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Abstract

Mind wandering is often characterized by attention oriented away from an external task

towards our internal, self-generated thoughts. This universal phenomenon has been linked

to numerous disruptive functional outcomes, including performance errors and negative

affect. Despite its prevalence and impact, studies to date have yet to identify robust behav-

ioral signatures, making unobtrusive, yet reliable detection of mind wandering a difficult but

important task for future applications. Here we examined whether electrophysiological mea-

sures can be used in machine learning models to accurately predict mind wandering states.

We recorded scalp EEG from participants as they performed an auditory target detection

task and self-reported whether they were on task or mind wandering. We successfully clas-

sified attention states both within (person-dependent) and across (person-independent)

individuals using event-related potential (ERP) measures. Non-linear and linear machine

learning models detected mind wandering above-chance within subjects: support vector

machine (AUC = 0.715) and logistic regression (AUC = 0.635). Importantly, these models

also generalized across subjects: support vector machine (AUC = 0.613) and logistic regres-

sion (AUC = 0.609), suggesting we can reliably predict a given individual’s attention state

based on ERP patterns observed in the group. This study is the first to demonstrate that

machine learning models can generalize to “never-seen-before” individuals using

electrophysiological measures, highlighting their potential for real-time prediction of covert

attention states.

Introduction

We frequently find ourselves drifting away from a conversation, our work, or the movie in

front of us, towards our inner world. Often referred to as mind wandering, this phenomenon

has been traditionally characterized as an attentional shift from externally oriented task-related

thoughts to internally oriented task-unrelated thoughts [1–3]. More recently, the specific defi-

nition of mind wandering is under debate [4, 5]. Mind wandering has been associated with

numerous benefits, including future planning, creativity, and problem solving [6–8]. However,

previous studies have also established robust negative associations with mind wandering:
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including higher levels of negative affect [9, 10] and impaired performance in a variety of

externally oriented tasks, such as target detection [11], performance monitoring [12], and

reading comprehension [13–15]. Given the potential negative impact of mind wandering on

performance, reliable detection of this phenomenon provides a step towards optimizing task

performance in daily life.

Mind wandering is an inherently internal process that often occurs in the absence of overt

behavioral markers, making it difficult to detect and combat in real-time. A unique barrier for

mind wandering research is its current overreliance on self-reported experience. In particular,

the most commonly used and well-validated approach to study mind wandering is the online

thought sampling method [2, 16], in which subjects are occasionally interrupted throughout

an externally oriented task and asked to indicate whether they were having a task-related

thought (i.e. on task) or task-unrelated thought (i.e. mind wandering). One of the main advan-

tages of thought sampling is that it provides a direct, in-the-moment measure of one’s atten-

tional state. However, this approach may be impacted by demand characteristics or lack of

awareness of attention state [16, 17]. Thought sampling may also change the nature of the task

itself since it requires constant interruptions. Unobtrusive detection of mind wandering using

machine learning methods thus offers a potential solution that overcomes these challenges and

provides avenues for applications that can address the negative impacts of mind wandering in

real-time [18]. Establishing the validation and effectiveness of machine learning in detecting

mind wandering across contexts has the potential to eventually replace the need for thought

sampling to determine the occurrence of mind wandering.

Previous successful attempts of mind wandering detection primarily used behavioral mea-

sures such as eye tracking and pupillometry [19–22] or task-related measures, such as driving

performance [23, 24] and reading time [25]. Studies have also used physiological measures

such as heart rate and skin conductance [26] as well as synchronization between respiration

and sensory pressure [27]. These findings serve to highlight the value of using behavioral and

physiological measures to detect mind wandering at above chance levels. Compared to these

indirect markers, neural measures may be more effective at directly capturing this inherently

covert attention state. Here, we assessed the utility of a neural measure for mind wandering

detection by examining electrical activity originating from the brain using scalp EEG during

this internally oriented state.

Electrophysiological markers of mind wandering

Ample evidence from scalp EEG studies has established a distinct set of electrophysiological

signatures of mind wandering, which is promising for real-time detection [28–34]. Given that

scalp EEG is comparably low cost, and can be implemented outside of the laboratory, these

EEG measures could be ideal for real-time detection of this phenomenon in the real world. In

particular, the P1 and N1 ERP components in response to visual and auditory probes in a tar-

get detection task are reduced during mind wandering [33, 35, 36]. This indicates that sen-

sory-evoked responses to both visual and auditory inputs were significantly attenuated,

suggesting that mind wandering disrupts external perception regardless of sensory modality.

