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Abstract

Background

Spatial modelling of STH and schistosomiasis epidemiology is now commonplace. Spatial

epidemiological studies help inform decisions regarding the number of people at risk as well

as the geographic areas that need to be targeted with mass drug administration; however,

limited attention has been given to propagated uncertainties, their interpretation, and conse-

quences for the mapped values. Using currently published literature on the spatial epidemi-

ology of helminth infections we identified: (1) the main uncertainty sources, their definition

and quantification and (2) how uncertainty is informative for STH programme managers and

scientists working in this domain.

Methodology/Principal Findings

We performed a systematic literature search using the Preferred Reporting Items for Sys-

tematic reviews and Meta-Analysis (PRISMA) protocol. We searched Web of Knowledge

and PubMed using a combination of uncertainty, geographic and disease terms. A total of

73 papers fulfilled the inclusion criteria for the systematic review. Only 9% of the studies did

not address any element of uncertainty, while 91% of studies quantified uncertainty in the

predicted morbidity indicators and 23% of studies mapped it. In addition, 57% of the studies

quantified uncertainty in the regression coefficients but only 7% incorporated it in the regres-

sion response variable (morbidity indicator). Fifty percent of the studies discussed uncer-

tainty in the covariates but did not quantify it. Uncertainty was mostly defined as precision,

and quantified using credible intervals by means of Bayesian approaches.

Conclusion/Significance

None of the studies considered adequately all sources of uncertainties. We highlighted the

need for uncertainty in the morbidity indicator and predictor variable to be incorporated into

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005208 December 22, 2016 1 / 28

a11111

OPENACCESS

Citation: Araujo Navas AL, Hamm NAS, Soares

Magalhães RJ, Stein A (2016) Mapping Soil

Transmitted Helminths and Schistosomiasis under

Uncertainty: A Systematic Review and Critical

Appraisal of Evidence. PLoS Negl Trop Dis 10(12):

e0005208. doi:10.1371/journal.pntd.0005208

Editor: Oladele B. Akogun, Common Heritage

Foundation, NIGERIA

Received: September 12, 2016

Accepted: November 23, 2016

Published: December 22, 2016

Copyright: © 2016 Araujo Navas et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors have indicated that no

explicit funding was received for this work. ALAN’s

doctoral research is funded by the University of

Twente. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interest exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005208&domain=pdf
http://creativecommons.org/licenses/by/4.0/


the modelling framework. Study design and spatial support require further attention and

uncertainty associated with Earth observation data should be quantified. Finally, more atten-

tion should be given to mapping and interpreting uncertainty, since they are relevant to

inform decisions regarding the number of people at risk as well as the geographic areas that

need to be targeted with mass drug administration.

Author Summary

In recent years spatial modelling studies of schistosome and soil-transmitted helminth

infections have become commonplace; however there is no standard framework for

uncertainty evaluation and reporting. In this study we aim to identify faults in existing

studies and propose a framework for evaluation and reporting. We conducted a system-

atic review of the literature to identify the gaps in knowledge in relation to how uncer-

tainty is dealt with in existing studies addressing the spatial modelling of helminth

infections. It was found that none of the studies considered adequately all sources of

uncertainty. Uncertainty in the response variables and covariates should be incorporated

into the modelling framework. More attention should be given to mapping and interpret-

ing uncertainty, and to quantify the different sources of uncertainty present in the

observed covariates (environmental variables), measured response variable (morbidity

indicators), used model and uncertainty representation and interpretation of the pre-

dicted morbidity indicators.

Introduction

Helminth infections from as soil-transmitted helminths (STHs) and schistosomes are among

the most prevalent neglected tropical diseases (NTDs) affecting human populations living in

countries where clean water, sanitation, and hygiene (WASH) are limited. STHs and schisto-

somes, affect more than 1.7 billion and 252 million [1,2] people worldwide respectively. The

majority of these infections are concentrated in sub-Saharan [3,4] and North Africa, Asia, and

central and Andean regions of Latin America [1]. STH and schistosome infections influence

directly the nutrition status, educational development, individual productivity, physical and

mental development in human populations [5]. The World Health Organization (WHO), the

World Bank and other agencies defined control and elimination targets in the poorest popula-

tions [6]. Although the global burden of NTDs declined by 27% from 1990 to 2010 in upper-

middle income countries [6], low and lower middle income countries still need attention.

Besides, according to the Global Burden of Disease Study 2010 [1], STHs due to intestinal

nematode infections, and schistosomiasis, caused the largest number of cases reported in 2010.

In order to improve population health and accomplish WHO targets, the 2012 London decla-

ration for Neglected Tropical Diseases and the 2013 World Health Assembly resolution

highlighted the importance of mass drug administration (MDA) with benzimidazoles [7,8] to

communities at risk.

To identify communities at risk, indirect indicators of morbidity such as prevalence of

infection and intensity of infection can be measured via surveying at-risk populations [9].

