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Abstract: Disulfide bonds play a pivotal role in maintaining the natural structures of proteins to
ensure their performance of normal biological functions. Moreover, biological molecular assembly,
such as the gluten network, is also largely dependent on the intermolecular crosslinking via disulfide
bonds. In eukaryotes, the formation and rearrangement of most intra- and intermolecular disulfide
bonds in the endoplasmic reticulum (ER) are mediated by protein disulfide isomerases (PDIs), which
consist of multiple thioredoxin-like domains. These domains assist correct folding of proteins, as
well as effectively prevent the aggregation of misfolded ones. Protein misfolding often leads to
the formation of pathological protein aggregations that cause many diseases. On the other hand,
glutenin aggregation and subsequent crosslinking are required for the formation of a rheologically
dominating gluten network. Herein, the mechanism of PDI-regulated disulfide bond formation is
important for understanding not only protein folding and associated diseases, but also the formation
of functional biomolecular assembly. This review systematically illustrated the process of human
protein disulfide isomerase (hPDI) mediated disulfide bond formation and complemented this with
the current mechanism of wheat protein disulfide isomerase (wPDI) catalyzed formation of gluten
networks.
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1. Introduction

The earliest concept of “protein folding” was raised by Christian B. Anfinsen, who
considered that all information about the three-dimensional structure of a protein is stored
in its amino acid sequence, e.g., a protein could fold itself correctly without external help
or impact [1]. Later on, John Ellis proposed a new notion of protein folding: the folding
and assembly of a certain polypeptide chain to form the correct oligomeric structure is
ensured by proteins that act as molecular chaperones [2]. Molecular chaperones are a large
and diverse group of proteins that share the capability of assisting noncovalent folding and
unfolding, the assembly and disassembly of other macromolecular structures, while they
would not become a permanent part of these structures after finishing their duties [3]. The
theory of molecular chaperones-assisted self-assembly does not necessarily conflict with
the thermodynamic hypothesis established by Anfinsen, but rather expands the protein
folding theory from a kinetic perspective [1].

Oxidative protein folding is a special protein-folding process accompanied by the
formation of disulfide bond(s). It may be the most complicated protein folding scenario, due
to the possibility of protein misfolding being increased with increasing cysteine numbers
in a protein, where only one disulfide bond pattern is proper for the correct folding [4].
Moreover, redox-active molecules, such as glutathione (GSH), oxidized glutathione (GSSG),
thiol compounds, and so on, also exhibit significant effects on the rates of oxidative protein
folding and the yield of native proteins [5]. In all cases, the process of generating a natural
protein conformation involves both disulfide bonds formation and isomerization steps [6].
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Disulfide bonds, which stabilize protein conformation and participate in the regulation of
the protein redox process, are very important for the structure, function, and regulation
of protein activities. In addition, the formation of disulfide bonds is a key rate-limiting
step in protein folding, and the efficiency of spontaneous disulfide bond formation is
far lower than that under enzymatic catalysis. It′s worth noting that misfolding occurs
when cysteine residues are mismatched into disulfides [7]. Misfolding of protein often
leads to the loss of its biological function and the emergence of many diseases, such as
Alzheimer′s disease, Parkinson′s disease, and type II diabetes [8–11]. However, organisms
utilize many mechanisms, including isomerases and enzymes that degrade misfolded
proteins, to maintain the protein homeostasis [12]. In other words, correct protein folding
in vivo is achieved under the efforts of many enzymes and chaperones.

The classic substrate, ribonuclease A, was firstly used to study the oxidative folding
catalyzed by enzymes, and since then the key catalyst—protein disulfide isomerase (PDI)—
has been extensively characterized [13–15]. For more than half a century′s study, researchers
have revealed the physiological functions, biochemical properties, and three-dimensional
structures of PDI, and it was shown to play a critical role in the oxidative protein folding.
PDI catalyzes the oxidative folding of many substrates with well-defined oxidative folding
pathways. For example, in previous studies, researchers demonstrated that PDI specifically
recognized folding intermediates, such as N* and N′, in bovine pancreatic trypsin inhibitors,
to effectively guide their oxidative folding [16–19]. PDI-catalyzed oxidative protein folding
is virtually a process in which enzymes interact with substrates and catalyze the formation
of native disulfide bonds in the substrate protein. To effectively guide a proper oxidative
protein folding, it is believed that PDI regulates its conformational and oligomeric states’
dynamics according to its redox states and the folding states of its substrates [20,21]. In this
paper, we reviewed the mechanism of human protein disulfide isomerase (hPDI) catalyzed
oxidative protein folding and the mechanism of wPDI-catalyzed glutenin macropolymers
(GMP) formation, for a timely update of PDI studies.