Similarly, several studies have documented a reduction of the P3 ERP component during peri-

ods of mind wandering relative to on task [12, 34, 37, 38], demonstrating an overall attenua-

tion of higher-level cognitive processes. Together, these findings suggest that mind wandering

periods are associated with reduced external processing as observed in changes in ERP ampli-

tude. These studies are consistent with the executive function model of mind wandering,

which posits that in order to facilitate mind wandering, our executive resources are disengaged

from the external task and instead directed internally to our thoughts [2, 7].
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Prior EEG studies have also reported changes in low frequency power during mind wander-

ing. Specifically, Braboszcz and Delorme reported increases in theta activity and decreases in

alpha activity during mind wandering [28]. Using a similar experimental design, van Son and

colleagues [39] found a higher ratio of theta and beta activity in the frontal cortex during mind

wandering. In contrast to these findings, others have reported increased frontocentral theta

power during external cognition [40–42], whereas increased posterior alpha power has been

implicated in mind wandering [23, 38]. These variable patterns in low frequency power as a

marker of mind wandering may be driven by differences in stimulus modality, experimental

manipulation of top-down processes, or the electrode sites at which power was measured.

Importantly, given the overlapping information between low frequency power and ERP com-

ponents (typically measured between 1-30Hz), and that ERP patterns are relatively more con-

sistent across studies, the current study used ERP measures as features in the machine learning

models.

Using EEG for mind wandering detection

Converging evidence points towards several reliable EEG correlates of mind wandering, and

several studies to date have attempted to build detectors of mind wandering based solely on

EEG measures. Kawashima and Kumano [43] used EEG signals (power and coherence in

delta, theta, alpha, beta, and gamma frequency bands) to predict mind wandering intensity

during a sustained attention to response task. They found that non-linear models using multi-

ple electrodes resulted in higher prediction accuracy of mind wandering intensity than linear

models using a single electrode. Jin and colleagues [44] extended this work by predicting mind

wandering with a nonlinear model that generalized across tasks within individual subjects.

Specifically, they used a support vector machine to predict mind wandering with EEG markers

(including the P1, N1, and P3 ERP components, as well as theta and alpha power and coher-

ence), reporting an average on task/off task classification accuracy of 60% that generalized

across two visual tasks. This task generalization is noteworthy as it suggests that models trained

on EEG markers may detect mind-wandering without needing to first train on new tasks. This

group [45] also demonstrated that mind wandering is not dependent on and is quantitatively

different from subject vigilance and current task demands, by reporting that a classifier trained

through thought sampling outperformed classifiers trained through either vigilance or task

demands. Dhindsa and colleagues [46] extended these findings by detecting mind wandering

in real world settings. They recorded EEG activity during live lectures and used frequency

band power measurements (theta, alpha, and beta) to achieve an average detection accuracy of

80–83%. Finally, Tasika and colleagues [47] employed a multi-step framework that leverages a

J48 decision tree classifier and a support vector machine with a radial basis function kernel to

detect mind wandering using EEG, and reported an average accuracy as high as 84.49% based

on two individuals.

An important property that is not clearly addressed in previous work, however, is the gener-

alizability of models across participants: a model that identifies an optimal set of features at the

group level that can accurately predict attention states of another individual not in that group

(i.e. person-independent). Although this approach typically results in overall lower classifica-

tion performance, it allows for more flexible generalizability for real-time prediction. Previous

attempts using machine learning and EEG measures exclusively to detect mind wandering

used data from the same individuals to train and test the models. In other words, there was

dependence within individuals, which means the models likely do not generalize well to new

subjects. We aim to improve on mind wandering detection using only EEG by building models

that generalize across individuals in a person-independent manner.
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This proof-of-concept study examined whether machine learning models using EEG mea-

sures can detect mind wandering 1) within individuals and 2) across individuals. Using

thought sampling during a target detection task, we asked subjects to report their attention

state throughout the task as we recorded their EEG. Our study included EEG markers, specifi-

cally ERP components that have previously demonstrated reliable attentional differences, as

features in two machine learning models. To our knowledge, this is the first study to establish

that machine learning using EEG features is capable of detecting mind wandering both within

individuals (i.e. person-dependent) and across individuals (i.e. person-independent).

To address this issue, we asked participants to perform an auditory target detection task

while their EEG is being recorded. In order to obtain a measure of participants’ attention state

in the moment, participants were asked to report their attentional state as on task or mind

wandering at pseudorandom intervals throughout the task. We extracted EEG measures of

interest (namely N1 and P3 ERP) as a function of the reported attention states. Using these

EEG measures, we built linear and non-linear machine learning models to determine whether

these measures can be used to classify attention states both within and across individuals, and

if so, which models led to superior performance. For classification within subjects, we used

each subject’s own EEG markers of attention state for prediction, which allowed us to maxi-

mize prediction accuracy for that individual. For classification across subjects, our models

trained on one set of data and attempted to identify an optimal algorithm that can predict

attentional state of individuals not part of the training group data. Together, these two

approaches help determine whether machine learning with EEG measures can accurately pre-

dict mind wandering within and across individuals.

