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We examined how bees solve a visual discrimination task with stimuli com-
monly used in numerical cognition studies. Bees performed well on the task,
but additional tests showed that they had learned continuous (non-numeri-
cal) cues. A network model using biologically plausible visual feature
filtering and a simple associative rule was capable of learning the task
using only continuous cues inherent in the training stimuli, with no numeri-
cal processing. This model was also able to reproduce behaviours that have
been considered in other studies indicative of numerical cognition. Our
results support the idea that a sense of magnitude may be more primitive
and basic than a sense of number. Our findings highlight how problematic
inadvertent continuous cues can be for studies of numerical cognition. This
remains a deep issue within the field that requires increased vigilance and cle-
verness from the experimenter. We suggest ways of better assessing numerical
cognition in non-speaking animals, including assessing the use of all alterna-
tive cues in one test, using cross-modal cues, analysing behavioural
responses to detect underlying strategies, and finding the neural substrate.
1. Introduction
Mapping specific cognitive capacities to the behaviour of any animal is rarely
straightforward. The difficulty is that animals may not be solving the task the
way we think they are. One example of this is in our own recent work where
we had bees discriminate different shapes based on relative size [1]. Bees’
performance increased over training towell above chance, and in the unrewarded
test they seemed to have learned to discriminate shapes based on relative size.
However, analysis of first and sequential choices during training bouts and tests
revealed that the bees actually switched to a simpler strategy in the middle of
training: win-stay/lose-switch. These results, along with other works suggesting
animals are able to solve tasks in unexpected ways (e.g. [2–7]), prompted us to
look deeper into the strategies of animals in numerical cognition tasks.

Numerical cognition has been claimed in a large number of animal species
(e.g. [8–40]), suggesting that a sense of number is widespread (for reviews see
[41–43]). By far, the most common method for testing numerical cognition in
non-verbal animals is to have subjects discriminate two-dimensional visual
displays with differing numbers of shapes (figure 1; [8–40] all used this
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Figure 1. Number of elements naturally covaries with non-numerical cues. (a–d) Examples of two-dimensional stimuli used in numerical cognition studies and how
different continuous cues normally covary with numerosity. Note that illusory contour does not covary with numerosity but can still be learned and used to solve
numerical cognition tasks, especially with lower numbers of elements. (e) Spatial frequency (the amount of alternating dark and light regions in a given area) also
normally covaries with numerosity. The more changes from black to white across an image in all directions, the greater spatial frequency. The right images of each
pair in (e) all have higher spatial frequency than the left images. ( f–h) For all stimuli in [28], from which our stimulus set was borrowed, area (amount of total
black) was kept constant ( f ), but edge length (total boundary length; g) and convex hull (the minimum convex region covering all elements; h) covaried with
numerosity. (i,j ) Spatial frequency is calculated by obtaining a power spectrum (Methods) and measuring the area under the power spectrum’s curve. The power
spectrum plots (i and zoomed-in inset) for all stimuli in [28], from which our stimulus set was borrowed, averaged for each number of elements from one to six,
shows that spatial frequency increases with numerosity ( j). Note that for all covarying continuous cues, a zero-set stimulus will have zero measurement and thereby
be placed naturally at the lower end of the spectrum for each of these non-numerical cues. (Online version in colour.)
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design). As pointed out by others (e.g. [44,45]), in these types
of designs, continuous (non-numerical) cues often unavoid-
ably covary with numerosity. These include size and shape
of elements, area (total amount of colour), edge length
(total boundary length of elements), convex hull (the mini-
mum convex region covering all elements), spatial
frequency (the amount of alternating dark and light regions),
and illusory contour (the basic shape that outlines all
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elements). In figure 1, we further describe these cues and
their natural covariation with number (figure 1a–e). This cov-
ariation makes it difficult to know whether animals actually
used any sense of number to solve their tasks.

The issue of non-numerical strategies within numerical
cognition studies has been highlighted by others [44–47].
It was established decades ago that cells within the visual
system respond to various continuous visual features
[46,48,49] and it has long been known that continuous features
can be reliable discrimination cues, even for bees [50–53].
Further, several works show that animals use non-numerical
cues to solve numeric-based tasks when not controlled for,
e.g. size of elements [54], total area [55] and convex hull [56],
and even when they are controlled (e.g. [57]; see Discussion).

