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Diabetes mellitus (DM) is a chronic metabolic disorder characterized by

persistent hyperglycemia due to insulin resistance or failure to produce insulin.

Patients with DM develop microvascular complications that include chronic

kidney disease and retinopathy, and macrovascular complications that mainly

consist in an accelerated and more severe atherosclerosis compared to the

general population, increasing the risk of cardiovascular (CV) events, such as

stroke or myocardial infarction by 2- to 4-fold. DM is commonly associated

with a low-grade chronic inflammation that is a known causal factor in its

development and its complications. Moreover, it is now well-established that

inflammation and immune cells play a major role in both atherosclerosis

genesis and progression, as well as in CV event occurrence. In this review,

after a brief presentation of DM physiopathology and its macrovascular

complications, we will describe the immune system dysregulation present in

patients with type 1 or type 2 diabetes and discuss its role in DM cardiovascular

complications development. More specifically, we will review the metabolic

changes and aberrant activation that occur in the immune cells driving

the chronic inflammation through cytokine and chemokine secretion, thus

promoting atherosclerosis onset and progression in a DM context. Finally, we

will discuss how genetics and recent systemic approaches bring new insights

into the mechanisms behind these inflammatory dysregulations and pave the

way toward precision medicine.
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Introduction

Diabetes Mellitus (DM) is a worldwide major public health issue leading

to increase morbidity and mortality, with over half a billion of the worldwide

adult population living with DM in 2021 (International Diabetes Federation)

and 1.5 million deaths due to DM complications per year according to

the WHO (1). There are several forms of diabetes, type 2 diabetes (T2D)
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representing more than 95% of cases, combining insulin

resistance and insulinopenia. Type 1 diabetes (T1D) is the

second most common form of DM, representing 5–10% of all

cases worldwide, and is the consequence of an auto-immune

destruction of the pancreatic beta-cell. Other types of DM

include gestational diabetes, and less common monogenic,

atypical and syndromic diabetes (2, 3). Although the etiology

is different, the common defining factor for all these different

forms of DM is the hyperglycemic state clinically defined by

a glycated hemoglobin (HbA1c) above ≥6.5% or a fasting

plasma glucose concentration above≥7 mmol/L (3, 4), resulting

from insufficient insulin secretion that can be combined with

insulin resistance. In T2D, this hyperglycemia is also frequently

associated with dyslipidemia and, in the long run, both cause

major organ dysfunction mainly of the heart, kidney, eyes,

and lower limbs. Diabetic complications are categorized into

microvascular and macrovascular. Microvascular complications

group chronic kidney disease that may result in kidney failure,

retinopathies that can lead to blindness and neuropathies

including peripheral nerve damage leading to diabetic foot

and amputation. Macrovascular complications affect big vessels

such as coronary or supra-aortic arteries. Atherosclerosis is

the central physiopathological mechanism of macrovascular

disease, and cardiovascular disease (CVD) is a major cause

of premature death in the diabetic population with cerebral

ischemia (stroke) or myocardial infarction (5). Coherently, DM

is a known clinical CV risk factor, as people with DM present

with an accelerated and more severe form of atherosclerosis

compared to the general population, significantly increasing

their risk of suffering a CV ischemic event (6). Mechanisms

behind this more aggressive form of atherosclerosis CVD in the

diabetic population have yet to be elucidated, and are the focus

of many research studies. Furthermore, although many effective

tools to assess the CV risk exist in the general population, none

of them are adequate to properly assess CV risk in diabetic

patients (7). Thus, our incomplete understanding of DM CV

complications development and progression, and the scarcity

of effective tools to measure CV risk, are major issues in

the treatment and prevention of diabetic CV complications.

However, the chronic pro-inflammatory phenotype that diabetic

patients present is a characteristic that actively participates

in the onset and progression of atherosclerosis CVD (8, 9).

Indeed as an inflammatory disease, atherosclerosis genesis

and progression is facilitated in a pro-inflammatory setting

provided by DM (10). This review aims at presenting the role

of inflammation and the immune system in the development

of both DM and atherosclerosis. Then we detail the known

mechanisms that promote atherosclerosis onset and progression

in individuals with DM. Finally, we list the common genetic

regions associated to both diseases, as well as integrative

omics studies that highlight variant impacting the immune

system activity.

Inflammation in diabetes mellitus
and atherosclerosis

Inflammation in T1D

T1D, formerly known as juvenile diabetes, is an auto-

immune disease caused by deregulated cytotoxic T cells.

These adaptive immune lymphocytes are specifically directed

against pancreatic islet beta-cell epitopes, effectively destroying

beta-cells and leading to insulin production deficiency. This

targeted beta-cell destruction by auto-reactive T cells induces

a sterile chronic inflammation called insulitis, and promotes

the activation of immune B cells driving the humoral response

(11). Autoantibodies, such as islet cell antibodies or anti

glutamic acid decarboxylase (GAD), produced by immune B

cells help for clinical diagnosis of T1D. Insulin antibodies may

also be used to adapt treatments as they can indicate insulin

therapy inefficiency. Although the adaptive immune system

is key to T1D genesis, the innate immune system also plays

an important role in the development of the disease. Indeed

circulating monocytes of T1D patients have been shown to

secrete interleukin 1 beta (IL-1B) and IL-6 pro-inflammatory

cytokines capable of inducing Th17 pro-inflammatory cells in

vitro (12). Once monocytes infiltrate the pancreatic tissue, they

differentiate into either dendritic cells (DCs) or macrophages,

both antigen-presenting cells (APCs) capable of phagocytosis

and producers of pro-inflammatory cytokines. As APCs, DCs

can prime naive T cells by presenting beta-cell antigens found

in the pancreas to the T cells in the lymph nodes. Thus,

DCs activate the adaptive immune system to attack beta-cells

and promote insulitis (13, 14). Interestingly, a recent study

based on single cell transcriptomics of human pancreas islets,

identified ductal cells expressing MHC class II genes and a

gene expression profile similar to that of tolerogenic DCs

(15), consistent with a role of the exocrine pancreas in islet

inflammation, as previously described in non-obese diabetic

(NOD) mice (16). Chronic insulitis is further maintained

by islet tissue-macrophages through the production of pro-

inflammatory cytokines such as IL-1B or tumor necrosis factor

alpha (TNF-a), and through their role as APC toward invading

T cells (14). The neutrophil blood count decrease combined

with an increase of pro-inflammatory pancreatic-residing

neutrophils observed in both presymptomatic and symptomatic

patients with T1D, suggest a role of neutrophils in promoting

both T1D onset and progression (17). Furthermore, these

pancreatic-residing neutrophils presented a pro-inflammatory

phenotype and were not limited to the islets. Indeed, a 2018

study also showed that these pancreatic neutrophils produce

neutrophil extracellular traps (NETs), an extracellular web-

like chromatin structure known to be implicated in auto-

immune disease by promoting inflammation and tissue damage

(18). Similarly to neutrophils, NK cells levels in T1D are
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found to be decreased in the blood, which could be a

consequence of an increased NK cell infiltration in the pancreas.

Furthermore, NK cells of T1D patients were shown to have

a higher islet cell cytotoxicity (19). Thus, several types of

immune cells play a role in T1D genesis and progression

(Table 1).

Inflammation in T2D

T2D is the combination of an insulin production deficiency

and an insulin resistance primarily in muscle, liver and adipose

tissues, the main targets of insulin. Insulin resistance is due

to a disruption of the intracellular insulin signaling pathway

which results in an impaired intracellular glucose uptake.