Methods

Subjects

Fourteen subjects participated in the experiment (9 females, 5 males; age range: 24–75, M ±
SD = 51.9± 14.7). Although the sample size appears small, it is sufficient for addressing our pri-

mary aim of mind wandering detection. Specifically, it is comparable with previous studies

using within-subject training and testing sets that included fewer than 20 subjects to detect

mind wandering using EEG features (i.e. features that were derived from EEG data) [44, 46].

Further, if we can predict mind wandering with this sample size for the across-subject analyses,

this finding provides a lower threshold necessary for accurately detecting mind wandering

using EEG features. All subjects provided informed written consent and were reimbursed for

their participation. This study was approved by the Institutional Review Board at the Univer-

sity of California, Berkeley.

Task stimuli and paradigm

Subjects sat in a dark room and performed an auditory target detection task [36]. They were

presented with a series of standard tones (800Hz) and target tones (1000Hz) in a random

order with probabilities of 0.8 and 0.2, respectively. There was a total of 1500 tones, 1200 of

which were standard tones and 300 of which were target tones. Each sound was a pure tone

presented at 75 dB SL that lasted 200ms, and the inter-trial interval was randomly jittered

between 800-1200ms. Subjects were instructed to press a button to target tones as quickly and

accurately as possible. They were asked to keep their eyes fixated on the cross in the center of

the screen at all times. Reaction time to the target tones was recorded, and accuracy was con-

sidered across both tones (i.e. detection of target tones and correct rejection of standard

tones). Attentional differences in behavioral measures were assessed using dependent samples

t-tests.
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During the task, we occasionally presented thought probes that asked subjects to report

their attention state as either “on task” or “mind wandering.” To ensure subjects understood

the meaning of these attention states, we provided them with clear and detailed definitions

and examples. “On task” was defined as one’s attention being firmly directed towards the tar-

get detection task, and “mind wandering” was defined as one’s attention being oriented away

from the task. For each thought probe, we extracted the 10 trials (approximately 15 seconds)

prior to the probe, and labeled these 10 trials according to the subject’s response to the thought

probe. For instance, if the response to one thought probe was “mind wandering”, then the 10

trials preceding that thought probe received a label of mind wandering, and are referred to as

mind wandering trials thereafter. This time window has been previously used in ERP studies

[12, 33, 37, 48] in order to maximize the number of trials that can be included to create a reli-

able ERP average while still maintaining a reasonable validity of the attentional report. Earlier

studies have also provided detailed justification for using this time window [33, 34]. Each

block ended with a thought probe. There was a total of 25 blocks, with varying block duration

(i.e. 45 to 75 seconds) to prevent subjects from anticipating thought probe occurrence. There-

fore, a maximum number of 250 trials (10 trials x 25 blocks) were included in subsequent anal-

yses for each subject.

Despite the shortcomings of the thought sampling approach, it serves to provide the

labelled attention reports for our supervised machine learning models (as described below).

Therefore, thought sampling remains a valuable tool for validating machine learning models

in mind wandering. Once sufficient evidence accumulates that validate machine learning

models across different experimental paradigms, we can strive to reduce reliance on this mea-

sure in future studies.

EEG acquisition and preprocessing

EEG was recorded reference-free continuously from 64 active electrodes mounted on a cap

using the Biosemi ActiveTwo system (www.Biosemi.com). Electrodes were placed according

to the International 10–20 system. Continuous EEG data were amplified and digitized at 1024

Hz, and bandpass filtered between 1Hz and 50Hz. Vertical and horizontal eye movements

were recorded from electrodes above and below the right eye and two electrodes placed at the

right and left outer canthus. EEG data were down-sampled to 512 Hz, then high-pass filtered

at 1 Hz (as this is ideal for independent component analysis [49]), and notch filtered at 60 Hz.

Electrodes with excessively noisy signals were removed and replaced with an interpolation

from neighboring electrodes using spherical spline interpolation [50]. Independent compo-

nent analysis was used to detect and remove eye movement and muscle artifacts. Continuous

EEG data were then segmented into 3000ms epochs, beginning at 1000ms prior to stimulus

onset. Each trial was visually inspected for any remaining artifacts, which were further manu-

ally removed. Common average reference was then applied to each subject’s data prior to ERP

analysis. EEG data pre-processing and analysis were adapted from Kam and colleagues [51]

and performed using EEGLAB [52, 53] and custom Matlab scripts.