2. Conservative Primary and Dynamic Tertiary Structures of hPDI

PDI is ubiquitous in organisms. Structural and functional studies of protein disulfide
isomerases (PDIs) from various species, including bacteria, wheat, humans, and yeast
etc., have been reported after it was identified as an enzyme that facilitates protein fold-
ing [13,22–28]. Meiri et al. categorized 51 PDI-like proteins, which contained four types
key domains (a, b, c, and Erp29c), into six clusters based on their sequences [29,30]. Most
mammalian PDIs, but not all, belong to cluster six according to this classification, owing
to the fact that those PDIs possess four typical domains (a, b, b′, and a′). For example,
ERp72 of humans has five thioredoxin-like domains and thus belongs to cluster three [31].
Among mammalian PDIs, either the functional mechanism or structure of hPDI has been
intensively studied [24]. Currently, the hPDI family has more than 20 members, and each
of them consists different numbers of thioredoxin-like domains, which usually contribute
to the oxidative folding and disulfide bond rearrangement in substrate proteins [32,33].
As for higher plant PDIs, wheat PDI (wPDI) is discussed here. There are nine PDI genes
that have been identified, and those PDIs and PDI-like wheat genes show high diversity in
their genomic organization, sequences, and domain constructs of their deduced proteins.
Interestingly, each wPDI gene shows high structural conservation with the genes from
other plant species in the same phylogenetic group [34]. On the other hand, the constructs
of hPDI family members differ from that of higher plants and yeast [35,36]. Here, we
chose several PDIs from three different species, including protein disulfide isomerase
from wheat (wPDI), human (hPDI), and yeast (yPDI), and compared their amino acid
sequences (Figure 1). The sequence of hPDI exhibited high degree (40.80%) of sequence
homology when compared with wPDI and yPDI. Meanwhile, there was a highly conserved
catalytic region (EFYAPWCGHCK) maintained close to the N- and C-terminuses, and an
endoplasmic reticulum (ER) retention signal sequence at their C-terminuses. These above
PDIs all contain four thioredoxin-like domains with a βαβαβαββα structure.
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Generally, hPDI contains four distinct structural domains (a, b, b′, and a′) deduced
from its tertiary structure, plus an inter-domain region, named x-linker, between the b′

and a′ domains and a c tail [38,39]. It is an elongated monomer where its domains are
arranged almost linearly as a, b, b′, x, a′. The catalytic a and a′ domains are homologous
to thioredoxin, and each contains a catalytic CXXC motif, which is essential to provide
efficiently the donor of reducing equivalents for the formation of substrate protein disul-
fides. These active-site cysteine residues can either be in the form of free sulfhydryl or form
a pair of disulfide bonds with each other. The active sites of PDI exhibit high reduction
potentials that mainly depend on the pKa values of the two cysteine residues [40]. PDI′s
redox potential affects the ratio of reduced PDI [41]. The physiological functions of hPDI,
including oxidation, reduction, and isomerization, are determined by the redox equilibrium
in the catalytic sites under cellular conditions. So, not only the pKa value, but also their
redox potential, is of importance for the physiological functions of hPDI [36]. Besides,
the enzymatic activity of PDI is affected by the X amino acid in the active site CXXC
sequence [42]. The b′ and b domains, which are not the catalytic sites, are also homologous
to the theoredoxin domains [38,43]. Studies have shown that the role of the b′ domain is
to bind substrate proteins [44–46]. The c tail contains many acidic amino acids and an ER
retention signal [47,48]. Structural and biochemical studies indicated that the a′ and b′

domains are primarily responsible for substrate recognition. In particular, mutational and
cross-linking analyses found that the b′ domain provides the principal substrate-binding
site, whereas the a′ domain acts as a disulfide donor/receptor for the substrates during the
redox process [49,50].

To effectively guide proper oxidative protein folding, the conformation of hPDI
changes according to its redox state [24,51,52]. Solid evidences concerning the redox-
regulated conformational changes of hPDI have been supported by several studies [20,24,53].
For reduced PDI, it is considered as a “closed” conformation since it limits the binding
of substrate for both human and fungal PDI [23,52,54]. For oxidized hPDI, the cysteine
residues in the active site are connected by disulfide bonds, which are considered an “open”
conformation. The hydrophobic surface of the a′ and b′ domain is exposed when reduced
hPDI is transited to oxidized hPDI, providing a capability for binding extended/unfolded
proteins or less-folded intermediates [51,55]. The conformational changes during the redox
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cycles are mainly located in the b′xa′ region by comparing structures of hPDI in different re-
dox states [24]. Particularly, once the redox state of the a′ domain in fungal PDI changes, the
b′xa′ domains undergoes conformational rearrangement, and therefore the x region moves
away from a conformation in which it caps the substrate binding site [55,56]. Change in the
conformation of the x region between the “capped” and “uncapped” states also results in a
significant movement of the a′ domain with respect to the b′ domain [15]. Recently, studies
have found that the stability of hPDI conformation, which is both redox-dependent and
domain-specific, will increase in the absence of a′ domain [53]. Thus, the redox-regulated
conformational transition is supposed to be related to the substrate protein binding.

In addition to its redox-sensitive structural change, hPDI also exhibits substantial
conformational flexibility to substrate. Many structural studies have identified that hPDI is
highly flexible in the substrate binding and release cycles [57–59]. Generally, the ab domains
are more flexible than the bb′ domains during hPDI redox cycle. However, the most flexible
region is the b′xa′ region, especially the a′ domain, which changes greatly in hPDI′s
redox transition [51]. Moreover, several researchers have discovered that hPDI contains
multiple binding sites with moderate to low affinities, which allows hPDI to accommodate
a wide variety of substrates with different conformations and sizes or at different folding
extents, and promotes the release of the substrate from hPDI when the reaction cycle is
completed [22,60,61]. These prominent structural features enable hPDI to exert its biology
function as an oxidoreductase and/or a chaperone efficiently. Crystal structures of PDI
from humans and yeast have revealed that the substrate binding site is partially occupied
by another PDI molecule [24,62,63]. This is probably due to the fact that PDI stabilizes its
conformation by binding to another PDI molecule under crystallization conditions.