Most studies investigating numerical cognition attempt to
control for at least one non-numerical cue. Several works have
made valiant efforts to control for most continuous cues (e.g.
[58,59]). However, we have found no studies that tested for
all continuous variables. It seems clear that animals are sol-
ving these tasks, but the question we attempt to address
here is how they might be solving them. We set out to deter-
mine how honeybees solve a numeric-based task using
stimuli common among numerical cognition studies.
2. Material and methods
(a) Subjects
Honeybees (Apis mellifera) used in the experiment were
maintained at the University of Oulu (Oulu, Finland) and at
Guangdong Institute of Applied Biological Resources (Guangz-
hou, China) in September and November 2019, respectively.
Prior to training, honeybees fed ad libitum from a gravity feeder
providing 30% sucrose solution. Each focal honeybee was first
lured to visit the experimental setup by allowing her to drink
and walk onto a cotton bud soaked in 50% sucrose solution and
then transferring the bee to the setup. Each forager that returned
to the setup on her ownwasmarked on her thoraxwith a coloured
dot for identification.

(b) Experimental setup and procedure
The setup consisted of a 50 × 50 cm acrylic sheet. Stimuli were 6 ×
6 cmwhite displays (laminated sheets of paper) with between one
and four black shapes (squares, diamonds or circles). The stimuli,
identical to those used in [28], were presented vertically with a
landing platform attached just below the displays. Stimuli were
randomly allocated for each bee and changed when the bee
returned to the hive to offload sucrose, prior to her returning to
the setup. The spatial arrangement of stimuli could be randomly
changed, thus excluding position orientation cues. The back-
ground acrylic sheet and landing platforms were grey coloured.
The acrylic background sheet, platforms and displays were
washed with 70% ethanol between all visits to exclude the use
of olfactory cues. Two shapes were used in training, and the
third shape was used for testing. During training, honeybees
found either a 10 µl droplet of 50% sucrose solution or 60 mMqui-
nine hemisulphate solution, for correct and incorrect choices,
respectively. Each trial, four stimuli (two identical correct; two
identical incorrect) were presented simultaneously on the acrylic
sheet. Stimuli positions were changed after each choice to new
random positions. A choice was defined as any time a honeybee
landed on a platform and touched the solution (sucrose or qui-
nine) with their proboscis, leg or antenna.

One group of bees (n = 10) was trained to associate stimuli
consisting of more elements with reward, and a second group
of bees (n = 10) was trained to associate stimuli consisting of
fewer elements with reward. The choices of individual bees
during training were recorded until a criterion of greater than
or equal to 80% for any 10 consecutive choices was reached
(after a minimum of 20 choices). Once an individual bee reached
criterion, she was presented with a learning test followed by two
additional control tests. Bees reached criterion on average in 41 ±
8 choices. Each test lasted 2 min and all choices made were
recorded as the dependent variable for statistical analyses.
During all tests, 10 µl of unrewarding water was placed on
each platform. Between tests, bees received two reinforced
refresher trials (with the same stimuli used in training) to main-
tain motivation. For the learning test, bees were presented with
the shape that they had not been trained on—the purpose
being to test whether bees learned to solve the task. The two con-
trol tests examined whether honeybees used the number of
elements or continuous visual cues. The first control test
(equal/incongruent test) had two pairs of stimuli, each with
two elements, but one pair with higher edge length, convex
hull and spatial frequency. The second control test (incongru-
ent/opposite test) also had two pairs of stimuli, one pair with
three elements and the other with two elements but with
higher edge length, convex hull and spatial frequency. In all
tests, the total black surface area was the same across all stimuli.
Experiments were performed by three different groups of indi-
viduals (M.H. and O.J.L., S.L. and C.S.) to help independently
verify the results.

(c) Statistical analyses
R 3.6.1 with library ‘lme4’ was used to perform all generalized
linear mixed-effect models (GLMM) with binomial distribution
and logit function. For the GLMM evaluating the results of the
tests, country and rule (more-than/less-than) were considered
as fixed factors and bee identity as a random effect (electronic
supplementary material, table S1). Because country and rule
had no effect on performance, we display data as the mean ±
s.e.m. of all bees’ data. We then removed country and rule in a
second GLMM (electronic supplementary material, table S2).
Our second model ranked better than the first on the grounds
of Akaike’s information criterion [60] adjusted for small sample
sizes (AICc), and therefore we present data from this second
model in the main text. For analyses of all test videos, a blind
protocol was employed, in that each video filename was coded
so that the experimenter doing the analysis was blind to the
training of each bee.