ERP analysis

EEG signals were bandpass filtered at 1-15Hz for ERP analysis [54–56]. All ERPs were quanti-

fied by the peak amplitude measure relative to a -200 to 0 pre-stimulus baseline. For N1, we

extracted the minimum amplitude in the 80–120 ms post-stimulus time window over fronto-

central midline sites (FC1, FCz, FC2), where N1 is typically maximal and also maximal in our

data. For P3, we extracted the maximum amplitude in the 400–600 ms post-stimulus time win-

dow over parietal sites (P1, Pz, P2), where P3 is typically maximal and also maximal in our data.
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For each ERP measure, we averaged across the channels and time points of interest as

described above. We considered up to the 10 trials (excluding artifactual trials) preceding the

thought probe at the end of each block, and categorized them according to the reported atten-

tion state. In order to ensure our data are consistent with previous findings, we first imple-

mented univariate analyses to examine attentional effects in the N1 and P3 ERP components.

In particular, we statistically compared the peak ERP amplitudes between on task and mind

wandering states by implementing repeated measures ANOVAs for each ERP component (i.e.

N1 and P3) to examine attentional effects (i.e. on task and mind wandering) while taking into

account tone differences (i.e. standard and target tones). Paired samples t-tests were conducted

post hoc to examine attentional effects separately for each tone. These analyses serve the pur-

pose of ensuring that ERP patterns across on task and mind wandering states are consistent

with previous studies.

For machine learning analyses, we extracted information at the block level. Specifically, we

computed the mean and standard deviation across up to 10 trials for each block in order to

obtain a stable ERP measure (via averaging across trials per block) and have sufficient data

points per subject to input into the machine learning model (via deriving one input per block).

The alternative options are suboptimal, including measuring ERPs at the single trial level

which results in unreliable estimates of ERP, or averaging across all blocks to yield one grand

average value per subject which results in insufficient inputs for machine learning models

to classify attention states. Given the temporal fluctuations of our attention state, our

approach allows us to account for the ebb and flow of attention throughout the task and its

corresponding changes in the electrophysiological measures across time within individuals.

Accordingly, for each block, we extracted the following features: 1) the mean across the 10 pre-

ceding trials for each ERP measure (the N1 minimum amplitude and the P3 maximum ampli-

tude), as an index of the magnitude of electrophysiological response, and 2) the standard

deviation across the 10 trials for each ERP measure, as an index of the variability in our

response to external events. In essence, each subject will have up to as many inputs as blocks

completed (i.e. 25) for each ERP component (i.e. N1 and P3) and descriptive measure (mean

and standard deviation of ERP peak amplitudes across 10 trials per block) into the machine

learning models.

Statistical analysis

To predict attention states, we included the aforementioned ERP measures as features into a

machine learning model that makes a binary classification: on task (0) or mind wandering (1).

In particular, we derived the mean and standard deviation of the N1 and P3 peak amplitudes

of the last 10 trials per block. For these analyses, we focused on ERP amplitudes in response to

standard tones only since there were very few target tones (i.e. on average two) occurring

within the last 10 trials within a block. This low number of target tones not only yields an unre-

liable estimate of the ERP response to target tones, but it could reduce generalization across

individuals. Using Scikit-learn (version 0.20.2), we built two machine learning models to dis-

criminate between the two attention states, including one linear model (i.e. linear logistic

regression) and one non-linear model (i.e. a support vector machine (SVM) with a radial basis

function (RBF) kernel). We computed the mean amplitude across all blocks in the on task

state and subtracted this mean from the data for both attention states; this additional step nor-

malizes the data, which makes the two conditions more comparable across different subjects

[57]. This normalization was performed independently for each feature and each subject. We

adopted this approach so that our machine learning models would likely be less impacted by

individual differences in the absolute values of each EEG measure.
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Class imbalance. The number of data points in the two attention state conditions was

slightly imbalanced (n = 156 for on task, and n = 193 for mind wandering). Class imbalance

often poses a challenge for supervised classifiers due to more exposure to the majority class in

the training data. Similar to many other eye gaze-based mind wandering detectors [21, 25, 58,

59], we corrected for this imbalance prior to training the models using an oversampling tech-

nique to increase the number of data points in the minority class in the training data. Specifi-

cally, we used Synthetic Minority Over-Sampling Technique (SMOTE) [60], which creates

new “synthetic” instances of on task (the minority class) to balance the classes in the training

set; the model is therefore trained on equal numbers of both classes in order to better learn the

patterns. SMOTE creates the synthetic on-task instances through a linear interpolation of the

feature values from a series of “real” nearest-neighbor values in the data. SMOTE is a com-

monly used approach for mind wandering classification with machine learning, given that the

classes are typically imbalanced [59, 61]. One subject was excluded from subsequent analyses

because they did not report enough instances of the minority class (N< 5) to generate syn-

thetic data points using the SMOTE technique. Although it is also possible to remove data

points from the mind wandering condition with more data points to achieve a class balance,

we implemented the SMOTE in order to maximize the amount of data that can be used for

training in the models.

