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Mechanisms underlying gene regulation are key to understand howmulticellular organisms with various
cell types develop from the same genetic blueprint. Dynamic interactions between enhancers and genes
are revealed to play central roles in controlling gene transcription, but the determinants to link functional
enhancer-promoter pairs remain elusive. A major challenge is the lack of reliable approach to detect and
verify functional enhancer-promoter interactions (EPIs). In this review, we summarized the current
methods for detecting EPIs and described how developing techniques facilitate the identification of EPI
through assessing the merits and drawbacks of these methods. We also reviewed recent state-of-art
EPI prediction methods in terms of their rationale, data usage and characterization. Furthermore, we
briefly discussed the evolved strategies for validating functional EPIs.
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1. Seeking functional EPIs

In the last several decades, researchers have identified several
types of functional DNA elements that can regulate tissue/cell
type-specific gene expression in cis [1]. These cis-regulatory ele-
ments (CREs) are often located in the non-coding genomic regions,
which make up of over 98% of the human genome [2]. Promoters
and enhancers are two major CREs that control context-
dependent gene transcription, with which promoters drive gene
expression adjacent to transcription start sites (TSS) and enhancers
faithfully orchestrate transcription from distal position regardless
of orientation [3,4]. However, when and how these elements pre-
cisely regulate target gene expression are largely unknown.

Eukaryotic enhancers are bound by various transcription factors
(TFs) when activated and upregulate target gene expression by
forming chromatin loops with promoters [4,5]. The chromatin
loops are mostly driven by persistent or transient cohesin extru-
sion and other unknown mechanisms [6,7]. The complexity of
EPI formation and its functional implementation limits accurate
detection of functional EPIs in high throughput manner. First, it
is estimated that over 1,000,000 enhancers in the human genome,
whereas the number of promoters, even if the alternative promot-
ers are considered, is in the same order of magnitude as the num-
ber of gene transcripts [4,8–10]. Such great redundancy enables
target genes to be regulated by different enhancers and ensures
robust gene control at different conditions, but in turn complicates
the detection of tissue/cell type-specific EPIs [11,12]. Second,
enhancer is suggested to regulate gene expression by forming
loops with promoters of target genes [13]. Though the distance
among most EPIs is less than 200 kb, in extreme cases, enhancer
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can locate over 1 Mb away from its regulatory targets [14]. It is
estimated that only 40% enhancers can regulate their nearest
genes, and others cannot be detected through the nearest-gene
rule [11]. Third, interaction between enhancer and promoter does
not necessarily mean functional causation. EPIs detected by close
proximity usually represent more likely association than causation
because of contradictory evidence showing the influence of EPIs on
gene expression [15–17]. Fourth, the dynamics of EPI and corre-
sponding maintenance of gene expressions could be partially
explained by loop extrusion model [18,19], and how the functional
EPIs are established and maintained remain to be fully addressed.

Currently, techniques based on chromosome conformation
capture (3C-based techniques) are commonly used to identify
EPIs in different throughputs [20]. However, the identification of
true functional EPIs during development and homeostasis usually
requires extra efforts, such as profiling chromatin states, tracking
TF binding and quantifying eventual gene expression [21,22].
Simplistically, evidence from three aspects are suggested to
define a functional EPI in common practice: 1) active or meaning-
ful chromatin states; 2) close spatial proximity (although several
lines of evidence indicate enhancers could control target gene
expression independent of EPI [17,23]); and 3) positive transcrip-
tion outcome (Fig. 1). By focusing on assessing the drawbacks and
merits, in this review we summarize and categorize the technolo-
gies for identifying active CREs, detecting chromatin proximity
and validating potential EPIs. We briefly introduce the roles of
the evolved 3D genomic profiling assays for characterizing func-
tional EPIs. Furthermore, we illustrate how the state-of-the-art
computational methods were developed based on these func-
tional genomics data.
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Fig. 2. Conventional workflow for detecting, predicting and validating functional EPIs. (A) Epigenomic features and nascent transcripts are the major characteristics of active
CREs. (B) Functional EPIs require enhancer and promoter to be spatially adjacent. (C) Candidate EPIs are routinely derived from the combination of active CREs and chromatin
loops. (D) Computational methods are developed on candidate EPIs using either supervised or unsupervised algorithms. (E) Disrupting CREs and testing the transcriptional
effects on gene transcription are the main approaches to validate candidate EPIs.
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2. Identifying active CREs