Communities at risk can then be categorized into disease prevalence classes (e.g. low, moder-

ate, high) based on WHO guidelines [10]. In the absence of empirical data on infection at

unsampled communities, one way to identify communities at risk is to study the role of the
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environment (physical and biological) to characterize potential habitats of parasites and inter-

mediate hosts, as well as to understand the ecology and epidemiology of infections. Statistical

modelling of the spatial distribution of helminth infections provides empirical relationships

between infections and risk factors, which can then be used to predict the level of infection

prevalence at unsampled locations [9,11–13]. In the statistical model, prevalence or another

morbidity indicator, is treated as the response variable.

Although statistical modelling of helminth infections is useful to effectively and efficiently

manage surveillance, control and prevention of the infection [14], the mapped outputs should

be interpreted with care because these can be weakened by several sources of uncertain infor-

mation [15]. Sources of uncertainty that need to be accounted for in the modelling process

include differences in variable selection criteria, statistical methods used, selected spatial and

temporal scales of analysis [16], sampling design, sensitivity and specificity of diagnostic tech-

niques as well as the quality of the spatial data used.

Uncertainty has been the subject of extensive discussion in Geographic Information Science

(GIScience) [17–32] and related subjects [33–43]. Uncertainty may relate to (1) a state of mind

and our perception of the world or (2) statements about the world or observations on natural

phenomena [17,18,22,32] and is relevant in terms of specifications and representations, mea-

surement and the transformations, processing and modelling performed on raw data to turn

them into usable information [17,22]. In order to address uncertainty, a more formal approach

is required [17,18]. Here we conceptualize uncertainty as imperfection, which is further catego-

rized as inaccuracy or imprecision.

Imprecision may arise because the phenomenon is vague (i.e., the phenomenon is not

clearly defined), ambiguous (i.e., different definitions can be applied to the phenomenon)

[23,32] or due to the granularity of the observation [17]. In the spatial setting granularity

relates to the resolution or spatial support (area or volume) of the observation and affects our

ability to discern objects [17,44]. Imprecision may also arise due to natural variability, mea-

surement error and model variability and may be described statistically, for example by the

variance or standard deviation [32,45,46]. In this context, model variability may arise due to

uncertain data, stochastic processes within the model or variability between competing mod-

els. The reader may be familiar with the narrow statistical definition of precision as the inverse

of the variance [47], whereas the imprecision that is applied here encompasses a wider set of

concepts [17,18]. Put another way, in this conceptualization, variance is not the only measure

of precision.

Accuracy is a measure of closeness between the observed phenomenon and reference obser-

vations, considered representative of the reality [17,45,48]. Accuracy assessment is often

referred to as validation [20,49]. Common measures of accuracy include the root mean square

error (RMSE) for continuous data [45,48], the overall accuracy (OA) for categorical data

[27,28,50] and the area under the receiver operator characteristic curve (AUC) for binary data

[45]. Bias relates to accuracy and refers to systematic differences between the observations and

reference data.

Accounting for uncertainty in disease mapping is important for the assessment of the appli-

cability and validity of the predicted morbidity indicators [15]. Furthermore, it will allow a

complete risk assessment and the identification of potential sources of bias [51]. Ignoring

uncertainty can lead to incorrect predictions, thus wrong estimates of disease burden, which

can result in misleading public health advocacy and decisions regarding disease control.

Consideration of information about uncertainty is critical for control programs, health care

workers, populations at risk, and other involved users who attempt to reduce prevalence

and incidence of helminth infections across the affected areas [51,52]. For example, control

programs need accurate information to decide about drug distribution strategies and the
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frequency of treatment of the target populations. Decision makers can use information about

uncertainty to target more resources (e.g., data acquisition) or to focus investigative efforts on

low or highly uncertain risk areas [53,54].

This paper is a systematic review that aims at the identification of the gaps in knowledge of

the different components of uncertainty associated with mapping and modelling helminth

infections. It also aims at providing a basis for a complete uncertainty communication, by eval-

uating the impact of uncertainty on the predicted morbidity indicators. This paper starts by

investigating how uncertainty is informative for decision makers, public health scientists and

the affected community. It then identifies main sources of uncertainty in helminth infection

mapping studies, and how uncertainties have been defined and quantified. Regarding the

sources of uncertainty, their definition and quantification, the focus will be put on sources

relating to Earth Observation. The significance of this paper is that it contributes to inform

control programs and health workers about the importance of uncertainty in mapping and

modeling helminth infections, by putting special attention on relevant sources of uncertainty,

and analyzing their real influence on the predicted morbidity indicator values used to guide

mass drug administration strategies and their cost effectiveness.

Methods

Search strategy

An online search was performed using two search engines, the Web of Knowledge (Core col-

lection and MEDLINE) and PubMed. Only articles published in English were considered. The

date range was 1 January 1980 to 24 October 2016. The search strategy aimed at the identifica-

tion of primary research studies that have looked into establishing the geographical limits of

STH and schistosomiasis present only in humans; therefore the search strategy combined vari-

ations of three terms: spatial, helminth infection, and uncertainty terms. The full list of terms

used in the systematic review is shown in Table 1. Six searches were performed by combining

the three terms in each search engine, using the keywords described in Table 2.