To calculate the spatial frequency of the training and test
stimuli, a two-dimensional Fourier transform on each image
was performed, followed by a power spectrum calculation as
the square amplitude of the Fourier transform and averaged
over orientation [61]. The actual power over all frequencies was
then measured by calculating the area under the curve of the
radially averaged power spectrum. Calculations for area, spatial
frequency, convex hull and edge length were done in MATLAB
2018b (MathWorks, Mass., USA). Statistical analyses for the
model results were also performed in MATLAB 2018b.

(d) Neural network model
Our model uses spatial frequency encoding that is supported by
bees’ ability to discriminate visual patterns based on spatial fre-
quency [50,51] and observed neurons in the visual lobe of insects
that provide a mechanism of frequency coding [62,63]. Analo-
gous to the spatial frequency coding in primates [64,65], bees
may use Gabor-like filters in their visual lobe to extract spatial
frequency information from visual stimuli [66]. For our model,
the stimulus, s, is encoded by the activity of a population of neur-
ons with different preferred spatial frequency that possess
similar response profiles. The evoked spiking activities of the
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seven sensory neurons were simulated by fixed Gaussian tuning
curves spanning spatial frequencies of the input from zero to
six as

gi (s,s) ¼ R0 þ RMax exp � 1
2s2 (s� fi )

2
� �

þ @(0,sN),

where R0 = 50 spike s−1 and RMax = 200 spike s−1 are the spon-
taneous and maximum firing rate of the sensory neuron. σ = 2.5
controls the degree of the selectivity of the sensory neurons
to different frequencies around the preferred frequency, fi.
Gaussian noise, @(0,sN) model the randomness of neural
activities.

Outputs of all sensory neurons drive a decision neuron
through a vector of synaptic weights, W, to create the decision
neuron’s activity in response to the input, as

D(s) ¼ F
X6
k¼0

Wk:gk(s,s); a,b

 !
,

where F(x; a, b) =A0/(1 + exp(− a(x− b))) is the activation func-
tion with the maximum activity at A0 = 100 spike s−1. The
parameters a = 0.05 and b = 50 control the sensitivity of the
neuron to the input and spontaneous activity of the decision
neuron, respectively.

Because we assume that the difference of the decision neur-
on’s responses to the positive (sp) and negative stimuli (sn)
must be increased during the training phase, the locally optimal
synaptic weights, Wopt, can be obtained from maximizing the
objective function:

L ¼
Xm
t¼1

½D(stp)�D(stn)� rt,

where t and m are the index over the paired stimuli and the
number of presented stimuli, respectively. Here, r presents the
reinforcement signal (VUM-mx1 neuron) that provides modu-
lated feedback whether a stimulus is paired with the reward or
punishment (r = 1) and r = 0 for when no reinforcement signal
is presented. The (online) updates of the synaptic weights, Wt

i
are calculated by

Wt
i ¼ Wt�1

i þ h
@

@Wi
(D(stp)�D(stn)) r

t,

where η is the rate of the weights change. Wt�1
i is the updated

weight from the iteration t− 1 (with W0
i being the initial

weight), and

@

@Wi
(D(stp)�D(stn)) ¼ gi(stp, s) F

0 X6
k¼0

Wk:gk(stp,s); a,b

 !

� gi(stn,s):F
0 X6

k¼0

Wk:gk(stn,s); a,b

 !
:

Finally, the derivative of the activation function F is
obtained as

F0(x; a ,b) ¼ A0 a exp(�a(x� b))
(1þ exp(�a(x� b)))2

:

After exposing the model to conditioned stimuli in learning
paradigms, the behavioural outcomes of the model presented
with a pair of the test stimuli were evaluated as a simple
subtraction of the decision neuron’s responses to both test stimuli.
3. Results

(a) Bees use continuous cues over numerosity in a
numerical cognition task

Using the same two-dimensional visual stimulus set as a
paradigmatic honeybee study [28], and similar to stimulus
sets used for other animals (e.g. [8–40]), we first asked
whether honeybees use numerosity to solve a numeric-
based discrimination task. In this particular stimulus set,
area (total black within each stimulus) is kept constant
across all stimuli, and therefore could not be used to solve
the task. However, similar to many other numerical cognition
studies, edge length (Spearman correlation: rho = 0.93, p =
1.00 × 10−40), convex hull (Spearman correlation: rho = 0.44,
p = 4.88 × 10−6) and spatial frequency (Spearman correla-
tion: rho = 0.92, p = 1.00 × 10−40) covaried with number
(figure 1f–j). We, therefore, aimed to train bees on this stimu-
lus set, for which they have already been shown to
discriminate, and subsequently test bees to determine
whether they had used these particular continuous cues or
numerosity to solve the task.