3. Biochemical Activities of hPDI

ER is the primary site where hPDI performed its activities in vivo, and hPDI is reck-
oned as a crucial component of the ER protein folding capacity as it mediates the disulfide
bond formation during protein folding. When the misfolded or unfolded proteins accumu-
late within the ER, they give rise to ER stress. ER stress subsequently activates the unfolded
protein response (UPR), which aims to alleviate the ER stress. In UPR, an important mark
is the upregulation of protein chaperones to improve the ER folding capacity. hPDI is one
of these chaperones, and it not only improves the folding level of misfolded proteins when
UPR occurs, but also performs these activities in normal cell conditions. hPDI primarily
achieves its function of catalyzing protein by performing the following biochemical activ-
ities: oxidation, reduction, and isomerization of disulfide bonds in substrate proteins in
ER [36,48,64].

3.1. Oxidoreductase Activity

To achieve the folding of a native protein, PDI catalyzes repeated reaction cycles
of dithiols to disulfides, which is mainly related to the oxidoreductase activity of PDI.
Catalysis by PDI as an oxidant can be attributed to its high reactivity of the active site [65].
Specifically, the minimal unit is considered to be an isolated a or a′ domain from hPDI,
which is able to catalyze the oxidation reactions efficiently in substrate proteins [66,67].
hPDI exerts oxidase activity, in which the disulfide bond in the active site is “transferred”
to the substrate proteins while hPDI itself is reduced, in which cysteines in the active site
are free sulfhydryl. GSSG has been regarded as the oxidant of hPDI in the ER. It is believed
that GSSG acts as an electron acceptor, oxidizing sulfhydryl groups in the active site of
hPDI and converting them into disulfide bond again [68]. It was not until the discovery of
the flavoprotein, which was also called endoplasmic reticulum oxidoreductase 1 (Ero1), in
ER, and the identification of its biological functions that the above theory was implemented.
It is believed that PDI is the physiological substrate of mammalian Ero1, and the oxidation
of PDI is mainly under the assistance of Ero1 [69]. However, the oxidation of plant PDI
may also require the assistance of plant Ero1 [70,71].
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Complementary to its oxidase activity, hPDI also exhibits reductase activity, which
converts cysteines in the active site of hPDI into a disulfide bond, while the substrate
protein is reduced. An electron donor, such as dithiothreitol, is required to reduce the
disulfide bond at the active site of hPDI for completing its catalytic cycle. In essence, the
reductase efficiency of PDI is much lower than that of the thioredoxin reductase, indicating
that the reductase activity is not the primary catalytic function of PDI [72].

3.2. Isomerase Activity

Any two cysteine residues in a protein have the potential to form a disulfide bond,
except those too adjacent ones. The more cysteine residues in a protein, the higher the
possibility of forming disulfide bonds. Nevertheless, a protein usually needs only one
correct mode of disulfide bond(s) and free thiol(s) in its natural state. Many proteins
presumably form both native and nonnative disulfide bonds during oxidation. Cysteines
are prone to mispairing in the early stages of protein folding, resulting in failure to reach
their native structures [73]. Once incorrect disulfides are formed, disulfide isomerization
is required to convert the disulfides to their native conformation, where the isomerase
activity of PDI is often employed.

Protein isomerization reaction catalyzed by PDI contains two mechanisms, namely the
direct isomerization mechanism in the substrate molecule and the “reduction/oxidation
cycle” isomerism mechanism [48]. The former refers to the reaction where the active site
cysteines near the N-terminus perform a nucleophilic attack on the substrate protein. When
the cysteine residues at the N-terminal attack the disulfide bond in the substrate to form a
PDI-substrate covalent complex, the reaction that the released sulfhydryl groups (SH) in
the substrate decides the “destiny” of the complex. There is no isomerization if the active
site of PDI from rat reversibly attacks the disulfide linkage in PDI-substrate, and PDI is
released without disrupting the disulfide bonds of substrate [74]. Since no net change exists
in the redox state of PDI′s active site, no other redox equivalents are needed in the direct
isomerization mechanism [15]. This simple reversible reaction mechanism may endow the
function of hPDI recognizing natural or mismatched disulfide bonds [75]. Additionally,
when a sulfhydryl in the substrate attacks the disulfide bond in the complex and replaces
the cysteine in PDI, an isomerization process occurs through an intramolecular disulfide
bond rearrangement within the substrate itself. In particular, rat PDI still retains part of
its isomerase activity even if the cysteine at the C-terminal active site is mutated to serine
(CGHS), indicating that the active-site cysteine in the C-terminal has limited impact on the
direct intramolecular isomerization [74].

Although cysteine at the C-terminal active site of PDI is not essential for the direct
isomerization reaction, it does participate in the “reduction/oxidation cycle” isomerization
mechanism. Studies have reported that cysteine mutants in C-terminal active sites still
retain some isomerase activity and cycling of redox reactions can be observed during iso-
merization [76,77]. In this isomerization mechanism, the cysteine residues at the C-terminal
active site attack the disulfide bond of the PDI-substrate complex, where the disulfide
bonds of the substrate protein are reduced to free sulfhydryl, which is regenerated by oxi-
dized PDI, during which the conformational changes occur. Meanwhile, PDI is separated
from the complex in the form of its oxidized state. In this way, isomerization can be viewed
as repeated cycles of reduction and re-oxidation, leading to disulfide rearrangements until
the configuration of substrate is correct [74].