After removing duplicates, the abstracts of 139 papers were read. Papers written in lan-

guages other than English (11 papers) were automatically excluded. Review papers (14 papers)

were also excluded. Further criteria were then applied to select the final papers to read, but

also to make the reading process more efficient. The inclusion criteria considered were (i) the

presence of the three spatial, uncertainty and helminth infection search terms in the abstracts

and (ii) also articles related to only STH and schistosomiasis helminth infections. The papers

were classified into schistosomiasis and soil transmitted helminth studies. The selection of the

papers, data acquisition and analysis was undertaken by the first author. The PRISMA flow

diagram is given in Fig 1.

Table 1. Classification of search terms

Uncertainty term (UT) Spatial term (ST) Disease term (UT)

Uncertainty, uncertain,

uncertainties.

Geographic, geographical,

geography

helminth(s), helminthiasis, soil-transmitted helminths, soil-transmitted helminthiasis,

neglected tropical diseases.

Vagueness, vague Spatial, geospatial Schistosome, Schistosoma, schistosomiasis.

Imprecision, precision, precise,

imprecise

Remote sensing, remotely

sensed

Hookworm(s)

Accuracy, inaccuracy, accurate,

inaccurate

Trichuris trichiura

Fuzzy, fuzziness Ascaris lumbricoides

Error(s)

Bias

doi:10.1371/journal.pntd.0005208.t001
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Data collection process

Data collection from each paper focused on addressing three main research questions. (1)

How is uncertainty informative for decision making in the public health context? (2) What are

the different uncertainty sources reported in the reviewed studies? (3) How were uncertainty

and its sources defined and quantified in the studies? Papers addressing these questions were

enumerated.

Fig 2 illustrates the relevant three uncertainty stages that drive the final mapping and

modelling of STH and schistosomiasis infections. The first stage (pink box) describes the ori-

gin of uncertainty coming from data sources, including uncertainties in the response variable

and covariates. The second stage (orange box) shows how uncertainty from the pink box

Table 2. Keywords used in the literature search,* indicates wildcard

Uncertainty term Spatial term Disease term

1 TS = uncertain* 3 TS = geogra* OR TS = spatial OR

TS = geo$spatial OR TS = "remote*
sens*"

4 TI = schistosom*

2 TS = vague* OR TS = *precision OR TS = *precise OR

TS = *accura* OR TS = fuzz* OR TS = error* OR

TS = bias

5 TI = hookworm* OR TI = "trichuris trichiura"

OR TI = "ascaris lumbricoides"

6 TI = helminth* OR TI = "soil$transmitted

helminth*" OR TS = “neglected tropical

disease*”

doi:10.1371/journal.pntd.0005208.t002

Fig 1. PRISMA flow diagram.

doi:10.1371/journal.pntd.0005208.g001
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Fig 2. Uncertainty propagation through the process chain of mapping and modelling helminth infections. Pink box: uncertainty from

information data sources. Orange box: uncertainty from the predictive model. Yellow box: uncertainty in the predictions.

doi:10.1371/journal.pntd.0005208.g002
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propagates through the predictive model (green box). The green box incorporates uncertainties

derived from the selection of the predictive model, considering that there could be different

ways to model the same helminth infection. It also includes uncertainties in model structure,

which refers to all possible limitations and assumptions in the selected model, such as: the lack

of understanding about the interaction between the environment, helminth infections and

human populations, as well as the assumptions of stationarity and spatial isotropy [9]. Finally,

the green box includes uncertainties in the methods used to estimate the model parameters.

The third stage (yellow box), shows how uncertainty in the predicted morbidity indicator is

addressed, firstly in policy and decision making settings and secondly in a scientific setting.

This stage aims to understand how information on uncertainty is used practically and how is it

defined and quantified. The blue box represents different elements of data quality that relate to

the sources of information (pink box), and the predicted morbidity indicators (yellow box),

which due to its wide field of study and importance was separated into a different box.

Uncertainty use in helminth infection mapping for morbidity control (uncertainty

interpretation). Two approaches were considered to describe the possible usage of uncer-

tainty in helminth infections modelling. The first approach indicates that uncertainty could be

used in policy making in order to support public health institutions, governments and national

or international organizations involved in the control and prevention of STH and schistosome

infections. Three foci of attention for policy making were considered: (1) plan and guide pre-

vention strategies, (2) plan the intervention, monitoring, evaluation and consolidation of

MDA campaigns, (3) evaluate cost-effectiveness of control programmes. The second approach

proposes to use uncertainty to support scientific interpretation by looking at the influence of

different information sources on the modelling process, and decide about new improvements

or conclusions that need to be considered. Three foci of attention for scientific research were

considered: (1) spatial sampling, (2) the role of risk factors (covariates in the statistical model),

(3) the mapping of uncertainty. An overview of the different foci of attention of uncertainty

information is explained in Table 3.

Table 3. Description of communication of uncertainty

Uncertainty informs about Description

Policy Making Planning, Intervention, Monitoring, Evaluation

and Consolidation of MDA campaigns.

