differentially Expressed Genes

Data quality checking and normalization with log transformation were first performed
to eliminate any batches. The ‘limma’ package [11] in R software (v4.1.1, Vienna, VIE,
Austria) was employed to screen DEGs between the AMI and control group. An adjusted
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p-value < 0.05 was set as the threshold criterion for statistical significance. The volcano
map of DEGs was plotted in R software. The Heatmap package in R software was utilized
to visualize the top 50 DEGs.

2.3. Weighted Gene Co-Expression Network Analysis

WGCNA [6] was conducted to build the co-expression network in DEGs based on
the scale-free topology criteria. First, all DEGs were analyzed using the WGCNA package
in R software, and the soft thresholding power was determined. Next, the weighted co-
expression network was constructed, and DEGs were clustered into several modules with
different color labels. The correlation between each module and AMI or controls was then
explored. The module most correlated with AMI was regarded as a key module for further
enrichment analysis.

2.4. Gene Ontology and Pathway Enrichment Analysis

Metascape [12] (v3.5, San Diego, CA, USA)is an efficient approach to investigating the
potential biological process of transcriptome and genome data and the associated pathways.
Gene ontology (GO) [13] analysis (containing the biological process, cellular component,
and molecular function) and KEGG [14–16] pathway analysis were both conducted in the
key module using Metascape. The function and pathway terms were retrieved for further
visualization in R software.

2.5. Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) [17] was applied to detect whether the en-
richment of the KEGG pathway is statistically significant in AMI patients and controls.
Transcriptome data were imported into the GSEA desk application strictly according to the
website instruction. Both p < 0.05 and FDR < 0.25 were considered as the criteria for the
significant gene sets.

2.6. Protein–Protein Interaction Network and Hub Gene Identification

The Search Tool for Retrieval interacting Genes (STRING) v11.0 [18] online database
was employed to build the protein–protein interaction (PPI) network in the key module.
The PPI network was then visualized by Cytoscape software [19]. Furthermore, signif-
icant modules in the PPI network were obtained by the molecular complex detection
(MCODE) [20] plug-in, with the degree cutoff = 2, max depth = 100, and k-score = 2.
Cytohubba [21], a plug-in in Cytoscape software, was used to determine the hub genes.

2.7. Putative Signaling Pathways Involving Hub Genes and GO Analysis

‘GeneMania’ [22] is a comprehensive web-based tool that indexes 2830 interaction
networks mapped to 166,691 genes from 9 organisms, which helps predicate the function
of preferred genes. Identified hub genes were imported into the database ‘Genemania’ to
establish a putative protein–protein interaction work. The total genes derived from the
network then conducted GO analysis using the Metascape tool (v3.5, San Diego, CA, USA).
The results were processed and visualized in R software.

2.8. Sample Collection

This study was approved by the Medical Ethics Committee of Zhongshan Hospital,
Fudan University (approval number: B2021-073), which complied with the Declaration of
Helsinki. All subjects signed written informed consent. A total of fourteen AMI patients and
eight controls were enrolled in the study. The diagnosis of AMI was in line with the Fourth
Universal Definition of Myocardial Infarction (2018) [23]. AMI is diagnosed when there is
clinical evidence of acute myocardial ischemic and the rise or fall of cTnT values with at
least one value exceeding the 99th percentile upper reference limit, followed by at least one
of the followings: (1) symptoms of myocardial ischemia, (2) changes on ECG indicating
new ischemia, (3) development of pathological Q waves on ECG, (4) evidence of new loss of
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viable myocardium or new regional wall motion abnormality by imaging, and (5) coronary
thrombus by angiography or autopsy. Subjects with no symptoms of myocardial ischemic,
no ischemic changes on ECG, or no stenosis in the coronary angiography were regarded as
the controls. Peripheral blood was collected as coronary angiography was performed.

2.9. RNA Extraction and Quantitative RT-PCR

Total RNA from peripheral blood was extracted using the UNlQ-10 Column Trizol
Total RNA Isolation Kit (Sangon Biotech, Shanghai, China) according to the manufacturer’s
instructions. The NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA) was utilized to check the concentration and purity of the extracted RNA, with
the A260/A280 between 1.8 and 2.0. The cDNA synthesis was conducted using Hifair III
1st Strand cDNA Synthesis SuperMix (Yeasen Biotech, Shanghai, China). Using β-actin
as a reference, we performed quantitative RT-PCR with Hieff qPCR SYBR Green Master
Mix (Yeasen Biotech, Shanghai, China) in the QuantStudio 6 Flex system (Thermo Fisher
Scientific, Waltham, MA, USA). Primer sequences (Sangon Biotech, Shanghai, China) for
reference and candidate genes are shown in Table 1. The 2−∆∆Ct method was applied to
calculate the relative expression level of mRNA.