3.3. Chaperone Activity

In addition to the above enzymatic activity, hPDI also exhibits molecular chaperone
activity, through which it stabilizes the unstable conformation of substrates and promotes
the folding of nascent polypeptide chains [78,79]. Thus, it is widely accepted that hPDI is
both an enzyme and a chaperone [80]. It is difficult to distinguish the chaperone activity of
hPDI from its other enzymatic activity because the folding of protein and the formation
of disulfide bonds are two inseparable, while coordinated, processes. To explore the
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chaperone activity of mammalian PDI explicitly, proteins without disulfide bonds, such
as glyceraldehyde phosphate dehydrogenase(GAPDH) or rhodanase, were used as the
substrate proteins [81,82]. The accelerated folding by bovine PDI cannot be attributed to its
enzymatic activity but only to its chaperone activity due to the fact that reactivation of these
target proteins has nothing to do with the formation of disulfide bonds. Results showed
that PDI is not part of the final functional unity when bovine PDI refolds the denatured
GAPDH or rhodanase. This is in line with the molecular chaperone criteria [83].

PDI is a molecular chaperone with low specificity that binds to peptides with various
amino acid sequences, lengths, or charge distributions. Studies on the crystal structures
of the truncated hPDI protein bb′a′ domains revealed the molecular mechanism of the
chaperone activity of hPDI is regulated by the redox state of cysteine at the catalytic
site of the a′ domain [23,84]. The hPDI molecular chaperone activity is enhanced when
its active site in the a′ domain maintains its oxidized state. However, the chaperone
activity of rabbit PDI, which is regulated by the redox state of the active site of the a′

domain, does not depend on the cysteine residue in this active site [85]. After chemically
modifying the cysteine residues in the active site of hPDI, other enzymatic activity of
modified hPDI is lost, while the molecular chaperone activity is retained. Furthermore,
hPDI that lost some of its enzymatic activity still plays a crucial role in organisms [84,86].
Research has indicated that a PDI variant still maintains 5% of its wild-type PDI isomerase
activity when the CGHC motif in the PDI active site has been mutated into CLHS or
CIHS, and this variant with both CGHC active sites replaced by SGHC has abolished its
isomerase activity but still accelerates protein folding and secretion in the cell of humans
or yeast [86,87]. Recently, Rosenberg and colleagues also indicated that hPDI enhances
cell adhesion by both its oxidoreductase and chaperone activity [88]. These experiments
unambiguously discriminated the chaperone and oxidoreductase activities of hPDI in the
oxidative folding of disulfide-containing proteins, and demonstrated that both activities are
necessary for hPDI to function as an efficient folding catalyst [89]. Actually, the chaperone
function of mammalian PDI is complementary to its oxidoreductase activity, though they
are distinct [85,90]. The chaperone activity of hPDI is dependent on its conformation, and
the latter is coupled to its redox state [51]. Oxidation of hPDI results in the self-conversion
from the compact conformation to the open conformation with the substrate-binding
surface more exposed, exhibiting higher chaperone activity to prevent the aggregation
during substrate refolding [23].

4. Substrate Binding and Domain Coordination in hPDI

The role of each PDI domain on its activity has been determined by assaying the PDI
constructs with deletion and domain rearrangement. It is now known that each hPDI
domain has its own function and interacts with others during the process of substrate
binding. The a′ domain exhibits a high degree of flexibility that allows the U-shaped cleft
between hPDI domains to accommodate substrate proteins with various sizes. Substrate
oxidation only requires the participation of a or a′ domain, while the isomerization requires
the coordination between a or a′ and b′ domains. Furthermore, isomerization reactions
involving extensive conformational changes of the substrate require all domains of hPDI
except the c tail, suggesting that the domains of hPDI are able to coordinate with each other
and they jointly stabilize a partially unfolded conformation of the substrate. Studies on
several proteins with clear folding paths confirmed these aforementioned functions of the
domains [66,91,92]. The work of Klappa and coworkers has shown that substrates can only
be chemically cross-linked with PDI containing the b′ domain and that the b′ construct of
hPDI alone is sufficient to bind small peptides [44,93]. Certainly, to bind larger proteins,
the b′a′c domains are required, indicating that the b′ domain acts as the principal substrate
binding site and interaction with other domains facilitates binding of larger substrates [44].
It is likely that the b′ domain, in some cases together with other domains of hPDI, interacts
with the side chains and backbone regions of substrate exposed in a partially unfolded
conformation. Meanwhile, the catalytic sites of the a and a′ domains are contributing to
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the binding of misfolded proteins and participate in thiol–disulfide exchange [15,36]. The
thiol–disulfide exchange reactions catalyzed by hPDI are not only essential for maintaining
proper redox state of thiols in proteins, but also indispensable for boosting the formation
of disulfide bonds within substrates. What is more, binding of substrate to the b′ domain
is sensitive to the conformational changes of other domains. Therefore, changes in other
domains of hPDI, such as mutations in the a′ domain, indirectly affect the b′ domain in
accommodating its client proteins [94]. This may be on account of the fact that the mutation
has altered the conformational balance in the hPDI, where the substrate-binding site in the
b′ domain is covered by the x linker, thereby being prevented from accommodating the
substrate proteins. Generally, at least three domains of PDI are involved in its interaction
with substrates [58].