The models were used to classify attention states in two ways 1) within subjects (i.e. person-

dependent models), the current gold standard in the literature using EEG features, and 2)

across subjects (i.e. person-independent models). Classification within subjects attempts to

detect mind wandering on an individual basis, using each subject’s own electrophysiological

signatures of attention state for prediction. This approach is useful for maximizing prediction

accuracy for that particular individual, but the model does not generalize well to new individu-

als. In contrast, classification across subjects attempts to accurately classify attention states

in “never-before seen” subjects for greater generalizability. These models attempt to find an

optimal algorithm that can predict attentional states of individuals who were not part of the

training group data. This method has been successfully implemented using behavioral and

pupillometry measures [19, 25]; however, no studies to our knowledge have successfully classi-

fied attention states using a generalizable model across subjects with EEG features.

Cross-validation methods. To classify on task vs. mind wandering within a subject (i.e.

person-dependent models), we used k-fold cross validation, with 5 folds on 25 instances

(which represent the 25 blocks of data) for each subject. In order to ensure class balance within

subjects for the classification analysis, SMOTE was performed on the training set within each

iteration.

For training the models across subjects (i.e. person-independent models) we used leave-

one-subject-out cross-validation, which is similar to k-fold cross validation, with the exception

that the training and testing sets are completely independent. Using this technique, one subject

was reserved as the testing set, and the remaining k-1 subjects were used as the training set.

This was repeated k times, where k = the number of subjects, such that each subject was used

as the testing set once. This validation was performed to ensure that the training and testing

sets are both exclusive and independent, and that the model generalizes across new subjects.

We chose this validation technique, as opposed to the traditional k-fold cross validation, due

to our limited sample size. Importantly, it closely emulates real-life applications of mind wan-

dering detection, where a model can be previously trained on a set of data gathered from mul-

tiple subjects, and then tested on a new individual.

Model evaluation. Model performance was evaluated using three common metrics: accu-

racy, area under the curve (AUC), and Matthews Correlation Coefficient (MCC). Accuracy is

the number of correct predictions of attention state over the number of total predictions, and
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ranges from 0 (no predictions correct) to 1 (all predictions correct). Notably, accuracy by itself

is somewhat problematic when class imbalance exists, since prediction of the majority class

will be inherently above 50% by chance. We therefore focus on the other two metrics that are

not sensitive to class imbalance.

AUC is one of the most widely used metrics for binary classification. It is equivalent to the

probability that the model will rank a randomly chosen positive example (e.g. mind wander-

ing) higher than a randomly chosen negative example (e.g. on task). This measure can be rep-

resented as the area under the curve of a plot of the false positive rate vs. the true positive rate.

AUC ranges from 0 (no predictions correct) to 1 (all predictions correct), with chance level at

0.5. MCC takes into account true and false positives and negatives, and outputs a value that

ranges from -1 (no predictions correct) to 1 (all predictions correct), with chance level at 0.

Together, these metrics demonstrate whether the models are capable of successful classifica-

tion of attention states, and assess classification performance with respect to chance and imbal-

anced classes.

We additionally evaluated confusion matrices of the best performing models, which

allowed us to visualize the performance of each model and summarize the true and false posi-

tives and negatives. The confusion matrix reveals what type of errors the model makes: specifi-

cally, whether the model shows any bias or skew towards a particular class, and if so, how. It is

possible to examine the true positive rate (sensitivity) and true negative rate (specificity) to

determine which of the two models result in more accurate prediction. Similarly, it is possible

to examine the false positive and false negative rates to determine if the model leans towards

any decision-making errors. For example, a high sensitivity and high false positive rate may

point to over-classification of the positive instance.

Results

Behavioral performance

Subjects reported mind wandering 55% of the time (range: 20%– 88%, SE = 5.3%) and being

on task 45% of the time. This is consistent with the typical breakdown of self-reported atten-

tion states in the literature for this type of task [34, 35, 37]. Mean reaction time and accuracy

are shown in Fig 1. There was a trend for slower response time during mind wandering

(M = 535 ms, SE = 14 ms) compared to on task periods (M = 511 ms, SE = 14 ms; t(12) = -1.94,

p = 0.076). However, accuracy did not differ between attention states for mind wandering

(M = 0.9619, SE = 0.030) compared to on task (M = 0.9623, SE = 0.028; t(12) = 0.098,

p = 0.924).