Table 1. Primer sequences for quantitative real-time PCR.

Gene Primer Sequence (5′→3′)

RPL26 Forward ACAACTGTCCACGTAGGCATTCAC
Reverse TACTTGGCGAGATTTGGCTTTCCG

RPL9 Forward TTACACTGGGCTTCCGTTACAAGATG
Reverse GCAACACCTGGTCTCATCCGAAC

TNFAIP6 Forward TTTCTCTTGCTATGGGAAGACAC
Reverse GAGCTTGTATTTGCCAGACCG

IRS2 Forward CGGTGAGTTCTACGGGTACAT
Reverse TCAGGGTGTATTCATCCAGCG

B4 GALT5 Forward TCCTCGCTGCTGTACTTCG
Reverse AATGCCTTGGGCTTGCATCA

OLR1 Forward TTGCCTGGGATTAGTAGTGACC
Reverse GCTTGCTCTTGTGTTAGGAGGT

FOS Forward CCGGGGATAGCCTCTCTTACT
Reverse CCAGGTCCGTGCAGAAGTC

NFIL3 Forward AAAATGCAGACCGTCAAAAAGGA
Reverse TGACACTTCCGTTAAAGCAGAAT

TRIB1 Forward GCTGCAAGGTGTTTCCCATTA
Reverse TCCCCAAAGTCCTTCTCAAAGA

BCL6 Forward GGAGTCGAGACATCTTGACTGA
Reverse ATGAGGACCGTTTTATGGGCT

TLR2 Forward ATCCTCCAATCAGGCTTCTCT
Reverse GGACAGGTCAAGGCTTTTTACA

PTGS2 Forward CTGGCGCTCAGCCATACAG
Reverse CGCACTTATACTGGTCAAATCCC

BCL3 Forward CCGGAGGCGCTTTACTACC
Reverse TAGGGGTGTAGGCAGGTTCAC

IER3 Forward CAGCCGCAGGGTTCTCTAC
Reverse GATCTGGCAGAAGACGATGGT

PLAUR Forward TGTAAGACCAACGGGGATTGC
Reverse AGCCAGTCCGATAGCTCAGG

CEBPD Forward GGAGAGACTCAGCAACGACC
Reverse TTGCGCTCCTATGTCCCAAG

MXD1 Forward CGGGCTCATCTTCGCTTGT
Reverse GATTTGGTGAACGGCTTTTCTG

ACTB Forward TCGTGCGTGACATTAAGGAGAAGC
Reverse ATGGAGTTGAAGGTAGTTTCGTGGATG
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2.10. Statistical Analysis

The SPSS (v23.0, Armonk, NY, USA) and GraphPad Prism 9 software (San Diego,
CA, USA) were employed to analyze the data. Normal distribution measurement data
were displayed as mean ± SD, while abnormal measurement data as median (25th–75th
percentile) by SPSS 23.0. The statistically significant differences between the AMI group and
controls were examined by Student’s t-test or Mann–Whitney U test in GraphPad Prism 9
(San Diego, CA, USA). The construction of receiver operator characteristic (ROC) curve
and the calculation of the area under the ROC curve (AUC) were finished in GraphPad
Prism 9. The statistical significance was set as p < 0.05.

3. Results
3.1. Identifications of DEGs

PCA plots before and after batch correction are shown in Figure S1. A total of 2102
differentially expressed genes were identified, with an adjusted p-value < 0.05 between AMI
patients and controls. Of these DEGs, 781 genes were upregulated and 1321 genes were
downregulated in AMI. The volcano map of DEGs is shown in Figure 2A. The heatmap for
the top 50 DEGs is displayed in Figure 2B and Table S1.
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3.2. GWCNA Analysis