Initially this decrease of insulin-stimulated glucose uptake is

compensated by a beta-cell mass increase and enhanced insulin

secretion. However, when the increased insulin production

fails to compensate for the insulin resistance, hyperglycemia

ensues, leading to T2D (39). Although the specific mechanisms

behind insulin resistance are not fully understood, it has

been shown that pro-inflammatory signals and inflammation,

such as TNF-a, IL-1B, inhibitor of nuclear factor kappa B

kinase subunit beta (IKBKB commonly known as IKKbeta),

c-Jun N-terminal kinase (JNK), and NLPR3 inflammasome,

are capable of disrupting insulin signaling in adipocytes or

muscle cells (20). Indeed the IKKbeta/JNK signaling pathway

causes a loss of insulin sensitivity, in part through an inhibiting

phosphorylation by JNK of insulin receptor substrate (IRS)

1 and 2, while simultaneously activating pro-inflammatory

transcription factors such as nuclear factor kappa B (NF-kB)

(20). Patients with obesity, an important risk factor for T2D,

often present with adipose tissue (AT) inflammation. This

chronic low-grade inflammation of the AT of obese patients

is reflected by their production of pro-inflammatory cytokines

such as IL-6, TNF-a, IL-1B, IL-8, monocyte chemoattractant

protein-1 (MCP-1: also known as CCL2), and adipokines, a

group of cytokines produced by adipocytes.

Adipose tissue inflammation has multiple triggers including

the increased uptake of nutrients leading to adipocyte

hypertrophy and endoplasmic reticulum (ER) stress, resulting in

intracellular inflammatory pathway activation (21). Noticeably,

adiponectin, an anti-inflammatory adipocyte-produced

hormone, that protects against insulin resistance is decreased in

the plasma of obese patients (40). Interestingly, adiponectin was

also found to be an independent predictor of T2D development

and subsequently CV risk, as high plasma adiponectin was

associated with a decreased risk of suffering a CV event among

a population with T2D (41). Furthermore, both adipocyte cell

death due to lipid overload and hypoxia induced by the rapid

growth of AT also strongly contribute to the inflammatory

state in AT (22). This eventually leads to an infiltration of both

innate and adaptive immune cells in the AT, mainly infiltrating

monocytes that differentiate into AT macrophages (ATM), T

cells, and B cells. Similarly to muscle or liver tissue resident

macrophages, ATM are the most abundant immune cells in

the AT and are the major drivers of insulin resistance. Indeed,

the inhibition of these pro-inflammatory macrophages protects

obese mice against insulin resistance (8, 30). Pro-inflammatory

CD8+ T cells promote monocyte infiltration in AT, muscle

and liver, and these monocytes ultimately differentiate into

pro-inflammatory macrophages (29). Interestingly anti-

inflammatory regulatory T cells (Tregs) are decreased in AT of

obese individuals compared to lean controls (31). Furthermore,

neutrophils were found to participate in insulin resistance of

hepatocytes by promoting degradation of insulin receptors (26)

(Table 1).

Interestingly, high blood levels of pro-inflammatory

cytokines IL-6, IL-1B, and high sensitivity C-reactive protein

(hsCRP), a clinical marker of inflammation, in obese patients

are predictors of insulin resistance and hyperglycemia. This

suggests that in addition to local inflammation, a state of

systemic inflammation occurs. Furthermore, circulating

cytokines and chemokines in T2D patients are associated

with blood clot formation and increased endothelial tissue

damage (23). Thus, both low-grade systemic and AT chronic

inflammation play a crucial role in insulin resistance, T2D

onset, as well as in T2D complication development.

Inflammation also plays an important role in insulin

secretion deficiency in the context of T2D. Indeed the

overproduction of insulin by beta-cells in an effort to

compensate for the insulin resistance causes an important ER

stress in beta-cells that activates the NLRP3 inflammasome

pathway leading to IL-1B production. This in turn allows

for pro-inflammatory macrophage islet infiltration that also

produces IL-1B, further amplifying the pro-inflammatory

response (8, 24) (Table 1).

Although humoral and cellular immunity and both the

adaptive and the innate immune systems are integral parts of

T1D and T2D development, inflammation, or immune markers

are not currently used in clinical practice for DM treatment

choice, whereas the most severe and deadly complication of DM,

atherosclerosis, is recognized as an inflammatory disease.

DM macrovascular complications

As described above, patients with diabetes develop

an accelerated and more severe form of atherosclerosis

cardiovascular disease (ACVD), with a 3–4 times higher risk

of suffering a CV event compared to the general population

(5, 42, 43). However, there is an important heterogeneity of the

CV risk among patients with DM. For example in patients with

T2D, the incidence of a major CV event is estimated at 10.5

times higher in individuals with a CAC score >400 compared

to those with a zero CAC score (42). Likewise in patients with
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TABLE 1 Common immune cell function and inflammatory mechanisms between diabetes mellitus and atherosclerosis cardiovascular disease.

T1D T2D ACD

Inflammation type Chronic insulitis (11) Chronic insulitis and systemic

inflammation (8, 20–24)

Chronic systemic and plaque lesion (25)

Role of inflammation Autoimmunity onset and progression

Disease complications

Disease onset and progression

Disease complications

Disease genesis

Disease Progression

Plaque instability and rupture

(ischemic complications)

Molecular mediators

Antibodies-Cytokines-

Chemokines

Antibodies: used for diagnosis and

treatment plan (11)

IL-1B, TNF-a: maintain inflammation

IL-1B, IL-6, TNF-a, IFNg, IL-18 produced

by adipose tissue: maintain a chronic

inflammation that leads to insulin

resistance, immune cell activation and

recruitment to islets (21–23)

IL-1B, IL-6, TNF-a, IFNg, IL-18, CCL2

(MCP-1) produced by immune and

endothelial cells: activation and

recruitment of immune cells to the plaque

(10, 25)

Cellular mediators

Neutrophils Increased pancreas infiltrates

NETs extrusion in pancreas (17, 18)

NET extrusion in blood: increases with

hyperglycemia (26)

Role in plaque progression: maintain

inflammatory state and promote plaque

instability; promote EC erosion through

neutrophil traps; ROS (27, 28)

Circulating monocytes Pro-inflammatory cytokine production:

IL-1B, IL-6

Pancreas infiltration: differentiate into

macrophages or DC (11, 12)

Monocyte chemoattractant production:

enter AT and differentiate into

macrophages

Maintain chronic inflammation and

insulin production defects (8, 22, 24, 29)

Atherogenesis: activated and recruited to

the plaque by infiltrating the arterial wall

and transform into macrophages (10)

Tissue macrophages Islet macrophages: pro-inflammatory

cytokine production (IL-1B, TNF-a, ROS)

Role as APC: activate T cells (11, 14)

Adipose tissue macrophages:

pro-inflammatory cytokine production

(TNF-a)

Islet macrophages: maintain insulitis

(8, 22, 24, 29, 30)

Phagocytosis of oxLDL by macrophages

that eventually transform into foam cells

(10)

T-Lymphocytes Auto-reactive T cells directed against

beta-cells: lead to beta-cell destruction

(11)

Insulin resistance (29, 31) Role in plaque progression: maintain

inflammatory state by producing

chemokines and activating B cells and

macrophages (32–36)

B-Lymphocytes Drive the humoral response: antibody

production (ICA, IAA, GAD65. . . ) (11)

Beta-cell destruction (8, 24) Role in plaque progression: antibody

production (37)

Dendritic cells Role as APC: autoreactive T cell priming

(13, 14)

Autoreactive T cell priming (8, 22, 24, 29) T cell priming (38)

T1D, the analysis of the EURODIAB prospective complications

study revealed a reduced CV risk (0.37, 95% CI [0.18–0.76])

in patients presenting with at least 4 favorable health metrics,

notably including the lower tertiles of systolic blood pressure

and HbA1c levels (43). In addition, patients with DM suffer

from painless myocardial infarction or silent diabetic ischemic

cardiomyopathy, further increasing the difficulty of diagnosis

(44). Out of 22 tools used to assess CV risk on the general

population, none could accurately predict the CV risk among

a diabetic population (7). The current lack of effective means

to identify the CVD status of DM patients hinders CV event

prevention among diabetics. Thus, identifying and elaborating

methods to better predict the CV risk among the diabetic

population remains crucial. More focus should be applied to

taking into account inflammatory markers to assess this CV risk

properly, as immune cells and inflammation are key aspects of

both DM and atherosclerosis as well as CV risk progression.