5. Catalysis Mechanism and Redox Regeneration of hPDI

Bulaj believed that disulfide bonds formation is a reversible process and requires two
steps to complete [95], as illustrated in Figure 2. The first step is that thiolate provided by
substrate directly launches a nucleophilic attack on the disulfide of catalyst, such as PDI,
leading to the formation of a mixed disulfide (substrate–PDI) intermediate. Then, the mixed
disulfide species is broken by another nucleophilic attack from an additional substrate
cysteine thiolate. As a result, PDI is released from the mixed disulfide and a disulfide bond
in the substrate protein is formed. Moreover, additional thiol in PDI provides an escape
pathway if the interchange reaction is slow (Figure 2) [41,96]. It should be noted that the
second nucleophilic attack may come from the substrate itself (intramolecular thiolates)
or from another protein’s molecule (intermolecular thiolates), which is determined by
the “effective” concentrations of the cysteine pairs and the total protein concentration in
the folding solution [95]. In vitro studies have shown that the effective Km value of PDI
for peptide substrate is less than 3 µM and the effective concentration of sulfhydryl in
unfolded substrate generally ranges from 1 to 100 mM [95,97]. This means that very dilute
concentrations of proteins are needed during the oxidative folding reaction.
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Figure 2. Schematic of sulfhydryl groups (SH)/(disulfides) SS exchange reaction catalyzed by PDI.
Only one active site of PDI is shown for simplicity (similarly hereinafter). Yellow represents substrate
proteins; red represents free sulfhydryl, disulfide bond, or thiolate; purple represents oxidized PDI;
green represents reduced PDI.

Typical, mammalian PDI, such as hPDI, contains two conserved catalytic domains,
which can either form an intramolecular disulfide (oxidized hPDI) or exist in the dithiol
form (reduced hPDI). The reaction that PDI catalyzes depends on the equilibrium position
of the overall reaction and the redox state of PDI active site [48]. Depending on the
redox states of its active sites, PDI catalyzes disulfide bond formation and isomerization
in proteins involving a series of thiol/disulfide exchange reaction (oxidation/reduction)
between cysteine thiolates and an oxidizing disulfide, and the rearrangement of disulfide
bonds (isomerization) in the substrate (Figure 3) [51]. The cysteine residues in the active
site close to the N-terminus of the PDI activate the disulfide bond formation mechanism
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by attacking the substrate disulfide bond. This nucleophilic cysteine is exposed to solvent
and reacts with substrates, while the other active site is buried and reacts only with the
nucleophilic cysteine [74]. The covalent intermediate generated by the PDI attacking the
substrate disulfide bond yields three possibilities. First, the oxidized PDI continues to
attack the complex between PDI and substrate so that it is further oxidized to produce
its natural conformation. Subsequently, the nascent protein could be secreted out of ER
to perform its biological functions. The second possibility is that the substrate protein
is reduced due to the attack of a reduced PDI. In these cases, isomerization reaction
could not occur because the disulfide bonds of the substrate are already paired properly.
Nevertheless, once an incorrect substrate disulfide forms, isomerization is required to
convert the disulfides to their native arrangement, which requires breaking the wrong
cysteines connected and reforming the disulfide bond in substrate (Figure 3). Isomerization
can be viewed as repeated cycles of redox reaction, leading to continuous rearrangement
of disulfide bonds until the configuration of the substrate is correct. Interestingly, if the
PDI-catalyzed native disulfide bonds form with a higher rate than those unnatural ones, the
reversibility of the initial reaction step provides PDI with a mechanism that distinguishes
native disulfides from incorrect ones [48]. What is more, complicated substrate may
lead to a slow arrangement of protein disulfide bonds, and hence results in unnatural
conformation, failing to achieve its folding successfully. However, for an efficient folding,
the active site in the a′ domain of PDI perhaps assists to escape from this obstacle due to
its flexible conformations. It is precisely because of the presence and assistance of these
two cysteine residues that hPDI can reduce the nonnative disulfide bonds that have been
captured, and then reoxidize the substrate to ultimately form natural disulfide.

To achieve continuous catalysis of the formation of substrate disulfide bond, PDI
needs to be regenerated after its disulfide has been transferred to the unfolded substrates.
Such reactions involve the interaction between PDI and the Ero1 family enzymes, which
present as one isoform (Ero1p) in yeast and two genes encoding Ero1α and Ero1β proteins
in higher eukaryotes [98–100]. A mechanism for PDI regeneration driven by Ero1 has been
proposed as shown in Figure 3, which was elucidated over the past decades [101,102]. The
Ero1/PDI oxidative folding pathway uses oxygen (O2) as an electron acceptor, producing a
byproduct hydrogen peroxide (H2O2) [103]. Ero1α preferentially oxidizes the a′ domain
of reduced hPDI over the a domain, and interacts with the b′ domain of hPDI (with
amino acid residues Phe240, Phe249, and Phe304) [104]. Typically, Ero1 utilizes flavin
adenine dinucleotide (FAD) as a cofactor, and the oxidizing equivalents transfer from FAD
to PDI. Ero1α possesses four regulatory cysteines (Cys94, Cys99, Cys104, and Cys131),
which determine its overall activity. Inactive Ero1α (Ox2), containing two disulfide bonds,
Cys94/Cys131 and Cys99/Cys104, donates a disulfide bond to hPDI [105,106]. During the
redox interaction with hPDI, Cys94 is involved in a direct interaction with hPDI, and likely
forms mixed disulfides with hPDI [107]. The disulfide bond Cys94/Cys99 will form and
function as a shuttle disulfide. Thus, there is an active-site disulfide bond (Cys394/Cys397)
near the FAD isoalloxazine ring, and the Cys94/Cys99 pair transfers oxidizing equivalents
from FAD to hPDI. The inner active site, in turn, has been re-oxidized via FAD-mediated
electron transfer to O2, allowing the cycle to restart [100]. Due to the generation of H2O2
from Ero1-mediated hPDI oxidation, Ero1 oxidase activity is strictly regulated by the
reduction of reduced hPDI to avoid the overoxidation of ER. Such regulation is achieved
via noncatalytic isomerization/reduction, in which hPDI plays a critical role [101,108].
However, if the ER is peroxidized, Ero1 will be “inactivated” by auto-reoxidation or
oxidizing reduced hPDI to avoid the generation of excessive H2O2, leading to an ineffective
oxidation cycle. Moreover, the oxidative protein folding relay formed by Ero1-PDI can be
inactivated by unfolded proteins and folding intermediates when their levels exceed the
folding capacity of the system [109].
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6. Formation of Gluten Network Catalyzed by wPDI