The 2102 identified DEGs were further processed with the GWCNA package in R
software, and a scale-free co-expression network (scale-free R2 > 0.8) was established
using a soft thresholding power of 24. The soft thresholding power β was set at 24 in the
subsequent analysis, because the scale independence reached 0.823 (Figure 3A) and had a
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relatively good average connectivity. The DEGs were clustered into four modules, blue,
brown, turquoise, and grey, with a minimal module size ≥30. The cluster dendrogram
of the DEGs is shown in Figure 3B. The correlation between each module and AMI was
calculated and plotted (Figure 3C). The results indicated that brown (−0.82, p < 0.0001)
and blue (0.75, p < 0.0001) were the most negative and positive modules related to AMI,
respectively. Herein, the brown module, including 196 DEGs, was considered as a key
module correlated to AMI. The top 50 DEGs in the brown module are shown in Table S2.
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3.3. Functional Enrichment Analysis

The 196 DEGs in the brown module were used for gene ontology and pathway
enrichment analysis with the Metascape tool. GO analysis revealed that DEGs in the
brown module were enriched in 154 biological processes (BP), 40 cellular components (CC),
and 26 molecular functions (MF). The top 10 BP, CC, and MF are shown in Figure 4A–C. The
GO category showed that ‘translation,’ ‘ribosomal subunit,’ and ‘structural constituent of
ribosome’ were markedly enriched in the brown module. KEGG analysis demonstrated that
the brown module was involved in 22 pathways, including ‘Ribosome,’ ‘Herpes simplex
infection,’ and ‘Spliceosome’ (Figure 4D).
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3.4. GSEA Analysis

The distribution of the pathway gene sets on all gene expression data from the AMI
patients and controls was explored using the GSEA software. The results showed that
30/50 gene sets were upregulated in the AMI patients, while 24 gene sets were significantly
enriched with FDR < 25%. In the controls, 20/50 gene sets were upregulated, and 11 gene
sets were highly enriched with FDR < 25%. ‘TNFA_SIGNALING_VIA_NFKB’ was remark-
ably enriched in the AMI group, with an enrichment score of 0.57 (Figure 5A), suggesting
that ‘TNFA_SIGNALING_VIA_NFKB’ may play a pivotal role in the pathophysiology of
AMI. The top six gene sets were shown in Figure 5A–F.

3.5. PPI Network Construction, Modular Analysis, and Hub Gene Analysis

To explore the interaction of genes in the brown module, a protein–protein interaction
network was constructed using the STRING database. Then, 0.4 was set as the threshold
as the minimum required interaction score for constructing the STRING PPI network.
As is shown in Figure 6A, the PPI network comprised 114 nodes and 526 edges. There
were 16 upregulated genes and 98 downregulated genes in the PPI network. Using the
MCODE plug-in in Cytoscape, two modules were determined. Module 1 (score = 17.789)
included 20 nodes and 169 edges (Figure 6B), and module 2 (score = 5.454) consisted of
12 nodes and 30 edges (Figure 6C). The top ten hub genes obtained by five algorithms,
MCC, DMNC, MNC, Degree, and EPC, in the cytohubba plug-in, are shown in Table 2.
The overlapped hub genes among the five algorithms were verified by a Venn diagram
(Figure 6D), including RPL9 and RPL26.

3.6. Construction of Putative RPL9 and RPL26 Protein–Protein Interaction Network and
GO Analysis

By employing the tool ‘GeneMania’, we constructed a putative protein–protein in-
teraction network of 22 genes involving hub genes RPL9 and RPL26. The PPI network
contained 2823 total links as is shown in Figure 7A. Gene ontology analysis on the network
showed that 22 genes were mostly enriched in 5 biological processes, 5 cellular components,
and 3 molecular functions, which are visualized in Figure 7B–D. RPL9 and RPL26, as the
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hub genes of AMI, putatively participated in the ‘cytoplasmic translation’ and ‘ribosome
biogenesis’, indicating that intense ribosomal changes can occur in the pathogenesis of AMI.
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score 0.54, FDR q-value 0.05. (F) Enrichment plot of ‘APICAL_JUNCTION’ with enrichment score
0.40, FDR q-value 0.047.

Table 2. Top ten hub genes obtained by five algorithms of Cytohubba.

MNC MCC EPC DMNC Degree

RPS20 RPS20 RPS20 GFM1 RPS20
RPS6 RPS6 RPS6 PELP1 RPS6

RPS27 A RPS18 RPS18 RPS17 RPS27 A
SNRPD2 RPL26 RPL26 CCT7 SNRPD2

RPL26 RPL11 RPL11 RPL24 RPL26
RPL11 RPLP0 RPLP0 RPS18 RPL11
RPL9 RPL9 RPL9 EEF1 A1 RPL9
RPS2 RPS2 RPS2 RPL26 RPS2
RPL3 RPL3 RPL3 RPLP0 RPL3

NHP2 L1 NHP2 L1 NHP2 L1 RPL9 NHP2 L1
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Figure 6. PPI network and hub gene. (A) PPI network. Genes in red represent upregulation; genes in
green represent downregulation. (B,C) The two most significant modules. (D) The overlapped hub
genes from different algorithms.