Role of the immune system and
inflammation in the physiopathology of
atherosclerosis

Atherosclerosis starts with a pathological intimal thickening

due to endothelial dysfunction and oxidized low-density
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lipoprotein (oxLDL) retention in the blood vessel wall.

Activation of endothelial cells then leads to circulatingmonocyte

recruitment within the endothelium intima. Phagocytosis

of the oxLDL by the monocyte-derived macrophages or

vascular smooth muscle cells induces foam cell formation.

Overtime, the accumulation of lipids within foam cells leads

to fatty streak development. Atherosclerosis progression is

characterized by fatty streak growth and the formation of

a necrotic core covered by a fibrous cap. As the necrotic

core, composed of lipid-rich cellular debris, develops, plaque

instability increases, until the plaque eventually ruptures causing

thrombosis (10). Neutrophils promote this plaque instability

by eroding the endothelial wall and fibrous plaque through

reactive oxygen species (ROS) secretion and neutrophil traps-

extrusion, when activated by pro-inflammatory signals (27,

28). Indeed the NETs, formed of chromatin components

including histones, induce an endothelial cell lysis and

vascular inflammation that can lead to plaque rupture.

Neutrophils also act during plaque development by enhancing

monocyte recruitment through chemotactic molecules and, by

secreting NETs, they activate plaque macrophage production

of IL-1B (27). Throughout the entire process of atherosclerosis

cardiovascular disease, a state of chronic inflammation is

maintained. From the initiation of plaque onset to its

progression and subsequent rupture, oxLDL activates immune

and endothelial cells that will produce pro-inflammatory

cytokines that in turn, maintain and promote inflammation

by recruiting additional immune cells (25). More specifically

the production of chemoattractants such as IL-8, MCP-1 (also

known as CCL2), CCL5, and CXCL16 will amplify monocyte

recruitment and promote T cell plaque infiltration, mainly

pro-inflammatory Th1 interferon gamma producing cells (32).

Single-cell transcriptomic analysis of human atherosclerotic

carotid plaques revealed a higher concentration of T cells

compared to plaque macrophages (33, 34). These pro-

atherogenic effector CD4+ and CD8+ T cells presented a

higher expression of activation markers such as CD69, CD38,

and CCR5, both at the protein and the transcript level,

compared to blood T cells. Furthermore, IL-10 producing Tregs,

commonly viewed as anti-atherogenic and anti-inflammatory,

can differentiate into pro-atherogenic apolipoprotein B (ApoB)-

reactive T cells that produce pro-inflammatory cytokines

(35). This T cell mediated effector cytokine production

maintains a pro-inflammatory environment inside the arterial

wall by perpetuating immune cell recruitment and activation.

Furthermore, the cytotoxic activity of T cells is a major driver

of necrotic core growth by inducing foam cell death (36).

The T lymphocytes will also activate B cells and work in

synergy to increase antibody production to maintain a chronic

pro-inflammatory state. B cells are also activated through

the complement system and antigen binding, and subsequent

transformed into antibody producing plasma cells (37). Finally

DC numbers were found to be increased in the arterial wall

of atherosclerotic patients compared to healthy individuals,

and the concentration of DCs inside the plaque was positively

correlated to plaque instability, suggesting a role in promoting

fibrous plaque erosion ultimately leading to plaque rupture

(38). Overall, DCs maintain inflammation and promote plaque

rupture by producing pro-inflammatory cytokines and, as

APCs that prime naive T cells, by activating the adaptive

immune system. The roles of these different immune cells are

summarized in Table 1.

Thus, immune cells play a crucial role in atherosclerotic

plaque genesis, progression, instability, and ultimately its

rupture. Furthermore, therapies targeting the immune system

independently of the lipid status, such as anti-inflammatory

treatments, have proven effective in decreasing the CV risk in

patients with atherosclerosis.

Anti-inflammatory therapies in
atherosclerosis treatments

As atherosclerosis is a chronic inflammatory disease,

treatments targeting inflammation are at the forefront of

research. To date, two phase III randomized clinical trials

have shown beneficial effects of targeting inflammation on CV

risk lowering. The CANTOS (Canakinumab Anti-inflammatory

Thrombosis Outcomes Study) trial was the first to demonstrate

the effectiveness of targeting inflammation to prevent CV

events, with canakinumab, a monoclonal antibody directed

against pro-inflammatory IL-1B cytokine, in patients with blood

inflammation (hsCRP level higher than 2mg) and previous

myocardial infarction (45). This treatment led to a decrease of

15% of cardiovascular events at a median follow-up of 3.7 years,

associated with a decrease of 40% of inflammation, assessed by

high sensitivity C reactive protein (CRP) blood levels. Contrary

to rosuvastatin, a primary prevention treatment that showed

a 65% reduction in vascular events by modulating both lipid

status and inflammation (46), the effect on inflammation and

subsequent effect on CV risk of canakinumab was independent

of lipid status. As the IL-1 pathway is a promising target for

anti-inflammatory therapy, other antibodies are being developed

such as anakinra, an antibody inhibiting IL-1 receptor, that has

shown promising results in phase II clinical trials in both stable

(47) and unstable patients (48) at high CV risk, reflecting the

importance of targeting inflammation during both the acute and

chronic phases of coronary artery disease (CAD).

The second randomized clinical trial involved colchicine,

a known anti-inflammatory natural molecule that inhibits

cytoskeleton microtubule formation, was used in the LoDoCo2

phase III clinical trial to treat patients with advanced CAD (49).

There was a 31% decrease in a composite primary endpoint

including CV death, myocardial infarction, ischemic stroke,

or ischemia-driven coronary revascularization, in patients
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receiving colchicine compared to those receiving a placebo.

These results are coherent with two phase II clinical trials also

using colchicine for patients with either stable CAD (50), or as

secondary prevention for patients having suffered a myocardial

infarction (51).

Although phase III clinical trials that target cytokines, the

main effectors of inflammation, have yet to be developed,

two phase II clinical trials targeting IL-6 cytokine, a key

pro-inflammatory effector downstream of IL-1 and TNF-a,

have shown promising results. More specifically, tocilizumab,

a humanized monoclonal antibody against the IL-6 receptor,

decreased inflammation markers and increased myocardial

salvage after myocardial infarction (52, 53).

Although atherosclerosis is defined as an inflammatory

disease, and therapies targeting the immune system are

undergoing clinical trial phases, DM is still considered as

a metabolic disorder first, and the role of inflammation

is not taken into account either for the diagnosis or the

current treatments of the disease. Even so, as inflammation

and immune cells are key players in the development of

both T1D and T2D, clinical trials to prevent ischemic

CV events in diabetic patients by targeting inflammation

are underway.