• Plan spatial targeting and the frequency of deworming campaigns to estimate

required drug supplies.

• Guide interventions towards high risk populations.

• Monitoring: Maintain success and long term sustainability of control programs.

• Evaluation: compare and choice more efficient strategies to control the disease.

• Consolidate control and move towards disease elimination.

Cost effectiveness • Inform about the cost associated with the health benefit acquired by

implementing a specific control strategy.

• Ensure the resources are distributed efficiently by channel funds to high risk

populations.

Plan and guide prevention Strategies • Plan and guide hygiene education and infrastructure programs in water

sanitation and hygiene, as well as implement environmental educational health

awareness programs.

• Control intermediate host or parasite sources to prevent transmission to

definitive hosts.

Scientific

Interpretation

Sampling • Define uncertain risk areas where further data collection is required.

• Guarantee the safety of local citizens from future infection resurgence by

determining appropriate surveys and monitoring strategies.

Role of risk factors • Investigate the effect of environmental risk factors on transmission of parasites.

• Guide control efforts in the absence of epidemiological information.

Mapping Uncertainties • Spatial representation of uncertainty as a necessary resource for decision

making.

doi:10.1371/journal.pntd.0005208.t003
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Uncertainty sources in modelling and mapping helminth infections (uncertainty in the

data). Sources of uncertainty shown in the red box in Fig 2 were classified into four: (1) sur-

vey, (2) Earth observation, and (3) socio-economic data, (4) inherent group characteristics.

Survey data encompassed uncertainties in the response variable, while Earth observation and

socio-economic data were uncertainty sources coming from the covariates. Survey data con-

tained uncertainty from the sampling design and diagnostic technique. Sampling design refers

to the type of survey used, sample manipulation, sample size selection, incomplete sample cov-

erage, logistic limitations, survey registration method, adjustment for confounding and the

measured morbidity indicator. Uncertainty in the diagnostic technique arises due to the lack

of sensitivity and specificity in the methods used to detect helminth parasites eggs in the stool

or urine of affected individuals. Uncertainties derived from Earth observation data arise due to

spatio-temporal misaligned data, incorrect selection of significant environmental and socio-

economic variables, as well as selection of spatial and temporal support of analysis which do

not fit the study purpose. The term misaligned data refers to the combination of multiple data-

sets that may be defined on different or non-aligned spatial units [55], whereas the support

refers to size, shape and orientation of the spatial units [56]. The term scale can have multiple

meanings in geographical information science (GIScience) [44]; here we consider scale in

terms of the support of the data and the extent of the study domain [45]. Data quality refers to

the evaluation in terms of fitness-for-use for a given application [11]. This evaluation addresses

the completeness, logical consistency, time, attribute and positional accuracy of spatial data

[57–60]. Different measurements of the same variable may even have different qualities

according to the sensitivity, specificity and accuracy of the instrument or measurement

technique.

Scale is a major concern in spatial epidemiology [11,45,61–63]. Different environmental

and socio-economic risk factors may be relevant according to the scale of the analysis [11,64].

For a given extent the choice of support may affect the patterns identified in the data [65,66] as

well as the relationship between the response variable and covariates. This is known as the

modifiable areal unit problem (MAUP) in GIScience [11,44]. Different datasets may be mis-

aligned and need to be brought to a common grid prior to analysis [66,67]. Hence it may be

necessary to aggregate, disaggregate or interpolate data prior to analysis [11,68]. All of these

operations may be applied in time and space and all have an associated uncertainty. Issues

about the selection of significant environmental and socio-economic variables referred to: (1)

the exclusion of some socio-economic and climatic factors, which due to logistics or lack of

reliable information have not been included in the modelling process; (2) the uncertain choice

of covariates produced by the lack of knowledge about the influence of risk factors depending

on the spatial support of analysis, the spatial support of the data and other aspects of data

quality. Sources of uncertainty derived from inherent group characteristics refer to the hetero-

geneous distribution of parasites in the population, and the influence of polyparasitism (infec-

tion due to multiple parasites also termed coinfections) on the risk of infection.

Uncertainty definition and quantification in helminth infections mapping. As men-

tioned in the introduction, uncertainty was conceptualized as imperfection and further catego-

rized as accuracy and imprecision [17,18]. Accuracy may be evaluated by comparison with a

reference dataset [17,18,27,28,45,48,50] and different quantitative measures may be used

depending on the type of data. Continuous data may be evaluated using the root mean square

error (RMSE) or mean absolute error (MAE), which are both measures of the average error.

Bias can be evaluated using the mean error. Categorical data are typically evaluated using a

confusion matrix with summary measures including the overall accuracy, user’s and produc-

er’s accuracy and kappa statistic. Binary data may be evaluated using the area under the

receiver operator curve (ROC) (AUC). Measures of accuracy are summarized in Table 4.

Uncertainty in Mapping STH and Schistosome Infections
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Evaluation of imprecision depends on the nature of the phenomena and data being studied.