3.7. Baseline Characteristics of Study Subjects

Twenty-two participants were recruited in the present study and were separated into
two groups (AMI (n = 14) and controls (n = 8)). The average age of the AMI group was
60.714, while that of controls was 60.571. The two groups were well matched in terms of
age and gender. The demographic, clinical features, medications, and laboratory data of all
participants are shown in Table 3.

Table 3. Demographic, clinical features, and laboratory data of all the participants.

Variables AMI Group (n = 14) Control (n = 8) p-Value

Demographic features
Age (years) 60.714 ± 3.010 60.571 ± 4.099 0.553

Male/Female 12/2 6/2 0.531
Cardiovascular risk factors

Hypertension 6 (42.86%) 4 (50%) 0.746
Dyslipidemia 1 (7.14%) 0 NA

Diabetes mellitus 5 (35.71%) 1 (12.5%) NA
Current smoking 8 (57.14%) 2 (25%) 0.145
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Table 3. Cont.

Variables AMI Group (n = 14) Control (n = 8) p-Value

Vital signs on admission
SBP (mmHg) 121.50 (114.75–140.50) 120.00 (110.00–140.00) 0.868
DBP (mmHg) 75.000 (69.500–94.000) 72.000 (70.000–78.000) 0.868

Heart rate (bpm) 78.000 (73.500–87.000) 80.000 (75.000–84.000) 0.973
Echocardiographic finding

LVEF (%) 52.500 ± 1.738 63.286 ± 1.848 0.001
Laboratory findings

hs-cTnT (ng/mL) 9.930 (8.138–10.000) 0.007 (0.004–0.0100) 0.000
CKMB (U/L) 342.00 (210.25–457.25) 13.00 (9.00–15.00) 0.000

NT-pro-BNP (pg/mL) 682.10 (266.33–894.50) 68.00 (41.70–98.10) 0.002
TC (mmol/L) 5.024 ± 0.199 3.556 ± 0.215 0.001
TG (mmol/L) 1.740 (0.758–2.395) 2.280 (1.880–3.790) 0.082

LDL-C (mmol/L) 3.161 ± 0.155 1.451 ± 0.217 0.000
HDL-C (mmol/L) 1.060 (0.833–1.365) 0.860 (0.780–0.970) 0.188

Medications
Aspirin 11 (78.57%) 0 NA

Clopidogrel 2 (14.29%) 0 NA
Ticagrelor 9 (64.29%) 0 NA

Statin 7 (50%) 0 NA
ACEI/ARB 2 (14.29%) 3 (37.5%) 0.211

ß blocker 3 (21.43%) 2 (25%) 0.848
CCB 6 (42.86%) 0 NA

SBP: systolic blood pressure; DBP: diastolic blood pressure; LVEF: left ventricular ejection fraction; hs-cTnT:
high-sensitivity cardiac troponin T; CKMB: creatine kinase-MB; NT-pro-BNP: n-terminal pro-B-type natriuretic
peptide; TC: total cholesterol; TG: triglyceride; LDL-C: low-density lipoprotein-cholesterol; HDL-C: high-density
lipoprotein-cholesterol; ACEI: angiotensin converting enzyme inhibitors; ARB: angiotensin II receptor blockers;
and CCB: calcium channel blockers.
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3.8. Validation of the Hub Genes

The transcriptional changes of overlapped hub genes RPL9 and RPL26, were detected
in the peripheral blood from the AMI patients and controls by quantitative RT-PCR. The
results indicated that the expression levels of RPL9 and RPL26 were both decreased in the
AMI group in comparison with those in controls (Figure 8A,B), which was in line with
the bioinformatics analysis. To evaluate the capability of RPL9 and RPL26 to distinguish
the AMI group from controls, ROC curves were performed. According to the results,
the AUCs of RPL9 and RPL26 were 0.9018 (95% CI 0.7712–1.000; p = 0.0021) and 0.9911
(95% CI 0.9628–1.000; p = 0.0002), respectively, showing that the identified hub genes RPL9
and RPL 26 demonstrated a powerful discrimination capability as potential biomarkers
for AMI.
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3.9. Validation of the Gene Set ‘TNFA_SIGNALING_VIA_NFKB’