Targeting inflammation in diabetes
treatment

Currently no therapy solely targeting the immune system

is used to treat either T1D or T2D, however multiple studies

have tested the capacity to treat or hinder DM progression using

anti-inflammatory drugs.

For T1D, studies aiming to modulate the immune response

in an attempt to protect beta-cell survival have had varying

degrees of success (54). In 2019, a phase II randomized

clinical trial with teplizumab, an anti-CD3 monoclonal antibody

believed to target the auto-reactive T cells responsible for

beta-cell destruction, reported a 2-year delay in T1D onset

in patients at high risk for development of this clinical

disease, compared to the control group given placebo (55).

Another strategy modulating the T cell response through

plasmid DNA vaccination showed promising results. Indeed

pro-diabetic CD8+ T cells were decreased, whereas C-peptide

blood levels, a by-product of insulin production, was improved

in T1D individuals who were administered a DNA plasmid

encoding pro-insulin, compared to control (56). Targeting pro-

inflammatory molecules presented very encouraging results

in a double-blind trial in which children recently diagnosed

with T1D were given etanercept, a TNF antagonist. After

24 weeks of treatment, insulin dose decreased by 18% in

the intervention, compared to a 23% increase in the placebo

group, parallel to an increase in the endogenous production

of insulin (C-peptide measurement increase of 39%, vs. a

decrease by 20% in the placebo group) (57). Although targeting

IL-1B showed impressive results in CV risk prevention for

canakinumab and anakinra, these same molecules showed very

little improvement for T1D patients (58). A major limitation of

these immunomodulatory treatments are their off-target effects,

limiting their distribution in individuals with T1D who can be

treated with insulin.

Interestingly, treatments for T2D already in place such

as insulin, metformin, glucagon-like protein peptide-1

(GLP-1) receptor agonist and sodium-dependent glucose

co-transporter SGLT-2 inhibitors have been known to have

pleiotropic effects including anti-inflammatory consequences.

Indeed insulin has been shown to reduce pro-inflammatory

pathway activity in peripheral blood mononuclear cells

(PBMCs) by downregulating the expression of NF-kB pro-

inflammatory transcription factor, and by decreasing the

MCP-1 expression in endothelial cells (59). GLP-1, an incretin

that increases postprandial insulin secretion by beta-cells,

and the GLP-1 receptor agonists, possess intrinsic anti-

inflammatory properties. More specifically, these hormones

downregulated the expression of pro-inflammatory genes in

cultured human islets, and increased Treg expression as well as

TGF-beta anti-inflammatory cytokines in diabetic mice (60).

SGLT-2 inhibitors, which decrease glucose blood levels by

inhibiting glucose reabsorption in kidney have also intrinsic

anti-inflammatory properties although the exact mechanisms

behind this immunomodulation remain unknown. However,

it has been suggested that SGLT-2 inhibitors may promote

anti-inflammatory macrophages and IL-10 production (61).

Interestingly both the incretin mimetics (GLP-1 receptor

agonists) and SGLT-2 inhibitors are considered the standard of

care in preventing CV complications among T2D, due to their

beneficial effects on reducing CV risk (62). Finally salsalate,

a non-acetylated salicylate, has anti-inflammatory properties

by inhibiting NF-kB activity, and was the first blood glucose

lowering drug (63).

Treatments that exclusively target inflammation are not yet

established though multiple trials have tested this hypothesis

with varying degrees of success. TNF-a antagonists trials have

had only limited results on either glycemic control, HbA1c

blood levels, insulin secretion and or sensitivity, probably due

to small trial size and the short time period of treatment (9, 64).

Studies targeting the IL-1 pathway using canakinumab, although

effective in lowering inflammation markers as described above,

have not shown any decrease of HbA1c, glucose or insulin

blood levels. In the CANTOS trial, this could be at least

partially explained by the recruitment selection, as the study

was performed on a cohort of patients having already suffered a

CV event and thus even the non-diabetic individuals had a high

CV risk (65). Similarly, studies using anakinra have had modest

success on insulin secretion or sensitivity but no significant

effect on HbA1c. Interestingly however, IL-1B inhibition effects
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FIGURE 1

Hematopoiesis in DM. Top left panel: defects in the negative selection step of the thymic central tolerance process leads to the production of

naive autoreactive T cells. Bottom left panel: antigen presenting cells (APCs) prime the naive autoreactive T cells with beta-cell and insulin

autoantigens. Once activated the autoreactive T cells destroy pancreatic islet beta-cells. Right panel: high blood glucose levels enter circulating

neutrophils through insulin-independent glucose transporter 1, which activates glycolysis and leads to damage associated-molecular patterns

DAMPs S100A8/A9 secretion. These DAMPs will bind to receptors of advanced glycation end products (RAGE) at the surface of cellular myeloid

progenitors (CMP) to promote myelopoiesis which leads to enhanced monocyte blood levels (monocytosis). Figure created with

BioRender.com online tool.

and trends, although not always statistically significant, were

long-lasting and maintained overtime. It is important to

note that none of these immunomodulating therapies aim to

recover the lost beta-cells or to repair the damaged islets,

but rather attempt to hinder disease progression and limit

further damages.

Hematopoiesis: Myelopoiesis and
immune cell production

It has been suggested that T1D or T2D patients present with

a modulated hematopoiesis (62). Whether it is the production

of beta-cell targeting auto-reactive T cell production, or an

increased level of circulating leukocytes mainly neutrophils and

blood monocytes, these increases in key immune players of

atherosclerosis development may be linked to the development

of DM CVD complications (66).

Increased myelopoiesis

The effect of hyperglycemia on immune cell production

and inflammation has long been debated. However, in

the last 10 years, studies have identified an indirect link

between myelopoiesis, monocytosis and chronic as well as

intermittent hyperglycemia. In 2013 Nagareddy et al. (67)

demonstrated that chronic hyperglycemia, as it can be observed

in T1D, can indirectly promote a higher myelopoiesis causing

monocytosis (Figure 1). Due to an increased production by

neutrophils of damage-associated molecular patterns (DAMPs)

S100A8/S100A9 that bind to receptors for advanced glycation

endproducts (RAGE) expressed at the surface of myeloid

progenitors, myelopoiesis is enhanced, leading to an increased

production of circulating monocytes (or monocytosis)

(Figure 1). These results were coherent with high levels of

S100A8/S100A9 measured in T1D patients at high CV risk due

to bad glycemic control. As there seems to be no significant
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decrease in the CV risk of T2D even under good glycemic

control, for a long time it was believed that hyperglycemia

was linked to atherosclerosis in T1D mainly, but had only a

modest effect on T2D CV complications prevention. However,

since 2015, multiple studies described T2D patients with good

overall glycemic control (no chronic hyperglycemia) that

presented transient levels of hyperglycemia mainly after eating

(68, 69). In 2020, Flynn et al. (70) successfully demonstrated

that exposure to transient high levels of blood glucose could

activate glycolysis in neutrophils leading to the production of

S100A8/S100A9 that promote myelopoiesis and subsequent

monocytosis by binding to the RAGE at the surface of myeloid

progenitors (Figure 1). It should be noted that the effect of both

transient and chronic hyperglycemia on myelopoiesis, mediated

by neutrophil-secreted S100A8/S100A9, was independent of

AGE production (67, 70). As these transient intermittent peaks

of hyperglycemia were sufficient to induce an accelerated

atherosclerosis development and hindered plaque regression,

independently of overall good glycemic control, reflected by

an absence of chronic hyperglycemia, this study may explain

the differing results between T1D and T2D when it comes to

lowering CV risk by controlling the HbA1c levels. Coherently

with this diabetes associated monocytosis, atherosclerotic

lesions present with an increased number of macrophages

compared to lesions from non-diabetic individuals (71).