We first trained honeybees (n = 10) to find rewarding
sugar solution on displays with more shapes and an aversive
quinine solution on displays with fewer shapes (Methods;
figure 2a). Another group of bees (n = 10) was trained on the
opposite contingency. Once bees reached 80% performance
(8 out of 10 consecutive choices correct), they were given an
unrewarded learning test. Bees trained on a ‘more-than’ rule
preferred (landed on more often) stimuli containing
more elements during the test, whereas bees trained to
‘less-than’ preferred stimuli with fewer elements. Honeybees
showed high performance in the learning test (figure 2b left;
GLMM: 95% confidence interval (CI) = 0.75 (0.47 to 1.03),
n = 20, p = 1.49 × 10−7).

To determine if bees used non-numerical cues, after the
learning test and refresher trials (Methods), we tested the
same honeybees on an ‘equal/incongruent test’, where
two pairs of unrewarded stimuli contained the same
number of elements (figure 2b middle), but differed in
edge length, convex hull and spatial frequency (figure 2c–
f ). If honeybees were using numerosity, they should
prefer all displays equally during this test. Conversely, hon-
eybees more often chose stimuli with a higher level of
continuous variables if they had been trained to choose
stimuli with more elements, and more often chose stimuli
with a lower level of continuous variables if they had
been trained to choose stimuli with fewer elements
(figure 2b middle; GLMM: 95% CI =−0.64 (−0.89 to
−0.39), n = 20, p = 6.5 × 10−7). This suggests honeybees
responded to continuous cues in the stimuli and not the
number of elements.

We further tested honeybees on an ‘incongruent/
opposite test’ where the number of elements in each pair of
displays differed (figure 2b right) and the continuous cues
(edge length, convex hull and spatial frequency) were in the
opposite direction to the numerical difference (i.e. higher
for two elements than for three elements; figure 2c–f ). In
this test, honeybees behaved in the reverse manner to
which we would expect if they had learned numerosity.
Bees that were trained to associate more elements with
reward preferred test displays with the higher level of con-
tinuous variables but fewer elements. Bees that were
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80% performance, they were tested using displays with novel shapes. In the learning test, honeybees more often chose stimuli following the numerical rule on
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difference in performance was found between groups (electronic supplementary material, table S1; Methods). Dotted line = 0.5 chance level. Bars = mean. Vertical
lines = s.e.m. Circles = individual bees’ data points ( filled circles: bees trained to more-than rule; empty circles: bees trained to less-than rule). (c–f ) Stimuli used in
tests with corresponding continuous variable measurements (Methods).
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trained to associate fewer elements with reward preferred test
displays with the lower level of continuous cues but more
elements (figure 2b right; GLMM: 95% CI =−0.55 (−0.79 to
−0.30), n = 20, p = 1.17 × 10−5).
Our results indicate that honeybees use continuous
properties to discriminate stimuli with varying numbers of
shapes. This caveat may also apply to other numerical
cognition studies with honeybees and other animals.
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(b) A neural network model with no reference to
numerosity can reproduce behaviours indicative of
numerical cognition

Our results beg the question: what explanation is simpler and
more plausible: numerical or non-numerical processing?
Therefore, how simple is learning continuous variables as an
explanation for the behaviour of honeybees? To explore this,
we created a simple neural network model containing just
nine neurons arranged in three layers (figure 3a) to encode a
relational rule (more-than or less-than) based only on one
non-numerical cue (Material and methods). Seven sensory
neurons encoded spatial frequency in the visual lobe which
projected frequency information to the eighth neuron, a
single decision neuron. Synaptic weights between the sensory
neurons and decision neuron were adjusted according to the
activation (by the presentation of stimuli) of the ninth
neuron, a reinforcement neuron based on the specific learning
rule (more-than or less-than). We chose spatial frequency for
simplicity, and because we have yet to find any recent study
that controlled/tested for it, but the model could also be
applied to other continuous variables.