Univariate analyses on ERP components

In order to check the veracity of the attentional reports, we first evaluated whether our ERP

measures reveal attentional differences that are consistent with previous studies. Specifically, if

our ERP measures show reduced amplitudes during mind wandering, this would provide cor-

roborating evidence for the attentional reports. To assess conditional differences in ERP mea-

sures, we implemented repeated measures ANOVA with attention (on task and mind

wandering) and tone (standard and target) as within subject factors, separately for the N1 and

P3 ERP components. These results are reported in Table 1.

As expected, the main effect of tone was significant for both the N1 and P3, with increased

amplitude during target tones relative to standard tones. For N1, there was a near significant

main attentional effect, characterized by reduced N1 during mind wandering relative to on task

periods. Although the attention x tone interaction was not significant, we implemented follow

up analyses using paired samples t-tests to examine whether attentional effects varied for each
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tone as was observed in Fig 2. Consistent with previous findings of attentional effects in sensory

ERP components [33, 36], our analyses revealed a significant attentional effect for the N1 in

response to target tones (t(13) = -2.83, p = 0.014) but not standard tones (t(13) = -0.72, p =
0.485). Neither the main attention effect nor interaction effect were significant for the P3.

Machine learning

Person-dependent classification performance. Individual accuracy for subjects with the

non-linear SVM with RBF kernel ranged from 0.383 to 0.960 (M = 0.643, SE = 0.044), whereas

accuracy for the linear logistic regression model ranged from 0.375 to 0.843 (M = 0.621,

SE = 0.038). The range of accuracy values observed in our study, as well as the variability in

accuracy rates across individuals, are similar to accuracy values reported in prior work using

EEG measures for predicting mind wandering [44, 46]. Although accuracy might be useful for

comparing findings across different studies, this metric can be biased with class imbalance (as

previously mentioned); therefore, it is more informative to examine the AUC and MCC values

for individual subjects.

Both AUC and MCC metrics also demonstrate, on average, above-chance performance for

the SVM and logistic regression models. AUC ranged from 0.452 to 0.995 (M = 0.715,

SE = 0.0457) for the SVM and 0.291 to 0.858 (M = 0.635, SE = 0.0491) for the logistic regres-

sion model. MCC ranged from -0.162 to 0.919 (M = 0.289, SE = 0.0792) for the SVM and

-0.287 to 0.694 (M = 0.210, SE = 0.0758) for the logistic regression model. Machine learning

performance as indexed by AUC and MCC for each individual subject is shown in Fig 3.
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Fig 1. Behavioral results as a function of attention state. (A) Mean response time was slower during mind

wandering (p = 0.076). (B) No difference was observed in accuracy between the two attention states. Error

bars = standard error of the mean; OT = on task; MW = mind wandering.

https://doi.org/10.1371/journal.pone.0251490.g001

Table 1. ANOVAs on ERP components.

Features Attention (OT vs. MW) Tone (Standard vs. Target) Attention x Tone Interaction

N1 Min F(1,52) = 3.57, p = 0.064 F(1,52) = 6.23, p = 0.013 F(1,52) = 1.51, p = 0.224

P3 Max F(1,52) = 1.79, p = 0.187 F(1,52) = 58.99, p< .001 F(1,52) = 1.24, p = 0.271

Note: MW = mind wandering. OT = on task.

Repeated measures ANOVAs of main effects of attention and tone as well as attention × tone interaction, reported separately for N1 and P3 ERP components.

https://doi.org/10.1371/journal.pone.0251490.t001
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Person-independent classification performance. In this method of classification, we

aimed to generalize the model across subjects by using leave-one-subject-out cross-validation.

Both the nonlinear SVM and logistic regression models performed above chance (MCC > 0,

AUC> 0.5). Accuracy ranged from 0.514 to 0.750 (M = 0.591, SD = 0.070) for the SVM, and

from 0.461 to 0.752 (M = 0.588, SD = 0.093) for the logistic regression model. MCC values ran-

ged from –0.026 to 0.446 (M = 0.206, SD = 0.152) for the SVM and –0.056 to 0.449 (M = 0.196,

SD = 0.169) for the logistic regression. Finally, AUC values ranged from 0.485 to 0.731

(M = 0.613, SD = 0.085) for the SVM and 0.468 to 0.739 (M = 0.609, SD = 0.096) for the logistic

regression model. Overall, the nonlinear SVM showed the best performance, as indicated by

higher scores in accuracy, AUC, and MCC, as compared to logistic regression. Although there
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https://doi.org/10.1371/journal.pone.0251490.g002
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is clear variability in the evaluation metrics across participants (as is common for other real-

time detectors [46]), we suggest the average model performance faired quite well for most indi-

viduals. A summary of the results for each model are reported in Table 2.