Thus, the enhanced myelopoiesis in DM patients causing

increased availability of key players of atherosclerosis onset and

progression such as circulating monocytes, promotes diabetic

CV complication development (66).

Modulation of T cell di�erentiation

The hallmark of T1D genesis is the immune cell infiltration

of pancreatic islets leading to beta-cell destruction by auto-

reactive T cells mainly, as well as macrophages and B

lymphocytes. It has been shown that this initial emergence

of auto-reactive T cells is in part due to a default in both

central and peripheral immune tolerance checkpoints (72).

Studies on NOD mice were the first to show that negative

selection, a thymic process during which auto-aggressive T cells

are eliminated to avoid auto-immunity, seems to be defective

in the context of T1D (72–74). As auto-reactive T cells are

maintained, which could be due to the lack of auto-antigens

presented by thymocytes including insulin itself, they migrate

to the lymph nodes where they encounter APCs like DCs

that prime them by presenting them with beta-cell epitopes

(Figure 1). The most frequent T lymphocytes found in the

pancreas of T1D individuals were cytotoxic CD8+ T cells

first and CD4+ second that react to several epitopes of islet-

expressed autoantigens (75). Both these types of cytotoxic T

lymphocytes (CTL) were found to have a pro-inflammatory

profile and were also found in the peripheral blood of T1D

patients and not just in pancreatic infiltrates. Interestingly both

CD8+ and CD4+ T cells can also be found in atherosclerotic

plaques where they maintain the chronic inflammation state

all along atherosclerosis progression, as described above. Thus,

a pathology that increases the blood levels of circulating pro-

inflammatory T cells may promote a faster atherosclerosis

development. Regulatory T cells are known to play a role

in preventing auto-immunity by resolving inflammation and

secreting anti-inflammatory IL-10. Coherently with this finding,

patients unable to produce Tregs develop auto-immune diseases

such as diabetes (76). It is important to note, that although T2D

is not an auto-immune disease like T1D, T cells also actively

participate in disease development, as indicated by the presence

of cytotoxic and effector T cells infiltrates in the adipose tissue

that contribute to insulin resistance and systemic inflammation

(39, 77).

Modulation of immune cell activity

Increased chemotaxis: Endothelial
dysfunction

It is now well-established that hyperglycemia leads to the

development of important DM characteristics such as blood

level increase of advanced glycation end products (AGEs)

and reactive oxygen species (ROS) cellular production, known

causes of endothelial cell dysfunction. This blood vessel

wall damage is mainly reflected by a higher expression of

both chemoattractants and binding proteins like vascular cell

adhesion molecule 1 VCAM1, MCP-1, and IL-8 that allow for

monocyte recruitment into the arterial wall, an important initial

step in atherosclerosis onset (78) (Figure 2). Endothelial cells

also express vascular adhesion protein-1 (VAP-1), an enzyme

implicated in leukocyte extravasation as well as aldehyde,

hydrogen peroxide and ammonium blood levels due to its

catalytic activity in its secreted form. Interestingly, VAP-

1 has been associated with inflammatory diseases including

atherosclerosis (79), and serum VAP-1 levels correlated with

CV risk factors (80). Furthermore, serum levels have been

linked to insulin resistance (81) and adipocytes have also

been shown to release VAP-1 (82). The serum level of this

protein was also found to be predictive of CV events among a

Taiwanese population with T2D (83). Surprisingly, however, no

CV risk scores out of the 22 tested by Dziopa et al. take into

account VAP-1 serum levels (7). Leukocytes such as T cells and

neutrophils are also recruited at the atheroma plaque mainly

through the expression of CXCR2/CCR2. Moreover, when the

immune cells recruited at the lesion site encounter AGEs

and ROS, they themselves start secreting pro-inflammatory

cytokines such as IL-1B and IL-18. Furthermore, the eroded

endothelial wall facilitates the passage of modified LDL into

the blood vessel intima, and subsequent accumulation, which
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FIGURE 2

Role of the diabetic environment in promoting faster and more severe atherosclerosis CV development. Hyperglycemia and dyslipidemia, two

key features of DM a�ect the activity of both endothelial and immune cells, by inducing pro-atherogenic phenotypes. Figure created with

BioRender.com online tool.

is the very first step of atherosclerosis genesis. Interestingly

diabetic patients present with dyslipidemia andmore specifically

apolipoprotein B and small density (sd)LDL, as well as LDL

with higher retention in atheromatous plaques, and higher

production of pro-atherogenic VLDL compared to controls

(84, 85) (Figure 2).

Immune cell aberrant and uncontrolled
activation

Monocyte pro-inflammatory phenotype
acquisition

Many studies have shown that in the context of DM,

monocytes present with a distinct pro-inflammatory phenotype.

Indeed in 2007, a team revealed that circulating monocytes

of T2D patients presented a pro-inflammatory phenotype as

reflected by the production of pro-inflammatory cytokines

such as TNF-a, IL-1, IL-6, and IL-8 compared to healthy

controls (86) (Figure 2). Later, in 2009, Bradshaw et al.

reported that blood monocytes of T1D patients spontaneously

secreted pro-inflammatory IL-1B and IL-6 cytokines that

promoted a pro-inflammatory Th17 cell induction, effectively

promoting inflammation (12) (Figure 2). Furthermore, these

pro-inflammatory monocytes in the context of DM are

suggested to have a stronger response to lipopolysaccharide

(LPS) or interferon (IFN)-gamma stimulation, due to an

increased expression of toll-like receptors at their surface in

individuals with T1D (87) and T2D (88) (Figure 2).

NLRP3 inflammasome overactivation which leads to an

increased production of pro-inflammatory IL-1B and IL-18

cytokines has been reported in monocytes and monocyte-

derived macrophages of diabetic individuals compared to

healthy individuals by multiple studies (89–92) (Figure 2).

Although the triggers have not yet been identified, it is

suggested that intracellular cholesterol accumulation could

be involved in this NLRP3 inflammasome overstimulation.

Interestingly, it has been shown that monocytes of diabetic

patients have a downregulated expression of cholesterol
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transporters such as ABCG1 and ABCA1, effectively inhibiting

cholesterol efflux (Figure 2). This inhibition of cholesterol

efflux is believed to be a consequence of the AGE blood

level increase observed in diabetic patients. As mentioned

above, hyperglycemia induces the production of AGEs, through

excessive protein glycation, that accumulate in the circulation

of diabetic patients due to their slow metabolism (93).

These AGEs, when bound to their receptor (RAGE) at

the surface of monocytes and macrophages, are believed to

modulate gene expression by favoring a pro-inflammatory

phenotype (78).

Macrophage activation: Pro-inflammatory
phenotype acquisition

Similarly to monocytes, macrophages of both T1D

and T2D individuals present a more pro-inflammatory

phenotype. Furthermore, lipid loading of macrophages in

the context of DM is increased (94), either due to increased

very low density lipoproteins (VLDL), that are easier to

uptake (95), or due to reduced cholesterol efflux (96),

or a combination of both (Figure 2). This accumulation

of lipid-laden macrophages as a consequence of ABCG1

downregulation in the context of T2D, was shown to promote

foam cell formation (97). Finally a 2012 study further

demonstrated the link between fatty acid metabolism in innate

immune cells, inflammation and diabetes CV complication

development. They prevented inflammatory macrophage

phenotype and diabetes-accelerated atherosclerosis after

deleting a fatty acid metabolism enzyme in myeloid cells

(98). However, it should be noted that most studies do not

demonstrate a direct link between diabetes-mediated immune

cell phenotypes and atherosclerosis development, thus further

studies are needed.