Plant PDI exhibits different functional properties compared with mammalian PDI.
For example, soybean GmPDIL-3a and GmPDIL-3b contain nonclassical redox center mo-
tif CXXC/S and have no redox activity and molecular chaperone activity in vitro [110].
The chaperone function of plant PDI has already been measured by biochemical as-
says [110–112]. There were also systematic identification and analysis of PDI and PDI-like
gene families in different plants, such as rice, wheat, and barley, etc. [34,35,113]. In this
section, we will discuss wPDI and the proposed catalytic mechanism with glutenin in
dough [52,114].

6.1. GMP and wPDI in Wheat Flour

Wheat seeds contain large quantity of proteins, including globulins, albumins, and
glutens. The gluten protein, mainly including gliadin and glutenin, is synthesized and
accumulated in wheat endosperm during seed development. Glutenin is classified into
high molecular weight subunits (HMW-GSs) and low molecular weight subunits (LMW-
GSs) based on their molecular weight, which endow the viscoelasticity to dough [115].
Typically, there are four to seven conservative cysteine residues in HMW-GS, and six to
eight conservative cysteine residues in LMW-GS. The majority of these cysteine residues
form intra-chain disulfide bonds, while some of them form interchain disulfide bonds to
yield GMP [116–119]. GMP is one of the important factors determining the rheological
properties of dough [120]. Two reactions play crucial roles in the network formation
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of GMP among many reactions that present in the dough. One is oxidation, in which
free sulfhydryl groups are oxidized into disulfide bonds, resulting in the formation of
large protein assembly [121]. The other is the covalent link between glutenins through
the sulfhydryl groups (SH)/disulfides (SS) exchange mechanism, which involves the
cleavage or reconstruction of the SS bond mediated by the SH of glutenin, resulting in the
depolymerization and rearrangement of GMP [122]. Herein, factors relating to interchain
disulfide exchange reactions, such as some wheat enzymes involved in disulfide shuffling,
should be paid much attention.

Many researches on wheat PDI focused on their bioinformatics analysis or applica-
tion, and the structure of PDI is rarely reported in wheat compared with that in human
(Figure 4) [52]. A previous study indicated the presence of wPDI protein in the ER of wheat
endosperm by immunolabeling electron microscopy for subcellular localization [123]. Later
on, three PDI gene sequences located on 4A, 4B, and 4D chromosomes in Chinese Spring
wheat and the DNA and cDNA sequences of PDI from the durum wheat were obtained by
Ciaffi et al. Sequence analysis showed that the wPDI gene includes 10 exons and nine in-
trons, and the promoter region contains regulatory elements related to endosperm-specific
expression [124,125]. The expression of wPDI reaches its highest level in the middle stage
of wheat endosperm formation.
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6.2. Proposed Catalytic Mechanism of wPDI

Disulfide bonds cross-linking between glutenins is thought to be catalyzed and reg-
ulated by wPDI family members during the growth and development of wheat [51,126].
These enzymes mainly exist in the ER of wheat seeds and catalyze the conversion of
thiol to disulfide, assisting the formation of intrachain and interchain disulfide bonds
of glutens in the wheat ER and ensuring the correct folding and assembly of nascent
gluten proteins, as well as resisting various biological and nonbiological stresses [117–119].
Studies have shown that the biosynthesis and accumulation of glutenins in developing
grains of wheat were closely connected with the expression of wPDI and wPDI-related
proteins [115,126–128]. Also, several studies have observed that the network structure
in GMP could be affected by adding wPDI in vitro, although the conclusions related to
the effect of wPDI on dough are not consistent [37,129–131]. When cysteines at the two
active sites of wPDI were mutated to serine or alkylated, Liu et al. found that these two
modified wPDI completely lost the oxidoreductase activity, whereas they still retained the
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chaperone activity. Furthermore, the gluten matrix would be enhanced by adding these two
wPDI [131]. In another study, recombinant wheat Ero1 (wEro1) was expressed and purified
in Escherichia coli, and the wEro1 was added to wheat dough. By analyzing the rheological
properties of the dough, such as viscoelasticity, it was found that wEro1 may promote the
cross-linking of disulfide bonds, leading to the formation of gluten polymers [70]. They
further investigated the properties of recombinant wEro1 containing FAD cofactor and
its influence on Chinese steamed bread qualities. The results demonstrated that wEro1
was capable of catalyzing the reduction of free FAD as well as the oxidation of wPDI, and
the denatured protein or GSH were electron donors for wEro1 in catalyzing the oxidation
of wPDI. Also, the gluten network could be strengthened after adding wEro1 to Chinese
steamed bread during its making process [71]. Recently, Zhao et al. found that wPDI
enhanced dough’s alveographic characteristics and bread texture properties by catalyzing
the formation of rheologically active disulfide bonds and reduction of inactive ones in a
substrate-specific manner (Figure 5) [114]. These facts show that wPDI exhibits a critical
effect on GMP.