Where these are well defined, imprecision may be defined statistically [21,32] and applied in

both Bayesian and frequentist settings. The error variance is the usual measure here, although

this is commonly expressed as the standard deviation or standard error [32] or as an interval–

such as the 95% confidence interval (frequentist) or credible/credibility interval (Bayesian)

[69]. Vagueness may be evaluated using fuzzy set or rough set theory [21,32]. Table 4 shows

the elements and measures of uncertainty conceptualized as imperfection.

Results

Search strategy

The total number of papers found in each search is shown in Table 5. Table 6 shows the result-

ing number of read and discarded papers presented per infection. In total 73 papers were

selected, from which 14 were review papers. While the identified review papers were not

included in this review we examined their reference lists; this yielded another 14 valuable refer-

ences that had not been identified by our original search. Finally 73 primary research papers

were included in our systematic review. Our results demonstrate that the annual number of

publications on mapping and modelling STH and schistosome infections was constant until

the year 2007 and steadily increased since then; since 2008 a total of 49 (67% of the total)

papers were published (Fig 3).

Table 4. Measures of uncertainty corresponding to different types of data.

Categories of imperfection Types of data Measures of uncertainty Abbreviation

Imprecision Continuous data Standard deviation SD

Credible intervals CrI

Confidence Intervals CI

Categorical data (Vagueness) Fuzzy sets

Rough sets

Inaccuracy Continuous data Root mean square error RMSE

Mean absolute error MAE

Residual mean square RME

Mean error (bias) ME

Categorical data Overall accuracy OA

User’s accuracy UA

Producer’s accuracy PA

Kappa statistic K

Binary data Area under the receiver operator characteristic curve AUC

doi:10.1371/journal.pntd.0005208.t004

Table 5. Results of the search performed in the Web of Knowledge and PubMed, using the search

terms and the corresponding keywords given in Table 1 and Table 2 respectively.

UT ST DT Results Web of Science Results PubMed

1 3 4 24 23

2 3 4 72 65

1 3 5 0 5

2 3 5 7 18

1 3 6 19 13

2 3 6 52 90

doi:10.1371/journal.pntd.0005208.t005
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Data collection process

Uncertainty use in helminth infection mapping for morbidity control. For policy mak-

ing 47 (64%) studies used uncertainty information, in planning, intervention, monitoring,

evaluation and consolidation of MDA campaigns (Table 7). This was followed by 15 (21%)

studies that focused on increasing cost effectiveness of these programmes. Five studies (7%)

used uncertainty in disease maps to inform about prevention strategies such as to plan and

guide hygiene education and infrastructure WASH programmes. For scientific interpretation,

only seven studies (10%) used uncertainty to improve spatial sampling, eight studies (11%)

used it to investigate the role of environmental and socio-economic risk factors on the infec-

tions, and 17 (23%) papers mapped uncertainty.

Uncertainty sources in modelling and mapping helminth infections. Table 8 shows

that, from the total number of reviewed papers, sampling design was the most highlighted

source of uncertainty, with a total of 42 (58%) papers acknowledging it. The second and third

most highlighted sources of uncertainty were diagnostic techniques, with a total of 29 (40%)

papers acknowledging it, and selection of significant environmental and socio-economic vari-

ables, acknowledged by 22 (30%) papers. The last highlighted uncertainty source was related to

spatial support, with 19 (26%) papers acknowledging it. The least highlighted uncertainty

sources were: inherent group characteristics, use of data with insufficient quality, temporal

support, and spatio-temporal misalignment, with 15 (20%), 15, 7 (10%) and 5 (7%) papers

acknowledging them respectively. From the category sampling design, the most highlighted

sources of uncertainty were: incomplete sample coverage and sample size, with respectively 16

(37%) and 22 (51%) papers acknowledging them respectively (Table 9). Heterogeneity and

polyparasitism were acknowledged by nine (12%) and six papers (8%) respectively

Table 6. Total number of read and discarded papers presented per infection.

Read papers Discarded papers

Schistosomes 47 26

STH 26 26

doi:10.1371/journal.pntd.0005208.t006

Fig 3. Year of publication of studies included in this review.

doi:10.1371/journal.pntd.0005208.g003
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Regarding uncertainty relating to the model, model structure was the most highlighted

source of uncertainty, with 19 (26%) papers acknowledging it, followed by, uncertainty in

model selection and uncertainty in model parameters with 3 (4%) papers each (Table 10).

Uncertainty definition and quantification in helminth infections mapping. Four ways

to define uncertainty were found: accuracy, imprecision, bias and vagueness. Sixty-one (83%)

papers expressed uncertainty in the modelled results using measures of imprecision and credi-

ble intervals were the most frequently used measure of imprecision (Table 11). Thirty-nine

(53%) papers defined uncertainty by means of accuracy, using mostly the area under the curve

of the receiver operating characteristic and the percentage of correctly predicted morbidity

indicators. Bias and vagueness were the least used measure of uncertainty with only five (7%)

and one (1%) papers quantifying uncertainty in their results by means of mean error and fuzzy

sets respectively.