Ine�cient e�erocytosis

One of the reasons for the accelerated atherosclerosis

development in individuals with diabetes is a faster necrotic

core expansion, as revealed by the 2018 study, that used

serial coronary computed tomographic angiography to measure

plaque progression in T2D patients (89). This accelerated

necrotic core expansion is believed to be partly due to the

reduced clearance of cellular debris and apoptotic debris

(Figure 2). Efferocytosis, which is the phagocytosis of dead

cells, is an important function of macrophages and was shown

to be impaired in T2D (Figure 2). The hindered macrophage

efferocytosis is hypothesized to be the consequence of important

fatty acid membrane content and dysregulated intracellular

glucose uptake in a hyperglycemic environment (99, 100). Here

again we have an example of how the diabetic environment

affects immune cell function in a pro-atherogenic manner

(Figure 2).

Neutrophil trap NETosis

As mentioned above NETosis markers were found to

be elevated in T2D patients, and two independent studies

demonstrated that hyperglycemia promotes NETs production

(101, 102). Moreover, pro-inflammatory cytokine IL-6, a proven

predictor of insulin resistance and T2D development, could

induce NET production (101). Although the initial aim of

NETs is to trap bacteria, they can be found in sterile infections

including at the atherosclerotic lesion site, where they erode the

endothelial wall due to the pH of the DNA, and thus destabilize

the plaque (Figure 2). Thus, the increase in NETs in the diabetic

population is another mechanism behind the higher risk for CV

events in the diabetic population.

Genetic and systemic approaches
toward identification of individual
risk

Genetic factors contributing to T1D, T2D
and atherosclerosis

Among etiological factors underlying these pathogenic

conditions or modulating them, genetic factors play a major

role. The first evidence of a genetic component in DM has been

established with the Major Histocompatibility Complex (MHC)

in T1D (103), as in several other autoimmune and inflammatory

diseases. Since then, linkage and genome-wide association

studies (GWASs), mainly led by the Type 1 Diabetes Genetics

Consortium (T1DGC), have implicated tens of non-MHC

genomic regions in T1D. After its last GWAS including more

than 6,000 T1D patients, a total of 52 independent significant

associations at genome-wide significance (i.e., 5e-8) had been

reported (104). To reach more power to identify further genetic

variants predisposing to pathologies, giant consortiums were

constituted to conduct meta-analyses combining several GWAS

datasets with massive sample sizes. Two recently published

large meta-analyses more than doubled the cohort size with

over 16,000 and 18,000 patients, respectively (105, 106). The

former was carried out with patients from European-descent

only and identified 81 significant signals including 33 new

ones. The latter followed a trans-ancestry design and significant

associations were found for 78 regions, 36 being new such

as the IL6R (Interleukin 6 Receptor) locus. Altogether, with

both these meta-analyses, we counted that there are currently

107 different genomic regions associated with T1D, with

almost one third containing more than one independent signal.

Overall, functional annotations of candidate genes in the

associated regions reveal an enrichment in immune response

terms (Figure 3), particularly in T cell activation signaling

(e.g., BACH2, CTLA4, PTPN2, PTPN22) and pro-inflammatory

cytokines or their receptors (e.g., IL2, IL2RA, IL6R, IL10,

or IL27).
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FIGURE 3

Over-representation analysis (ORA) of GWAS gene annotations for T1D, T2D, and CAD. GWAS association signals most often fall in non-coding

regions. Thus, candidate genes are selected on the basis of their proximity to the GWAS lead SNPs or using integrative approaches. For some

hits, several genes are considered as candidates. A total of 131 T1D candidate genes outside the MHC were collected from Onengut et al. (104),

Chiou et al. (105), and Robertson et al. (106) at GWAS significant hits at a genome-wide significance. For T2D, 288 genes were considered as the

most credible ones from Mahajan et al. (107) using the trans-ethnic significance threshold. The list of 347 CAD genes was collected from

Erdman et al. (108) and Koyama et al. (109) at genome-wide significance threshold. HGNC o�cial gene names were used. An ORA on these 3

datasets was conducted independently against the di�erent GO terms and KEGG pathways with clusterProfiler R package. Only the top 20

significant enrichments at a FDR of 10% biological processes of GO are displayed here. Left panels are dotplots showing each top 20 GO term

with the enrichment gene ratio (X-axis). A color code indicates the level of significance, while the circle size represents the number of genes

found in the query dataset for each given GO term. Right panels are cnetplot (Gene Concept Networks) depicting the relationships between

genes and GO terms.

Similarly, T2D GWASs were until recently conducted in

European-descent samples (110) but progressively accounted for

more genetic diversity, in East-Asian samples (111). Ultimately,

a huge trans-ancestral meta-analysis led by the DIAMANTE

consortium, compiled 122 GWAS datasets across five ancestry

groups, also including African, Hispanic and South Asian-

descent samples, and recorded as much as 180,834 T2D patients

and almost 1.16 million controls (107). Given the different

linkage disequilibrium patterns across populations, a more

stringent significance threshold was set at 5e-9. A total of

237 genomic regions with 338 distinct signals were identified.

Thus, and this is a common pattern observed in most large

GWAS meta-analyses for complex traits, several independent

hits could be observed in 52 different regions with up to
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16 for TCF7L2 (Transcription Factor 7 Like 2), the major

risk factor for T2D. As many other T2D-associated genes,

TCF7L2 is involved in blood glucose homeostasis (Figure 3).

Over-representation analyses also highlight genes at play in

hormone secretion. In addition, a few candidate genes are

reported to be involved in inflammatory signaling pathways,

either in cytokine-induced pathways (e.g., IFNGR1, JAZF1,

or NFE2L3), or Tregs regulation (e.g., MAP3K1, NLRC3, or

PTPRJ), or macrophage polarization (e.g., IFNGR1, MAEA,

or PPARG).

Independently, variants associated with atherosclerosis have

been intensively searched for using GWASs, as early as

2007 and for the past 15 years, as reviewed in Erdmann

et al. (108). As of 2018, there were 163 associated regions

described, among which 130 are related to 9 cellular processes

linked to CAD pathophysiology, including blood pressure,

lipid metabolism, diabetes or insulin resistance, transcription,

mitosis or proliferation, vascular remodeling, NO signaling and

relevantly inflammation with genes of the cytokine pathways

(e.g., IL5, IL6R, or CXCL12) and complement components

(e.g., C1S, C2). A recent trans-ancestry meta-analysis, on

some 170,000 subjects including 26,000 cases, identified 35

additional hits (109). Taken together, there are currently

347 candidate genes for CAD, with a significant enrichment

for genes involved in blood vessel or muscle development,

regulation of epithelial migration or plasma lipoproteins

(Figure 3).

It is worth noting that biomarkers had been associated

with CAD as early as the 1960s with the correlation of blood

cholesterol levels with CAD risk (Framingham Heart Study)

(5). Therefore, endophenotypes contributing to atherosclerosis

or to each form of DM were also considered for genetic

investigation. Remarkably, most of them are quantitative traits

(QTs), like BMI, lipid levels or blood phenotypes (% of cell

subsets for example), amenable to genetic studies. The variants

regulating them are called quantitative trait loci (QTLs). A

steady effort has been made to directly map these QTLs through

GWASs as they could be key players to the pathophysiology and

treatments. In the case of T2D, BMI was deeply investigated

with the identification of hundreds of associated variants (112).