The ultimate goal of a mind wandering detector is to assess the phenomenon in real time

for measurement and interventions; thus precision (i.e. accurately classifying instances of

mind wandering as mind wandering) is a priority of the model. We therefore evaluated the

confusion matrices of the best models to determine the type of errors the models made (as

shown in Table 3). Neither model exhibited any skew towards sensitivity (i.e. true positives for

predicting mind wandering) or specificity (i.e. true negatives or correct rejections). Taken
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https://doi.org/10.1371/journal.pone.0251490.g003

Table 2. Model evaluation of person-independent classification performance.

Models Performance Metrics

Accuracy AUC MCC

SVM with RBF Kernel 0.591 (SD = 0.070) 0.613 (SD = 0.085) 0.206 (SD = 0.152)

Logistic Regression 0.588 (SD = 0.093) 0.609 (SD = 0.096) 0.196 (SD = 0.169)

Note: Classification performance indices, including accuracy, AUC, and MCC, are reported for both machine learning models: SVM with RBF kernel and logistic

regression. AUC = area under the curve; MCC = Matthews correlation coefficient; SVM = support vector machine; RBF = radial basis function.

https://doi.org/10.1371/journal.pone.0251490.t002
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together, the SVM model outperformed the logistic regression model. Not only did the SVM

model show higher sensitivity and specificity, it also showed higher values for AUC and MCC,

which are metrics that are robust against the presence of imbalanced classes.

Feature analysis. To further examine each feature individually, we created models that

were trained on only one feature at a time (Table 4). Given that SVM outperformed logistic

regression, we implemented these analyses with the SVM model only. This post-hoc analysis

allowed us to identify the feature that is most effective in predicting attention states. Our

results indicate that most features performed slightly above chance, with the peak P3 ampli-

tude showing the best performance. Notably, none of the features individually performed as

well as the complete model.

Discussion

Mind wandering is an intrinsically covert state that is consistently linked to negative affect and

performance decrements. Although it is traditionally measured via self-reports, our proof-of-

concept study attempts to overcome the shortcomings of this approach by developing machine

learning models that can reliably predict its occurrence using EEG measures that directly and

objectively capture neural activity. Such models will be crucial to the development of applica-

tions that can mitigate the negative effects of mind wandering in real-time [18], as well as

future research that will no longer need to rely on constant task interruptions to determine

when mind wandering occurs using thought sampling.

During a target detection task, our univariate analyses demonstrated significant attentional

differences in the sensory ERP components. Our machine learning classifiers using both the

support vector machine and logistic regression models were able to classify mind wandering at

above-chance levels within subjects. Notably, we improved on prior work in this area by

Table 3. Confusion matrices of person-independent models.

Actual MW Actual Not MW

SVM with RBF Kernel Pred. MW 0.570 0.390

Pred. Not MW 0.430 0.610

Logistic Regression Pred. MW 0.528 0.356

Pred. Not MW 0.472 0.644

Note: Confusion matrix for each of the machine learning models: SVM with RBF kernel and logistic regression. Pred.

= predicted; MW = mind wandering; SVM = support vector machine; RBF = radial basis function

https://doi.org/10.1371/journal.pone.0251490.t003

Table 4. Model performance for individual features.

Features Performance Metrics

Accuracy AUC MCC

N1 Min 0.489 0.521 0.033

N1 SD 0.322 0.471 -0.084

P3 Max 0.562 0.594 0.171

P3 SD 0.518 0.567 0.106

Note: Model performance metrics, including accuracy, AUC, and MCC, implemented separately for each individual

feature of ERP components. Models for all four features were built with the SVM with RBF kernel. SD = standard

deviation. AUC = area under the curve; MCC = Matthews correlation coefficient; SVM = support vector machine;

RBF = radial basis function.

https://doi.org/10.1371/journal.pone.0251490.t004
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developing person-independent models that can detect mind wandering using EEG features

without having any prior information about that person. The performance of our person-inde-

pendent models is modest, but comparable to previous studies showing generalizability across

subjects using behavioral measures, eye gaze, and pupillometry [25, 58, 61]. These findings

underscore, for the first time, the potential for generalizable machine learning models that can

classify mind-wandering states in real-time using electrophysiological measures.