We trained our model following the methods for several
experiments in [28], a recent study that hadhoneybees discrimi-
nate two-dimensional visual cues with different numbers of
shapes.We then evaluated themodel’s choiceswhen presented
with test stimuli (see Methods for details and figure 3 for sim-
plification). This simple model was able to reproduce the
behaviour of honeybees in numerical cognition tasks, with a
very simple computational structure using only non-numerical
information. Specifically, the model could transfer a ‘more-
than’ or ‘less-than’ rule to novel shapes, to stimuli containing
a number of elements outside the range trained on and to
stimuli with zero elements, and could recognize stimuli with
zero elements as the lower end of a continuum (figure 3b–e).
Thus, we are able to reproduce behavioural evidence that has
been taken in honeybees (and similarly in other animals) as
indicative of understanding number with a model in which
there is no processing of numerosity.
4. Discussion
(a) General summary
We are not suggesting that all numerical cognition studies are
wrong or that no animal has numerical cognition. We show,
however, that in a task using a two-dimensional visual display
set with differing numbers of shapes, non-numerical cues can
be learned, they dominate over numerosity when equal to or
set in opposition to numbers of elements, and they can be
learned by simple computational systems with no reference
to numerosity. Our behavioural and computational results
provide a counter example against the assumption that two-
dimensional visual stimuli with different numbers of shapes
are processed by honeybees as discrete numerical elements.
Our findings suggest that an alternative non-numerical expla-
nation exists for studies using similarmethods in honeybees. If
other animals are sensitive to any available continuous cues,
then an alternative non-numerical explanation exists for
those results as well. This is vital information if we truly
want to know how any animal solves the numerical problems
they face in their own ecological niches.
(b) The depth of the issue
It is very difficult to control for all continuous visual cues
[45,67]. By controlling one parameter, another will necessarily
covary with numerosity. Even varying parameters randomly
during training is not enough to solve the issue. Leibovich &
Henik [57] trained adult humans on visual stimuli of differ-
ing numbers of dots where continuous cues were
minimally correlated or uncorrelated with numerosity.
Despite this, they found that in a regression analysis, half
of the behavioural variance could be explained by the irrele-
vant continuous cues [57]. Presenting stimuli separately/
sequentially may make the task more difficult (e.g. [68,69]).
However, animals may store, in working memory, an
accumulation of neural responses to continuous variable
changes as they pass/observe stimuli, without reference to
numerosity [70–73].