As a consequence, some T2D GWASs were BMI-adjusted

(110). More than 700 regions with 1,765 variants are currently

associated with blood lipid levels including LDL-C, HDL-C, TG,

or total cholesterol in 7 ancestry groups (113).

Another method to investigate related traits is to perform

a phenome-wide association study (PheWAS). Making use of

large phenome databases such as the UKBiobank, a PheWAS

tests a variant previously associated with a specific trait

against all other collected traits. Thus, PheWASs have the

power to connect diseases in networks based on shared

genetic variants (114). A PheWAS was conducted for T2D

loss-of-function variants in the Million Veteran Program

cohort and revealed 3 significant associations with metabolic

and inflammatory conditions (115): ANKDD1B (Ankyrin

Repeat And Death Domain Containing 1B) was notably

associated with dyslipidemia, hypercholesterolemia, blood and

immune cell traits, CCHCR1 (Coiled-Coil Alpha-Helical Rod

Protein 1) with autoimmune traits, total cholesterol or NK

cells, and LPL (Lipoprotein Lipase) with dyslipidemia or

coronary atherosclerosis.

However, a key question with these multiple associations

with different traits, is to determine whether the effects are

independent, indicating pleiotropy, or are they related or even

causative. To distinguish between these possibilities, a first

method is to test for disease independence of the variant

influencing the QT using a linear regression model with the

disease status as covariate and an interaction term. For example,

T2D variants were tested for explaining vascular traits as

outcomes (115) and this analysis identified several significant

interactions where the vascular outcome was modified by T2D

status. To assess the potential causality of an exposure on

an outcome, Mendelian randomization (MR) has become the

methodology of choice (116). MR relies on the random allele

distributions of genetic variants and thus uses variants associated

with endophenotypes considered as exposures. Hence, it is

well-established that CAD risk is positively correlated with

LDL-C, and negatively correlated with HDL-C. Randomized

control trials have demonstrated the beneficial effect of LDL-

C lowering therapies, but none found improved outcomes with

HDL-C raising drugs. Initially, MR also failed to find causation

with HDL but two more recent studies were conclusive and

showed that HDLs are associated with CAD independently of

confounding associated phenotypes such as diabetes (117, 118).

Overall, genetic studies have uncovered myriads of variants

that may impact one or several related traits. To help connecting

genetic findings to pathophysiological and treatment research,

an international endeavor has been undertaken to collect

information, link the different studies and rank variants, notably

through the GWAS catalog (https://www.ebi.ac.uk/gwas), the

PheWeb tool (https://pheweb.org), or the Common Metabolic

Diseases Knowledge Portal (CMDKP, https://cmdkp.org) that

aggregates genetic and genomic data from several complex

diseases, notably T2D, T1D, metabolic and cardiovascular

diseases (119).

Moving back to both forms of diabetes mellitus and to

atherosclerosis, there is little overlap of associated regions

and variants (Figure 4). Due to their different pathogenesis, it

is not surprising to find poor correlation between T1D and

T2D associated regions (120). If both diseases have variants

affecting beta-cells, T2D variants act on beta-cell development

and function, whereas T1D variants affect beta-cell function only

upon immune-mediated cell perturbations (121). Remarkably,

of the 5 variants that co-localized for T1D and T2D before

the meta-analyses of the year 2021, only one at the GLIS3

(GLIS family zinc finger 3) locus presented the same risk allele

in both diseases while the other 4 variants displayed opposite
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effects (122). If we consider candidate genes neighboring

GWAS-associated lead variants, 14 are in common with the

two DM pathologies (Figure 4), among which only 3 are

also associated with CAD: BCAR1 (BCAR1 scaffold protein,

Cas family member) whose protein product contains multiple

protein-protein interaction domains and several serine and

tyrosine phosphorylation sites, thus acting in different cellular

pathways;CENPW (centromere proteinW) acting inmitotic cell

cycle; and SH2B3 (SH2B adaptor protein 3) involved in growth

factor and cytokine signaling.

Altogether, the variants associated with DM and CAD

are frequent and have modest effects (Odds Ratios <2

except for HLA alleles in T1D), as is the case for the vast

majority of variants involved in complex diseases. The impact

of rare variants has been rather difficult to determine as

highlighted by a well-powered study that failed to find evidence

for low-frequency variants of moderate effect size in CAD

(123) and likewise in T2D (124). Nonetheless, thanks to

the advent of Whole-Genome-Sequencing and Whole-Exome-

Sequencing approaches applied directly to patients, or indirectly

to a reference panel subsequently enabling imputation of

rare variants in patients, studies identified new rare variants

associated with complex diseases. These had modest effects

on the phenotypes but some large effects were also observed

(110, 125).

Taken together, associated variants are mostly non-coding,

suggesting that they rather regulate levels of gene expression.

However, due to the extent of linkage disequilibrium, it is

most challenging to identify the true causative variants in each

associated region and also to identify which genes these variants

target (126). Integrative approaches discussed below are useful

to pinpoint the most likely effectors in the appropriate context.

The utility of polygenic risk scores

Beyond population risk factors identified by GWASs, we

can now compute individual risk with a polygenic risk score

(PRS), a quantitative variable corresponding to the sum of

allele risks at associated variants weighted by the effect size

of individual risk alleles. If each of the GWAS associated

variants brings little information to estimate disease risk in

an individual, PRSs overcome this severe limitation and are

currently of clinical value for diagnosis and treatment (127).

If we focus on diseases reviewed here, the most striking PRS

outcome was obtained for CAD. Indeed, PRS can predict future

risk for CAD, even without family history as tested in the

UKBiobank cohort where PRS provided a clear improvement to

CAD prediction, with individual risks reaching 3.34 for patients

in the top 5th percentile, thus equivalent to the risk conferred

by monogenic forms with familial hypercholesterolemia (128).

Modification of life-style and statin treatment for individuals

within the PRS top 20% has proven to be beneficial with a 40–

50% reduction of CV events. Thus, PRS presents a particular

interest for clinical primary prevention (129). Hence PRS

utility in CAD is multiple: it adds accuracy to clinical risk

predictors, can help to decide who should benefit from statin

prescription and facilitates estimating lifetime risk trajectories.

In diabetes mellitus, T1D PRS has been beneficial for differential

diagnosis between T1D and either T2D in adults (130) or

monogenic forms of diabetes (131). In T1D, it has been

applied to the prospective TEDDY cohort in which it could

predict children at risk to have antibodies (132) and to

develop the clinical disease (133). Such results give hope

for primary prevention in preclinical children, knowing that

secondary prevention using immunotherapy managed to delay

the clinical onset (54). In T2D, PRS provides with useful

information for stratification in modeling the disease risk and

helps estimating lifetime risk trajectories. For example in the

Million Veteran Program cohort, T2D PRS was associated

with microvascular and, to a lesser extent, macrovascular T2D

complications (115).

A specific portal compiling the PRS catalog across

diseases has been generated (https://www.pgscatalog.org/)

(134). However, caution has to be taken when using

PRSs, as these scores were usually computed using GWAS

summary statistics obtained in a given population. It has

been demonstrated that it is crucial to match PRS with

the ascendant population to determine individual risk

(135). Nonetheless, the most recent trans-ethnic GWAS

meta-analyses in CAD and T2D were able to generate

multi-ancestry PRS more robust to population specificities

(107, 109).