Using machine learning methods with EEG measures to predict mind wandering, we had

better success with the SVM model relative to the logistic regression model in both within-

and across-subject classification of mind wandering states. This finding is consistent with pre-

vious EEG studies that demonstrate the effectiveness of nonlinear models in determining the

boundary between attention states [43, 44, 46], highlighting the utility of nonlinear models in

classification accuracy and generalizability. Examination of the confusion matrix revealed that

the models were not biased in their predictions, with both models showing negligible differ-

ence between sensitivity and specificity. These unbiased results may be due to the oversam-

pling technique, SMOTE, which addressed the issue of class imbalance between attention

states. The effectiveness of SMOTE has been demonstrated in other work using behavioral

measures in detecting mind wandering [21, 59]. A previous study that classified mind wander-

ing states using EEG has reported issues with highly disparate sensitivity and specificity using

other techniques to balance class sizes [44]. These disparities could be attributed to either the

method used to achieve balanced classes (such as SMOTE) or the accuracy of subjects’

responses during thought sampling. Although this is a well-validated approach in measuring

one’s attentional state [2, 62], thought sampling does nevertheless rely on self-reports and

therefore depend on accurate and honest responses from subjects. Any bias in subjects’

responses could reduce classification accuracy and potentially result in the observed difference

between sensitivity and specificity. This limitation may explain parts of our data in which

model performance was below chance for at least one subject in the person-dependent model,

suggesting that machine learning models are effective in general in predicting attention states

but not necessarily for every single individual.

Finally, we examined each feature individually by creating separate SVM models for each

feature, in order to evaluate its relative importance in classification accuracy. Interestingly, the

peak P3 amplitude resulted in the highest accuracy, AUC, and MCC, despite not showing sig-

nificant attentional differences in the univariate analyses. These contrasting results may be

puzzling at first glance; however, the differing nature of the averaged ERP amplitudes entered

into the univariate analyses and machine learning models may potentially account for this dif-

ference. While the univariate analyses involved the peak amplitudes averaged across the entire

task, the machine learning models received the peak amplitudes averaged within each of the 25

blocks as input; therefore, it takes into account fluctuations in the P3 amplitude throughout

the task. That peak P3 amplitude contributed to classification accuracy but did not show atten-

tional differences in univariate analyses suggests that statistical significance at the univariate

level captures different information compared to machine learning classifiers. Future work

can clarify the relationship between these types of input data and their corresponding analyses.

These findings underscore the value of considering multivariate patterns of data via machine

learning models in classifying temporally fluctuating attentional states.

Importantly, machine learning analyses take into consideration the multivariate aspects of

EEG data, and thereby complement traditional univariate analyses that focus on individual

features. Our univariate analyses revealed attentional differences at the sensory level but not

higher cognitive level ERP component. Although the peak N1 amplitude in response to target

tones was greater during on task compared to mind wandering states [33, 36], we did not

observe any attentional differences in the N1 and P3 in response to standard tones. In contrast,
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our machine learning analyses using ERP components in response to standard tones were suc-

cessful at detecting mind wandering based on these features. These findings highlight the value

of considering multiple features of EEG data in predicting attentional states.

Future work may involve efforts to improve model performance by adding additional data

and more features. Effective machine learning models generally rely on large amounts of data.

Although our proof-of-concept study showed that even with a small sample size, electrophysi-

ological markers can predict mind wandering within subjects and across subjects, these results

need to be replicated in future studies with a larger sample size. Notably, a larger sample size

will provide more training data, and thus it can only enhance accuracy further in the across

subjects analyses. Our finding makes a methodological contribution, namely that accurate

machine learning models of mind wandering can be derived from a sample size of 14 partici-

pants, providing the lower threshold in sample size needed to predict mind wandering above

chance across subjects.

Increasing the number of data points is one way of improving prediction accuracy; another

way is to include multi-modal sources of data. Combining EEG measures with behavioral and

pupillometry features could result in models with better performance, since both types of mea-

sures have resulted in moderately successful models in previous studies [19, 21, 25]. Other

promising avenues that could improve prediction rates include feature crossing and ensemble

learning, which are techniques that have yet to be implemented often in prior research nor this

current study. The former entails creating synthetic data by multiplying or crossing two or

more features, which may provide predictive abilities beyond those features individually. The

latter is a technique that combines several different machine learning models to minimize

causes of error and improve performance. Another future direction could involve identifying

EEG markers of the types of thoughts we engage in during mind wandering, such as autobio-

graphical memory retrieval or future planning. Results in this present study demonstrate that

SVM and logistic regression classifiers can detect mind wandering; therefore, these models can

potentially be used to further classify task-unrelated thought as a function of its temporal

focus.

In summary, this study provides evidence that electrophysiological markers can be

employed in machine learning models to detect mind wandering. Our SVM and logistic

regression classifiers were capable of generalizing across individuals, which has not yet been

demonstrated in other studies that utilize EEG markers. Moreover, our models performed at

above chance levels as determined by several metrics, which is especially promising given that

univariate analyses of the same features did not always show attentional differences. Taken

together, this research brings us closer to the possibility of more intelligent programs that

could detect mind wandering in real-life situations, in real-time.
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