The enrichment of gene set ‘TNFA_SIGNALING_VIA_NFKB’ was experimentally val-
idated by detecting the expression level of key genes of ‘TNFA_SIGNALING_VIA_NFKB’
signaling in the peripheral blood from the recruited patients. The results in Figure 9 in-
dicate that the expression level of most key genes are elevated in the AMI group. The
findings provide experimental evidence to demonstrate the molecular determinants of
‘TNFA_SIGNALING_VIA_NFKB’ signaling involved in AMI.
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4. Discussion

Acute myocardial infarction remains one of the leading causes of death worldwide [24].
Owing to the sudden shortage of blood supply to the coronary artery and following the
depletion of energy and nutrients, the myocardium dies quickly. AMI patients might
experience severe chest pain, weakness or lightheadedness, arm or shoulder discomfort,
shortness of breath, and jaw, neck, or back discomfort [1]. Without timely intervention, most
people may die or survive with a variety of disabilities. Although reperfusion strategies and
pharmacological treatments save many lives, AMI is still a global burden [24]. The etiology,
effective diagnostic markers, and therapeutic strategies remain to be fully elucidated.

In this study, we performed a WGCNA on mRNA expression profile GSE6114 down-
loaded from the GEO database. With this novel approach, all 2102 differentially expressed
genes obtained by the ‘limma’ algorithm were clustered into four modules. Then, 196 genes
in the brown module were found to be the most closely related to the AMI (correlation
score = −0.82, p < 0.0001). These genes were mainly enriched in ‘translation,’ ‘ribosomal
subunit,’ ‘structural constituent of ribosome,’ and ‘ribosome.’ GSEA showed that the gene
set ‘TNFA_SIGNALING_VIA_NFKB’ was markedly enriched in the AMI group. Two hub
genes, RPL9 and RPL26, were determined based on the PPI network. The expression levels
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of RPL9 and RPL26 and the gene set ‘TNFA_SIGNALING_VIA_NFKB’ were validated by
quantitative RT-PCR.

According to the GO analysis, the BP term ‘translation’ mainly affected protein syn-
thesis, which otherwise resulted in the production of dysfunctional proteins. ‘Translation’
has been previously reported correlated to AMI [25]. Donko et al. also stated that the
unique genes in degenerative heart disease encoded proteins in the 80 S ribosome complex
(term ‘translation’) [26]. The CC term ‘ribosomal subunit’ and the MF term ‘structural
constituent of ribosome’ were both notably associated with the ribosome formation, which
is an essential part of protein translation [27]. KEGG analysis revealed that the ‘ribosome’
pathway can play a marked role in peripheral blood following AMI. Interestingly, Bittman
et al. discovered that altered genes in patients with coronary heart disease were mainly
related to ‘ribosome’ while making recreation music [28]. Li et al. showed that ‘ribosome’
was correlated with hypertrophic cardiomyopathy [29]. Although the investigation of
‘ribosome’ on AMI is limited, the previous studies of other cardiovascular diseases provide
clues that ‘ribosome’ might be a good index for further research in AMI. By performing the
GSEA analysis on the gene profile of GSE, we obtained lots of gene sets highly enriched in
the AMI group. Among them, ‘TNFA_SIGNALING_VIA_NFKB’ with an enrichment score
of 0.57, was experimentally validated. Briefly, ‘TNFA_SIGNALING_VIA_NFKB’ refers
to the genes regulated by NF-kB in response to TNF. This gene set comprises 182 genes,
including the well-known tumor necrosis factor alpha (TNF-α), nuclear factor kappa B
(NFKB), and other inflammatory cytokines [17]. TNF-α has been proved to be enhanced
in MI [30]. Multiple studies showed that TNF-α inhibitor reduced the infarct area [31].
However, the administration of low-dose TNF-α prior to ischemic reperfusion in animal
models led to a reduction of infarct area, suggestive of a precondition effect [32]. NFKB
is a homo- or hetero-dimeric complex formed by the Rel-like domain-containing proteins
RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL, and NFKB2/p52, with the p65–p50
complex as the most abundant. NFKB participates in many biological processes, such as
inflammation, immunity, differentiation, cell growth, tumorigenesis, and apoptosis. The
crosslink between NFKB and cardiovascular diseases has also been built [33]. Emerging
evidence shows that intense inflammatory responses occur during AMI. We are delighted
to find that some important inflammatory cytokines are enriched in AMI, in accordance
with the previous findings.