A key component of functional EPI detection is to investigate
whether the associated CREs are activated in particular conditions.
Comparative genome analysis has been widely applied in identify-
ing functional DNA elements through searching the cross-species
conserved regions [24,25]. But its application on enhancer detec-
tion is challenged since the findings that enhancers evolve rapidly
and most of them are species-specific [12]. The lack of ability in
measuring activity state of CREs is another limitation of compara-
tive genome analysis, which promotes the development of new
strategies to track active CREs beyond DNA sequence alone.
Advances in biotechnologies and high-throughput sequencing
greatly facilitate the identification of tissue/cell type-specific
enhancers and promoters. For examples, the binding of certain
TFs, co-factors and histone modifiers (such as EP300, CDK7,
BRD4, and Mediator) usually indicate active CREs. The histone
modifications can mark the activity states of CREs (such as
H3K27ac for active enhancer, H3K4me1 for primed enhancer, both
H3K4me1 and H3K27me3 for poised enhancer, and H3K4me3 for
active promoter [26–28]). These biological processes could be mea-
sured by ChIP-ChIP, ChIP-seq, as well as recent Cut&Run and Cut&-
Tag [29–32]. Active enhancers and promoters are also closely
related to chromatin states (such as open chromatin and nucleo-
some occupancy), which is highly relevant to the binding of vari-
ous TFs. Therefore, genomic assays measuring chromatin states,
including DNase-seq, ATAC-seq and MNase-seq, are all informative
for detecting active CREs [33–35]. But there is no one-to-one
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correspondence between epigenomic feature and certain CRE. As a
part of ENCODE project, ChromHMM and Segway are used to inte-
grate multiple histone modifications and chromatin states across
large numbers of tissues/cell types to generate comprehensive pre-
dictions for different CREs using DNA segmentation algorithms
[36–38]. Detecting nascent RNAs is another feasible approach for
the identification of active CREs. It is enlightened by the similar
properties between enhancers and promoters. For instances,
enhancers can be transcribed into non-coding enhancer RNAs
(eRNA) when activated [39,40]. And promoters of some genes were
found to have enhancer’s ability and distally regulate the transcrip-
tion of other genes [34,41,42]. Cap analysis of gene expression
(CAGE) and similar techniques (like GRO-seq and PRO-seq) are
very suitable for detecting transcripts within cell nucleus, thus
are widely applied in detecting eRNA and nascent mRNA [43–47].

Studies have shown that poised enhancers can physically con-
tact their target genes by polycomb dependent manner in certain
cellular and genomic contexts, but the permissive EPIs will be
silent until receiving active nuclear signatures [48,49]. Therefore,
detecting active enhancers and promoters could be the prerequi-
site to define functional EPIs (Fig. 2A). Nevertheless, current under-
standing of CRE activation by specific chromatin marks or nascent
transcripts do not necessarily imply that the enhancers or promot-
ers are truly functional. For example, it was revealed that only 26%
enhancers predicted in ENCODE project have regulatory activity
[50]. Besides, recent CRISPR screening had uncovered that some
regulatory regions with unmarked regulatory signatures are func-
tional [51], which highlights the importance to exploit the novel
chromatin features for active CRE definition. Taken together, these
techniques do not provide direct evidence for the linkage between
enhancers and promoters. Some patterns of the data, such as co-
activation between enhancer and promoter across cells, are infor-
mative for functional EPI detection, which will be discussed further
in the part of computational methods.
3. Tracking spatial proximity

Reduced spatial distance by chromatin loop formation is
another critical property of functional EPI. 3C-based techniques
lead to a revolution for identifying DNA interactions [52]
(Fig. 2B). Through introducing proximity ligation to next genera-
tion sequencing (NGS), 3C and its derivatives are able to capture
the three-dimensional interactions among chromatin. Especially,
high-throughput 3C-derived techniques, including high-depth
Hi-C, HiChIP and ChIA-PET using a large number of cells, provide
efficient avenue to identify genome-widely potential EPIs to date
[53–55]. Relying on modeling contact frequencies and assuming
interaction background generated by random collisions across
the chromatin polymer, significant interactions can be called
through various computational methods [56]. However, conven-
tional 3C-based techniques still have limitations in terms of resolu-
tion, sensitivity and expenditure. In fact, unless sustaining enough
library complexity and investing ultra-high sequencing depth, the
resolution of Hi-C was not precise enough to distinguish chromatin
loops. A fundamental difficulty of 3C-based techniques was their
dependence on proximity ligation. It was suggested that proximity
ligation fails to capture many known structures and introduces
high background noise [57], which significantly affects the quality
of identified loops for follow-up EPI modeling. Besides, restriction
enzyme dependent techniques could not distinguish genomic
regions smaller than a theoretical limit determined by enzyme.
For example, the theoretical maximum resolution of 6 bp restric-
tion enzymes was 4 kb. ChIA-PET was suggested to have higher
resolution with the same sequencing depth because it focused on
regions marked by specific factors. But it was criticized to have
low sensitivity which leads to high false negative rate in detecting
chromatin loops [55]. Additionally, it usually required a mass of
cells to achieve high resolution for loop calling, which not only
made it unaffordable for many studies, but also made it unable
to detect chromatin interactions at single cell level. The develop-
ment of single-cell or single-molecule 3C-techniques provide
insights into single-cell loop calling, but most of them are imma-
ture and need to be validated and improved with more efforts
[57]. Therefore, genome-wide identification of unbiased loops (in-
cluding EPIs) is impossible by conventional 3C-based techniques.
Some considerations and evolved strategies are briefly summa-
rized here from different angles with previous reviews [58–61].