A total of 57 (78%) studies evaluated regression coefficient parameters by means of

precision, and quantified them using Bayesian approaches (57%), and frequentist approa-

ches (52%). This overlap arose because several authors first used frequentist non-spatial

approaches to identify the significant covariates [54,60,65,66,70–96] and then applied

these covariates in a Bayesian geostatistical model [2,4,95,97–112]. Two papers (3%) quan-

tified the uncertainty arising due to questionnaires data, as well as the uncertainty arising

due to combining age-groups in the predictions [71,101]. Regarding diagnostic tech-

niques, two studies (3%) addressed diagnostic uncertainty by modelling sensitivity and

specificity as random variables, specified as beta distributions, and quantified as posterior

credible intervals [76,87].

Discussion

Currently, decisions about helminth control programs and their cost-effectiveness are made

under uncertainty. To assist decisions about investment and allocation of disease control

resources such as mass drug administration, maps depicting the geographical limits of risk

are being used as decision support tools. Modern disease mapping utilizes advanced model-

ling frameworks to determine the endemicity of infection. There is a concern about the

validity of spatial modelling frameworks in that, if spatial uncertainty is not adequately

taken into account, this could result in erroneous conclusions and decisions about the spa-

tial distribution of these diseases [51].

Uncertainty use in helminth infections mapping for morbidity control

Most of the studies used information on uncertainty to guide MDA campaigns and evaluate

their cost effectiveness. Information on uncertainty was also used to evaluate the role of risk

Table 7. Use of information on uncertainty in the public health context

Uncertainty informs about Papers SCH Papers STH Total

Policy Making Cost effectiveness [66,71,77,81,98,99,103,112,130,148] [87,88,107,108,149] 15

Planning, intervention, monitoring,

evaluation and consolidation of

MDA campaigns.

[16,53,65,66,71,74–77,79–81,93,96–

102,104,105,111,119,125,130–132,138,147,148,150–155]

[87,90–92,107–

109,129,140,156,157]

47

Plan and guide prevention

strategies

[79,130,154] [108,140] 5

Scientific

Interpretation

Sampling [71,75,80,106,119,152] [82] 7

Role of risk factors [54,78,89,94,95,155] [84,85] 8

Mapping uncertainty [66,70–72,74,75,77,79,80,98,105,111,119,130,131] [108,109] 17

doi:10.1371/journal.pntd.0005208.t007
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Table 9. Categories of sources of uncertainty and papers included in this review grouped into categories

Categories Uncertainty

sources

Papers focusing in schistosomiasis Papers focusing on STH TOTAL

Sampling Design Type of survey [97,100,101,125,160] [156] 6

Samples

manipulation

[138] 1

Sample size [66,72–74,80,100,103–105,111,125,130–132] [86,87,107,109,110,140,156,158] 22

Sample coverage [76,80,93,99,105,111,130,147] [87,88,90,92,107,129,140,159] 16

Logistics [78,81,99,131,133] [86,92] 6

Survey registration

method

[71,91,103] 3

Adjust for

confounders

[101] 1

Selection of the

measure of risk

[125] [140,160] 3

Diagnostic

Techniques

Sensitivity and

specificity of

diagnostic methods

[65,66,76,78,79,81,95–97,101,104–106,111,112,130–

132,138,148,154,155]

[86,87,107,108,140,149,157] 29

Spatial support Spatial aggregation

and disaggregation

[71,76,77,81,95,97,103,106,111,130,131,147,154] [84,85,108,109,156,159] 19

Temporal

support

Temporal

aggregation and

disaggregation

[73,106] [84–86,88,109] 7

Data quality Position accuracy,

logical consistency,

time accuracy,

completeness,

attribute accuracy

(pre-processing)

[16,74,77,79,89,91,93,95,99,106,119] [88,90,129,140] 15

Spatio-temporal

misaligned EO

data

Spatial and temporal

misaligned EO data.

[103,154] [119,129,140] 5

Selection of

environmental

and socio-

economic

variables

Environmental:

Distance to water

bodies, land surface

temperature, soil

moisture, vegetation

cover, Rainfall.

[71,76,79,81,94,101,104,111,125,130,131,133,147,150,151,154] [86,87,107,108,140,156] 22

Socio-Economic:

poverty, clean

water, sanitation

and hygiene,

urbanization, land

use.

Inherent group

characteristics

Heterogeneity [66,76,94,99,104,148] [107,140,160] 9

Polyparasitism [66,111,112,148] [110,129] 6

doi:10.1371/journal.pntd.0005208.t009

Table 10. Model sources of uncertainty

Model uncertainty

sources

Papers SCH Papers STH Total

Model parameters [16,78,99] 3

Model selection [119] [140,160] 3

Model structure [53,66,73,75–77,81,99–

101,104,106,119,130,147,148]

[85,107,108,140] 20

doi:10.1371/journal.pntd.0005208.t010
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factors in mapping helminth infections. Nevertheless, prevention strategies, improvements in

sampling design, and mapping of uncertainty have not yet been addressed [113–116]. We

advise to use information on uncertainty not only to inform about MDA campaigns, but also

to inform about prevention strategies such as improving sanitation and hygiene education

[117] or delineating potential transmission sites [116]. Transmission control is important for

its public health relevance, since potential disease transmission sites could guide direct inter-

vention measures at the place of infection [62,116]. Likewise, mapping of uncertainty is also

recommended, since it is known to be an important tool for public health decision making,

Fig 4. Stages of uncertainty analysis when mapping STH and schistosome helminth infections. Colour coding as for Fig 2.

doi:10.1371/journal.pntd.0005208.g004
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especially to determine the geographical distribution of areas for which information is lacking

[112]. Mapping could be used as a tool to improve the sampling strategy and modelling efforts.