Compared with previous studies, our work provides a unique insight into the un-
derlying pathogenesis of AMI. Liu et al. obtained three microarray datasets (GES, GSE,
and GSE) and screened out three genes, FGFBP2, GFOD1, and MLC1, as potential markers
for the diagnosis of AMI [34]. Liu et al. performed a WGCNA on GSE4648 to determine
the genes correlated with AMI, ferroptosis, and hypoxia. They clarified the possibility of
10 hub genes (Atf3, Ptgs2, Cxcl1, Socs3, Hspa1 b, Selp, Cxcl2, Il1 b, Myd88, and S100 a8)
as diagnostic markers for AMI utilizing bioinformatic and experimental methods [35].
By contrast, Zhang et al. separately analyzed the hub genes associated with STEMI and
NSTEMI [36]. They found that Aqp1, Armcx1, Gsta4, Hist3 h2 a, and Il17 as hub genes of
STEMI were mainly enriched in cell membrane signal transduction, while Olr1, Nap1 l3,
Gfer, Dohh, Crispld1, and Ccdc8 b as hub genes of NSTEMI were markedly related to
energy metabolism [36]. Intriguingly, Xie et al. inferred that four genes (FN1, CD34, LPL,
and WWTR1) were capable of distinguishing STEMI patients from healthy controls and
SCAD [37]. Wang et al. identified 4 hub genes (LILRB2, TLR2, NCF2, and S100 A9) related
to AMI based on three databases (GSE, GSE, and GSE) [38]. However, the identification of
RPL9 and RPL26 in our study has not been previously investigated to be related to AMI.

Ribosomal proteins (RPs) are structural constituents of the ribosome complex and
assemble orderly in concert with cell growth and proliferation [39]. In addition to optimiz-
ing the synthesis of proteins, RPs also act as sentinels for the self-evaluation of cellular
health [40]. The perturbation of the expression of RPs can directly dysregulate the normal
ribosomal function and lead to a range of pathologies. Several RPs have proved to be
associated with the development of cardiovascular disease [41–44]. Cardiomyopathy with
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the Minute syndrome in Drosophila melanogaster is attributed to the haploinsufficiency of
the ribosomal protein gene [41]. Ribosome protein L17 suppresses vascular smooth muscle
growth and carotid intima formation [43]. Increased plasma protein PCSK9, which has been
confirmed to be related to cardiovascular disease, may be mitigated by a small molecule by
targeting the 80 s ribosome [44].

Ribosomal protein L9 (RPL9), which has not been widely connected with human
disease, can cause deleterious changes in ribosome function and cell metabolism with
different variants [45]. Ribosomal protein L26 (RPL26), comprising of 145 amino acids
and having a molecular mass of 17,266 Da [46], has previously been reported to regulate
the p53 translation with nucleolin [47] or Mdm2 [48]. The knockdown of RPL26 and
RPL29 expression ablates the proliferation of human pancreatic cancer PANC-1 cells [49].
According to our results, the expression levels of RPL9 and RPL26 were downregulated
in the AMI group, indicating that RPL9 and RPL26 may be cardioprotective during AMI.
In combination with the previous study, we suppose that RPL9 and RPL26 can regulate
the vitality of the myocardium in the pathological process of AMI. Nevertheless, further
research on the role of RPL9 and RPL26 is required to validate the relationship.

According to the ROC curve, the values of the AUCs of RPL9 and RPL26 were 0.9018
and 0.9911, respectively. In general, an AUC of 0.5 indicates no discrimination, 0.7–0.8 is
acceptable, 0.8–0.9 is excellent, and over 0.9 is outstanding [50]. Both the AUCs of RPL9
and RPL26 can be regarded as outstanding, indicating the powerful ability of RPL9 and
RPL26 to discriminate AMI from the controls. However, the expansion of the sample size is
required to validate the efficacy of RPL9 and RPL26 as biomarkers for AMI in the future.

5. Conclusions

Conclusively, we re-analyzed the expression profile GSE6114 with WGCNA. Two hub
genes in AMI, RPL9, and RPL26 were determined and confirmed by quantitative RT-PCR.
To the best of our knowledge, research on the role of RPL9 and RPL26 in AMI remains
limited. Our results indicate that RPL9 and RPL26 can participate in the pathophysiology
of AMI and serve as potential targets for diagnosis or therapy for AMI.
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