It will also not suffice to test for continuous cues separ-
ately because animals may learn multiple redundant cues
and use those available when others are not [74–79]. Testing
all continuous variables (that cannot be kept constant across
stimuli for the entirety of training) and numerosity within
one test can help determine if continuous variables have
been learned. In one of our recent works, examining how
bumblebees solved a numeric-based task, we assessed the
use of continuous cues within one unrewarded test [80].
Here, bees were shown 10 stimuli simultaneously during
one unrewarded test, each with different numbers of
elements and levels of continuous cues. We chose the charac-
teristics of different stimuli so that the bees’ choices for some
over others would reveal whether or not they had learned
and used specific continuous cues to solve the task. For
example, two displays both contained the same number of
elements, but the elements in one of the displays had a
greater edge length. Bees chose these two displays equally
in the test, suggesting they did not use edge length. However,
if they had performed well on the test (i.e. more often chose
stimuli based on the numerosity rule they had been trained)
but had chosen one of these two stimuli significantly more
than the other, this would suggest bees had learned and
used edge length instead of numerosity. We provided pairs
of stimuli that varied in this way for edge length, area,
convex hull, spatial frequency and illusionary contour. We
must keep in mind, as pointed out above, that even when
this type of design suggests continuous cues were not used,
as it had in our work, other strategies could still be used.
Although bees’ behaviour [80] indicated some form of count-
ing, the bumblebees could have used working spatial
memory to avoid recently visited shapes (cf. ‘inhibition of
return’ [81,82]). Therefore, it is possible that bees discrimi-
nated stimuli based on the duration of time taken to scan
all shapes within a display, or perhaps by an accumulator
mechanism responding to visual changes as they scanned
past each shape [70]. Either of these possible strategies do
not require a true sense of number.
(c) Ways forward
How then can we address this natural, deep-seated issue?
We propose that the method of assessing all continuous
cues in one unrewarded test, in conjunction with varying
all continuous cues during training, be set as a minimum
when investigating numerical cognition in animals. However,
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Figure 3. A simple computational model using only non-numerical cues reproduces honeybees’ performance in a numerosity tasks. (a) The model uses seven
sensory neurons that are activated by the output of visual receptors. Each sensory neuron responds to multiple levels of a single continuous cue with different
sensitivities. Firing of each sensory neuron is specific and selective to the preference level modelled by a Gaussian tuning curve. Information from all sensory neurons
converges at a single decision neuron. Synaptic connectivity (W ) between sensory neurons and the decision neuron are modified by an associative learning rule for
encoding appetitive and aversive valences. Performance of the model is evaluated by a simple subtraction of the responses of the decision neuron to the test stimuli.
(b–e) Our model is able to reproduce behaviours claimed to be indicative of numerical cognition [28], without any reference to numerosity. (b) Our model can
transfer a ‘more/less-than’ rule to novel shapes in a ‘conflict test’ examining preference for zero numerosity (Wilcoxon signed-rank test, z-value > 6.22 and p <
3.50 × 10−9) and a ‘transfer test’ using displays with more shapes than in training (Wilcoxon signed-rank test, z-value > 7.99 and p < 3.17 × 10−14). Compare to
fig. 1c in [28]. (c) Our model can transfer a ‘more/less-than’ rule to stimuli containing a number of elements outside the training stimuli range, in a learning test
(Wilcoxon signed-rank test, z-value = 3.89 and p = 9.98 × 10−5), conflict test (z-value = 3.23 and p = 0.0012) and transfer test (z-value = 2.40 and p = 0.016).
Compare to fig. 1d in [28]. (d) Our model can transfer a ‘more/less-than’ rule to novel pairs of stimuli, including stimuli with zero elements, in a learning test
(Wilcoxon signed-rank test, z-values > 5.27 and p < 1.35 × 10−6), and conflict test (Wilcoxon signed-rank test, z-values > 5.51 and p < 3.49 × 10−7). Compare to
the electronic supplementary material, fig. S4 in [28]. (e) Our model can recognize stimuli with zero elements as the lower end of a continuum (Wilcoxon signed-
rank test for comparing each pair with the chance level 50%, z-values > 2.24 and p < 0.024; Kruskal–Wallis test, χ2299 = 183.94 and p = 7.71 × 10−37. Compare to
fig. 2b in [28]. Light grey, less-than; dark grey, more-than; insets, test stimuli; bars, mean; vertical lines, s.e.m. calculated from the firing rate of the decision neuron
for 50 different initial parameters that simulated 50 different model bees.
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as mentioned above we need to still keep in mind other
potential non-numerical strategies.

Most numerical cognition studies use visual stimuli.
Stimuli in other modalities come with their own set of
issues regarding continuous variables. For example, number
of individuals covaries with the overall complexity of their
chemical/olfactory cues, and with the total volume and com-
plexity of vocal calls. However, combining modalities does
offer some promising avenues for investigation. One of the
strongest pieces of evidence for numerical cognition is the
ability to transfer across modalities, which seems to prevent
the use of continuous cues because the only similarity
across modalities should be numerosity. A nice example of
this was shown in monkeys where they were able to match
the sum of randomly ordered sequentially presented shapes
and tones to a visual array with the same number of squares
[83]. This kind of cross-modal generalization design would
certainly strengthen arguments for numerical cognition in
other animals.

Videos of animals solving numerical cognition tasks can
help determine how animals are solving those tasks (cf. [1,2]).
Automated approaches combiningmachine vision and learning
with computational behavioural analyses have the ability todis-
cover behavioural features that humans cannot (cf. [84,85]). For
example, by measuring the inspection behaviour (e.g. gaze,
body direction, movement) of an animal towards different
numerical stimuli and comparing across different decisions
(choose/reject) and different outcomes (correct/incorrect),
underlying strategies may become apparent.
Ultimately, however, we must also establish the under-
lying neural mechanisms to truly know which cues and
strategies an animal used to solve a numeric-based task.
This will provide vital information for how numerical cogni-
tion may have evolved, and how processing of numerosity
compares between animals [86,87].

Data accessibility. The data supporting the findings of this study
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