Maps of uncertainty could also support communication of uncertainty to the affected commu-

nities. A complete exploration and judgement of uncertainty information would enhance the

assessment of the risk of getting these infections, and would allow to understand potential

impacts on human health [51].

While most studies identified and discussed different sources of uncertainty, this was

mainly limited to a qualitative discussion, rather than a quantitative one [118] (Table 11). For

instance, 38 (52%) papers highlighted qualitatively the importance of sampling design in map-

ping helminth infections, but only two studies (3%) have quantified their possible effects on

the accuracy of the predicted morbidity indicator. An example is given by Clements et al [119],

where uncertainties in the predictions were used to identify areas requiring further data collec-

tion before programme implementation. The lack of a quantitative assessment limits the utility

of the findings in both policy/decision making setting and a scientific setting [51,118,120,121].

Communication of uncertainty will never be complete without an extensive quantification of

uncertainties in all possible information sources [51,120,122], where model assumptions,

selection of covariates and acquisition of survey data are clearly explained, either within the

publication or as supplementary information.

Uncertainty sources in modelling and mapping helminth infections

Fig 4 shows the three uncertainty stages previously described in Fig 2, where these stages

encompass specific uncertainty components, which need to be considered for a complete

uncertainty communication. Each of these components is analyzed in the next sections.

Uncertainty in the response variable (morbidity indicator). This uncertainty belongs to

the first uncertainty stage (uncertainty coming from different data sources) and is described in

Box A from Fig 4. This type of uncertainty exists as a function of the measurement [46] or data

collection. Uncertainty in the response variable depends on the survey data quality, generated

based on the sampling design, and the used diagnostic approach (Fig 2). A total of 68% of the

papers mentioned the importance of sampling design as the main source of uncertainty, sup-

porting the idea that significantly biased results may be produced due to an inappropriate

sampling design [123]. When mapping helminth infections, it is suggested to document the

sample size calculation method, together with the analysis of a certain target group selection.

Other sources of uncertainty in sampling design are related to the type of survey, type of mor-

bidity indicator and the use of misaligned survey data. For instance, Chammartin et al. [97]

argued that cross sectional studies might not capture well the focal pattern of schistosomiasis,

since their information is based on an specific point in time. Likewise, prevalence as the most

frequently used morbidity indicator, underestimates morbidity values [76,124–128] and was

considered a biased and poor indicator of risk [123,125]. Also, combining data from different

sources of information, with different survey times and diagnosis methods may result in inac-

curate estimates [66,71,100,101,129]. This is why it is suggested to document all possible draw-

backs in the selected type of survey and measure of risk, and document all problems when

using misaligned survey data.

Data collection also influenced the results when there was a lack of spatial and laboratory

sampled data in areas where the presence of infection was suspected to be high [66,72–

74,80,100,103–105,111,125,130–132]. This could be due to inaccurate and missing reports

[131], lack of people’s participation [132] and limited access to geographical areas [81]. All

these potential causes should be reported as well as issues regarding high costs of the survey,

diagnosis, delivery of drugs, type of registration resource and limited training and expertise of

Uncertainty in Mapping STH and Schistosome Infections
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field personnel, which might also influence the quality of the results [78,81,99,131,133–135].

For instance, the use of questionnaires might underestimate prevalence data, since their dis-

criminatory performance differs among regions, and these are not always completely returned

by surveyed people [71,103,136,137]. Finally, issues related to diagnostic technique, sample

manipulation [135,138], and lack of stratification due to confounders [101,126,139] are also

important to be considered and should also be reported and analyzed.

Uncertainty in the covariates (EO data). This uncertainty is also part of the first uncer-

tainty stage and is represented in Box B of Fig 4. Main sources of uncertainty in the covariates

were related to the selection of significant environmental and socio-economic risk factors, the

type of environmental data, and also to the selection of the spatial support of analysis. The

importance of including risk factors such as sewage system, water supply and other climatic,

demographic and socio-economic variables were the most highlighted issues (Table 8). Soares

Magalhães et al [140] found that including WASH indicators as random variables in the model

contributed to improved definition of the areas to target for integrated helminth control and

improvement of WASH risk factors. The selection of EO data depends on the selected spatial

support, defined based on the research objective and analysis method used [141,142], but also

on the quality of EO data itself. In addition Walz et al. [4] argued that the relevance of environ-

mental variables are expected to vary between different landscapes and ecological regions, hav-

ing an impact on the predicted morbidity indicators. Likewise, socio-economic and ecological

processes that govern schistosomiasis transmission operate and vary across different scales of

observation [143,144]. Since statistical correlation can vary according to the extent of the stud-

ied area and the scale of aggregation [116,145], quantitative methods to select the optimal

support of analysis, such as aggregation and disaggregation process should be documented.