Molecules 2021, 26, 171 12 of 20 
 

 
Figure 5. Proposed mechanism of wPDI-catalyzed glutenin macropolymer (GMP) formation. The rheologically inactive 
disulfide bonds were reduced by wPDI and the active ones were oxidized in between the N- and C- terminals of glutenin 
subunits to form the gluten network. Left and right: green, orange, and blue ribbons represent different gluten peptides. 
Grey, red, and green sticks represent free sulfhydryl, rheologically inactive, and active disulfide bonds, respectively. Mid-
dle: simulated structure of wPDI, salmon represents its b and b′ domain and pale green represents the a and a′ domain. 

wPDI “transfers” disulfide bonds to glutenins, and simultaneously itself is reduced 
during this catalyzed formation of the gluten network. Meanwhile, to ensure that wPDI 
could continuously perform the function of catalytic oxidation, the free sulfhydryl in 
wPDI needs to be reoxidized in parallel. As indicated above, hPDI requires human Ero1 
family enzymes to perform the reoxidation step. Such a PDI-Ero1 pathway was also found 
in higher plants, but the mechanisms appear differently. For example, human Ero1 is a 
soluble protein, while rice and soybean Ero1 are membrane proteins [132–134]. Although 
Ero1 from different species are all localized in the ER, the underlying mechanisms of their 
ER retention are not the same—human Ero1 is retained in the ER via covalent interactions 
with hPDI and ERp44, while rice and soybean Ero1 forms a transmembrane region that is 
tightly bound to the ER [135]. Even the number of cysteines appears to be highly different 
between different Ero1 proteins. These may cause a big difference between the PDI-Ero1 
pathways of different species. However, since Ero1 family proteins are widely found in 
eukaryotes, and in wheat it was demonstrated to promote the gluten crosslinking, it could 
be inferred that wheat employs a similar, though not identical, PDI-Ero1 pathway to aid 
the reoxidation of wPDI [70]. Namely, Ero1 in wheat ER “transfers” its disulfide bonds to 
wPDI, and then further shuffles wPDI to the substrate protein to ensure its oxidation ac-
tivity. In fact, the mechanism of wPDI-catalyzed formation of gluten polymers is compli-
cated, since it is affected by many other factors, including GSH, thioredoxin, and other 
enzymes, like glucose oxidase and laccase, etc. For example, sulfhydryl in GSH is inter-
changed with glutenin via an SH/SS exchange reaction, leading to depolymerization of 
glutenin (Figure 6a), because wPDI and PDI-related proteins family bind to not only thiol-
containing glutenin, but also GSH or GSSG (Figure 6b,c) [15,136,137]. In addition, it is 
known that addition of glucose oxidase improves the dough’s rheological properties [138]. 
Adding laccase, which catalyzes the cross-linking reaction in gluten, also changes dough 
rheological properties and thereby improves the dough properties [139]. However, dough 
rheological properties could be greatly affected by these different factors, which similarly 
achieve their function through indirectly impacting the sulfhydryl and disulfide bonds 
among glutenins. In other words, factors affecting the formation of disulfide bonds, par-
ticularly wPDI, play a dominant role in gluten polymerization. 

Figure 5. Proposed mechanism of wPDI-catalyzed glutenin macropolymer (GMP) formation. The rheologically inactive
disulfide bonds were reduced by wPDI and the active ones were oxidized in between the N- and C- terminals of glutenin
subunits to form the gluten network. Left and right: green, orange, and blue ribbons represent different gluten peptides.
Grey, red, and green sticks represent free sulfhydryl, rheologically inactive, and active disulfide bonds, respectively. Middle:
simulated structure of wPDI, salmon represents its b and b′ domain and pale green represents the a and a′ domain.