Altogether, PRSs have the potential to better predict

disease risk and its complications, to facilitate prevention

and to provide guidance in treatment decisions for

precision medicine. In an effort to better define genotype-

phenotype relationships, PRS can also help stratify patients.

“Partitioned” or “process-specific” PRSs (pPRSs) were recently

introduced to stratify risk for specific endophenotypes

contributing to T1D or T2D pathogenesis, including

endocrine beta-cell function or lipodystrophy (136).

Such pPRSs will enhance the capacity to understand

the etiological and clinical heterogeneity of the diseases

as in T2D (137). A pPRS on shared variants involved

in inflammation of T1D, T2D and atherosclerosis could

be generated.

Post-GWAS integrative approaches

As mentioned above, the vast majority of GWAS hits fall

in the non-coding part of the genome, either in intergenic

regions or in the non-coding regions of genes. This leads to
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FIGURE 4

Cross-representation of candidate genes between T1D, T2D, and CAD. Venn-diagram showing number of genes specific to each disease or

shared between 2 and 3 pathologies. Gene symbols for each category are listed. Genes used for this analysis are the same as the ones used in

Figure 3.

the hypothesis that these variants play a regulatory role and

modulate the expression levels of the genes. This modulation

is known to occur through epigenomic mechanisms, including

CpG methylation, chromatin remodeling and non-coding

RNAs. Thus, differential methylation at 52 CpG islands in blood

leukocytes was associated with higher CAD risk, two of which

were causative as shown by MR (138). Similarly, a study of

blood monocytes transcriptome and epigenome revealed loci

associated with atherosclerosis and identified a methylation

mark in the ARID5B (AT-Rich Interaction Domain 5B) gene.

The corresponding protein is a derepressor of H3K9Me2

demethylase. Its knockdown results in a reduced expression

of genes involved in atherosclerosis-related inflammation and

lipid metabolism and it also inhibits phagocytosis and cell

migration (139). Likewise, higher expression ofHDAC9 (histone

deacetylase 9) was associated with higher concentrations of

pro-inflammatory macrophages within atherosclerotic plaques,

a common variant at this locus being associated with vascular

calcifications and myocardial infarction risk (140). Generally,

prioritization of regulatory variants in a GWAS-associated

region has benefited from intersecting with epigenomic marks.

In this line, T1D variants were found to be enriched in

chromatin regions involved in T cell early activation (141). As

for non-coding RNAs, a striking example is the highest risk

variant of atherosclerosis mapping at 9p21 in a coding-gene

desert region. This risk allele was shown to be associated to the

linear form of the non-coding RNA CDKN2B-AS1 (CDKN2B

Antisense RNA 1, alias ANRIL) gene while a circular form may

control rRNA maturation in vascular smooth muscle cells and

macrophages and protect from atherosclerosis (142). At another

level, three-dimensional chromatin architecture assayed by

chromosomal capture conformation on human pancreatic islets

could identify hubs of active promoters and super enhancers.

Variants in these hubs were used to generate a PRS (143).

A more powerful approach is to directly test whether

GWAS signals can modulate epigenomic marks considered
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as QTs. Variants associated to such molecular traits are

known as molecular QTLs (molQTLs) (126). They usually

present larger effect sizes than variants associated with

the disease phenotype and therefore increase the statistical

power of association studies and also facilitate the fine-

mapping of the causative variant. This has been illustrated

in several complex diseases, including T1D (106, 144–146),

T2D (107, 110, 147), and CAD (148–150). Among molQTLs,

pQTLs regulating protein expression levels raise a growing

interest. If the first studies relying on quantification of

protein expression by mass-spectrometry appeared somewhat

disappointing, more reliable quantitative measurements are now

achievable with affinity-based methods and brought positive

results such as protein expression of IL-7R in T1D (151),

ADIPOQ in T2D (152), or IL-1B in CAD (150). pQTLs

are thus of much promising value for targeting drugs and

can also be used as instruments in MR to identify causative

proteins. This concept of molQTLs can be extended to cell

traits, particularly in the blood. A huge study involving

563,085 European ancestry participants thus discovered 5,106

variants controlling 29 blood cell features and impacting

hypercholesterolemia and hyperlipidemia by means of a

PheWAS (153).

To improve our understanding of the role of molQTLs, it

is critical to consider them in the right context, that is the

relevant cells or tissues and the proper conditions such as the

disease itself or at least disease drivers such as inflammation. The

STARNET (Stockholm-Tartu Atherosclerosis Reverse Networks

Engineering Task) study illustrated the importance of using the

appropriate tissues in the disease context. By studying seven

tissues in CAD patients, they could characterize 10 times more

eQTLs than what was previously reported in healthy donors

(154). Single-cell RNASeq and single-nuclei ATACSeq studies

allow cell-specific resolution within tissues. Thus, an atlas of

chromatin accessibility (ca) regions in coronary arteries of

healthy and atherosclerotic patients was built (155). It identified

14 cellular clusters and half of the caQTLs were cell-specific.

Among the top association signals for CAD, the study notably

pointed to an intronic variant in the LIPA (lipase A) gene in a

macrophage-specific chromatin accessibility element. Another

study focused on single-cell transcriptome of peripheral blood

mononuclear cells from 982 healthy donors. Half of the genes

displayed a cell-specific eQTL. Remarkably, 19% of cis eQTL

were identical to the GWAS lead SNPs in seven autoimmune

diseases and MR disclosed 305 causative variants, although 60%

mapped to the MHC and it is unclear how strong linkage

disequilibrium in this region was accounted for (156). In a study

already mentioned above, the authors complemented the meta-

analysis by single nuclei ATACSeq (105). They found that the

risk variants for T1D were enriched in cis-regulatory elements

specific to T cells, adaptive NK cells, plasmacytoid dendritic

cells, classical monocytes, and unexpectedly acinar and ductal

cells of the exocrine pancreas. A novel strategy consists of

integrating molQTLs into networks of co-regulation, either in a

specific tissue or across multiple tissues. This has been applied

in the STARNET study with the identification of 224 gene-

regulatory co-expression networks that better explain the CAD

heritability than the whole set of GWAS associated variants (60

vs. 22%) (157). Interestingly, cross-tissue coexpression networks

were related to endocrine signaling. By MR, 218 key disease

driver genes were identified at the top of these networks. They

could correspond to the core genes of the omnigenic model for

complex diseases (158).

Altogether, integrating genetic variants with clinical

phenotypes and molecular traits from different omic layers

provides with an expanded view of the mechanisms involved

in pathologies and their complications and offers promising

avenues toward personalized treatments.

Conclusion

It is now well-established that inflammation plays a major

role in both forms of diabetes mellitus and in atherosclerosis and

that it contributes to their CV complications. So far, predictive

scores of CV risk are still imperfect, particularly in the context

of diabetes in which individual CV risk factors are intrinsically

linked to the pathology. To help manage the patient’s care and

adapt the treatment targeting inflammation, it is necessary to

finely characterize the inflammatory phenotypes.

Current approaches tend to classify patients according

to several clinical and biological parameters with clustering

approaches redefining diabetes subgroups (159). Alternative

approaches envision a palette model with multidimensional

continuum of multiple quantitative parameters (137, 160) in

which the inflammatory component should be accounted for.

Presently, genetic variants are ill-correlated to clinical

subgroups. However, focusing on specific molecular and cellular

processes using integrative approaches can help dissecting the

different components leading to inflammation. It could also

be valuable to identify drug targets to control inflammation

in a tissue specific manner. Finally, integrative approaches

offer the opportunity to improve existing CV risk scores for a

personalized medicine in diabetic patients.
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