Clear guidance on the selection of the optimal support of EO data does not exist [11], and

this remains an open topic of research. Nevertheless the choices made as well as an applied

aggregation or disaggregation should be documented. Although few studies highlighted the

relevance of data quality, temporal support and extent, and spatio-temporal misaligned data

(Table 9), these sources of uncertainty cannot be ignored. Data quality elements (i.e complete-

ness, logical consistency, temporal accuracy, spatial accuracy, and attribute accuracy [58])

relate to the identification of uncertainty sources, and have been shown to influence the pre-

dicted disease risk [11]. EO quality elements should also be addressed and analyzed, as well as

possible inconsistencies in their pre-processing. Attention should also be put to the selection

of the temporal support of analysis [146], which need to be defined depending on the study

objective and the host and vectors epidemiology and ecology. Finally, both temporal and

spatial supports need to be adjusted into a common temporal and spatial grid since different

spatial and temporal supports, could lead to erroneous conclusions in the predictions [56].

According to our analysis, although uncertainty in the covariates has been highlighted by

most studies, almost none of them have quantified their impact on the disease risk predictions,

and just a few have incorporated uncertainty in the response variable. Uncertainty quantifica-

tion and documentation is suggested in order to completely inform about uncertainty and

help decision makers and public health scientists to undertake independent uncertainty assess-

ments [121] and better communicate uncertainty [51,120].

Uncertainty in the EO data selection, predictive model and predicted disease values.

Spatial prediction of parasitic disease risk patterns are explained by the statistical relationships

between environmental and socio-economic covariates, individuals, and observed risk of

infection [9]. Setting initial candidate environmental and socio-economic covariates and their

inclusion in the predictive model is one of the first steps for geostatistical modelling of hel-

minth infections. Thus the methods used for this selection should be explained and docu-

mented explicitly such that the statistical method itself and the measure used for covariates
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inclusion are clearly interpreted in the mapping process (Box C from Fig 4). The selection of

the predictive model, its possible limitations (when estimating model parameters, predicting

morbidity indicators, or handling non-linear relations between response variables and covari-

ates) and assumptions made, should also be reported and justified, explaining step by step the

reasoning behind the use of the specific model (Box D from Fig 4). Boxes C and D in Fig 4

relate to the green box (uncertainty in the predictive model) in Fig 2, whereas Box E relates to

the model output (yellow Box from Fig 2).

The mean predicted values are often aggregated to different administrative supports, with-

out considering the uncertainty in the predictions [147]. This could lead to a biased estimate

Fig 5. Framework for the evaluation and utilization of uncertainty in mapping soil transmitted helminth infections and schistosomiasis

doi:10.1371/journal.pntd.0005208.g005
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of treatment needs [144,147]. Uncertainty can and should be incorporated into the aggregation

process, yielding measures of precision (e.g., credible intervals) in the aggregated predictions.

Where feasible, we advise validation of the predicted aggregated morbidity indicators (Box E

in Fig 4) against empirical observations [147]. This will facilitate a more appropriate spatial tar-

get of intervention and prevention strategies.

Conclusions

Acknowledging and incorporating uncertainty in mapping and modelling helminth infections

is a step-by-step process, which should be considered formally when developing geographical

models of helminth infection. Geographical models aim at informing, not only about MDA

campaigns and their cost-effectiveness, but also prevention strategies, where it is necessary to

define transmission areas and plan and guide hygiene education and infrastructure programs

in water sanitation and hygiene. A quantitative and qualitative analysis of uncertainty is neces-

sary for a complete assessment of risk, to understand potential impacts on human health, and

to allow a complete uncertainty communication to public health managers. Five components

of uncertainty analysis were recognized: (1) uncertainty in the response variable, (2) uncer-

tainty in the covariates, (3) uncertainty in the relationship between them, (4) uncertainty in

the predictive model, and (5) the propagated uncertainty on the results. Our conclusions are

shown diagrammatically in Fig 5, which aims at providing a framework for a full uncertainty

evaluation when undertaking spatial modeling of helminth infections for policy formulation.

Uncertainty analysis should start by identifying possible sources of uncertainty in the studies

and categorize them such that at least the most important ones can be incorporated into the

predictive model. Sampling design and EO data have been acknowledged as the major sources

of uncertainty and should be given primary attention in the modelling process. In particular,

sampling design, diagnosis, selection of significant risk factors, and selection of an adequate

spatial support of analysis. Next, uncertainties in the response variable and covariates should

be quantified and incorporated into the model. Methods used to define the relationship

between covariates and response variables should also be documented, as well as the selection

of the predictive model and its limitations. Finally, uncertainties in the parameters and

response variables should be quantified, and uncertainty mapping should be performed as a

valuable element for uncertainty communication and policy formulation.
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