wPDI “transfers” disulfide bonds to glutenins, and simultaneously itself is reduced
during this catalyzed formation of the gluten network. Meanwhile, to ensure that wPDI
could continuously perform the function of catalytic oxidation, the free sulfhydryl in wPDI
needs to be reoxidized in parallel. As indicated above, hPDI requires human Ero1 family
enzymes to perform the reoxidation step. Such a PDI-Ero1 pathway was also found in
higher plants, but the mechanisms appear differently. For example, human Ero1 is a soluble
protein, while rice and soybean Ero1 are membrane proteins [132–134]. Although Ero1
from different species are all localized in the ER, the underlying mechanisms of their ER
retention are not the same—human Ero1 is retained in the ER via covalent interactions
with hPDI and ERp44, while rice and soybean Ero1 forms a transmembrane region that is
tightly bound to the ER [135]. Even the number of cysteines appears to be highly different
between different Ero1 proteins. These may cause a big difference between the PDI-Ero1
pathways of different species. However, since Ero1 family proteins are widely found in
eukaryotes, and in wheat it was demonstrated to promote the gluten crosslinking, it could
be inferred that wheat employs a similar, though not identical, PDI-Ero1 pathway to aid the
reoxidation of wPDI [70]. Namely, Ero1 in wheat ER “transfers” its disulfide bonds to wPDI,
and then further shuffles wPDI to the substrate protein to ensure its oxidation activity.
In fact, the mechanism of wPDI-catalyzed formation of gluten polymers is complicated,
since it is affected by many other factors, including GSH, thioredoxin, and other enzymes,
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like glucose oxidase and laccase, etc. For example, sulfhydryl in GSH is interchanged
with glutenin via an SH/SS exchange reaction, leading to depolymerization of glutenin
(Figure 6a), because wPDI and PDI-related proteins family bind to not only thiol-containing
glutenin, but also GSH or GSSG (Figure 6b,c) [15,136,137]. In addition, it is known that
addition of glucose oxidase improves the dough’s rheological properties [138]. Adding
laccase, which catalyzes the cross-linking reaction in gluten, also changes dough rheological
properties and thereby improves the dough properties [139]. However, dough rheological
properties could be greatly affected by these different factors, which similarly achieve their
function through indirectly impacting the sulfhydryl and disulfide bonds among glutenins.
In other words, factors affecting the formation of disulfide bonds, particularly wPDI, play
a dominant role in gluten polymerization.
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7. Other Functions of PDI

PDI is mainly used to facilitate nascent polypeptide folding in the ER, but its presence
has also been reported at other intracellular and extracellular locations [140,141]. On the
aspect of interacting with proteins, evidence was provided to indicate that PDI serves as a
subunit of prolyl hydroxylase and triglyceride transferase to stabilize these complexes and
retain them in the ER [142,143]. Analogously, in order to prevent procollagen chains from
being secreted out of ER before they fold into their natural conformation, PDI interacts with
them in the early stages of their assembly [144]. Upon phorbol ester stimulation, PDI is
mobilized to the cytosol fraction of human neutrophils, where it associates with a cytosolic
regulatory subunit p47phox [145]. This suggests a possible role of PDI as the regulator of
anti-inflammatory reaction via neutrophils in human body. On the other hand, because
of its ability to activate protein folding, PDI also helps the growth of cancer cells, which
requires increased protein synthesis [146]. Drug discovery studies targeting PDI were
performed to design inhibitors of the growth of cancer cell lines such, as glioblastoma [147].
Moreover, the complex produced by the combination of PDI and ubiquilin has critical
functions as regulatory proteins for CHOP (a CCAAT/enhancer binding protein homolog)
mediated cell death [148]. Up-regulation of PDI together with ubiquilin may enhance
the tolerance to ischemic stress in glial cells. For other functions, an experiment about
ADAM-17, a disintegrin and metalloproteinase, has shown that PDI could be responsible
for regulating disulfide(s) in the noncatalytic site of ADAM-17 by exerting its isomerase
activity [149]. Additionally, PDI was found to be a neuroprotective protein. A previous
study showed that the upregulation of PDI could increase the viability of neuroblastoma
cells in the ischemic rat brain [150]. Another study demonstrated that the silencing of PDI
can cause increased apoptosis in neuron cells under ER stress [151]. Likewise, nitric oxide
(NO) is also essential for the brain′s physiological function, but excessive amounts of NO
may lead to brain dysfunction, and this was found to be attributed to the S-nitrosylation
effects [152]. Such trans-nitrosation reactions mediate NO internalization from extracellular
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S-nitrosothiols, and hence inhibit PDI isomerase activity [153–155]. It was shown that this
NO-induced PDI S-nitrosylation was associated with neurodegenerative disorders, such as
Alzheimer′s disease and Parkinson′s disease [155–157].

Intriguingly, previous work has shown that PDI could break the disulfide bond within
cholera toxin (CT) holotoxin and free its A1 subunit, due to which PDI was reckoned
to possess the “unfoldase activity” [158]. However, Cherubin et al. found that such
“unfoldase” of PDI doesn′t occur during CT depolymerization, and can′t be interpreted as
parts of the enzyme activity of PDI [159]. In short, PDI has a variety of functions, some of
which are now commonsense, while others need further elucidation.

8. Conclusions

As described above, PDI is a multifunctional protein participating in a variety of
redox-related intracellular and extracellular events. It regulates the biological processes,
such as protein folding, signal transmission, and cell communication etc., involving the
interaction between PDI and substrate proteins. Normally, protein cross-linking begins
from the change of protein conformation, which subsequently bridges the cysteines via
disulfide bonds, and finally ends up with the formation of interchain disulfide cross-
links. The second one is the most critical among these steps. This article mainly reviewed
how PDI mediates the formation and isomerization of disulfide bonds during protein
folding, especially the newly proposed mechanism of wPDI-catalyzed formation of glutenin
networks. Collaboration of PDI family members is needed for completing both folding and
maturation of large number of proteins in the ER. However, specific division of labor of
PDI family members in the cell is not yet fully clarified. They presumably exhibit either
a certain degree of versatility or substrate preferences. The protein cross-linking reaction
catalyzed by PDI is complex, and it is necessary to comprehensively use various methods
for further in-depth studies. Although much remains unclear, protein folding and related
disulfide bonds formation/isomerization catalyzed by PDI are of great significance, not
only to related health issues, but also to many other biological molecular assemblies related
in other aspects.
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