3.1. Crosslinking and proximity ligation introduce noises and artificial
interactions

As two necessary steps in 3C library construction, crosslinking
could capture unwanted contacts that are not mediated by direct
chromatin interactions and introduce artifacts through intervening
molecules or organelles, while ligation heavily relies on the speci-
ficity of crosslinked sequences and physicochemical state of chro-
matin in nucleus or solution. Although several modified
techniques, such as DLO Hi-C [62] and BL-Hi-C [63], had been
developed to optimize the efficiency and specificity during the
crosslinking and ligation, the original defects still exist. Recently,
several new methods complementary to previous 3C-based tech-
niques have been invented to provide relatively unbiased investi-
gation of chromosome interactions. Briefly, native 3C-based assay
(i3C/iHi-C) captures spatial interactions without crosslinking
[64,65]; genome architecture mapping (GAM) leverages ultrathin
nuclear cryosectioning followed by sequencing to detect long dis-
tance and three-way contacts [66]; split-pool recognition of inter-
actions by tag extension (SPRITE) discriminates different types of
contacts by split-pool barcoding of DNAmolecules within the same
crosslinking complex [57]; transposase-mediated analysis of chro-
matin looping (Trac-looping) simultaneously detects chromatin
accessibility and multiscale chromatin interactions without prior
chromatin fragmentation and proximity-based ligation [67]; DNA
adenine methyltransferase identification (DamID) named DamC
provides the first crosslinking- and ligation-free demonstration of
chromosome structure by DNA methylation-based detection [68];
multiplex chromatin-interaction analysis via droplet-based and
barcode-linked sequencing (ChIA-Drop) captures complex chro-
matin interactions with single-molecule precision [60,69]. These
novel methods that overcome some restrictions of conventional
3C-based library construction can achieve more reliable and pow-
erful chromatin conformation measurement.

3.2. Restriction enzyme-based fragmentation limits the resolution of
chromosome folding mapping

Theoretically, HaeIII and MboI can cut the human genome every
342 bp and 401 bp on average respectively [63]. Although increas-
ing sequencing read coverage has been widely applied in Hi-C
experiments, reliance on restriction enzyme limits the resolution
of data despite read coverage. Factor-specific 3C-based techniques,
like ChIA-PET, HiChIP and PLAC-seq on architecture proteins (such
as CTCF and YY1), RNA Polymerases as well as histone modifica-
tions (such as H3K27ac and H3K27me3), improve the yield of
conformation-informative reads and increase resolution by chro-
matin immunoprecipitation and peak calling [55,70–74]. In addi-
tion, Capture-C, Tiled-C, T2C, HiCap and other types of Capture
Hi-C (CHi-C) enrich selected regions of interest by pre-designed
capture oligonucleotides, which significantly increase power of
interaction detection at high resolution [75–80]. Syn-HiC redesigns
chromosome with regularly spaced restriction sites thus enables
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unbiased distribution of contact frequencies and robust definition
of Hi-C resolution [81]. Avoiding to use restriction enzyme,
Micro-C and DNase Hi-C utilize micrococcal nuclease and DNase I
respectively to achieve mononucleosome resolution [82,83].

3.3. Loop calling methods are heterogeneous for significant
interactions identification

Many computational tools have been developed to call loops
from genome-wide 3C-based data (notably Hi-C), and the perfor-
mance of several representative methods was comprehensively
benchmarked before [56,84]. Extreme difference in the number
of identified interactions, varied mean distance between the inter-
acting points, low reproducibility among replicates as well as high
false discovery rate upon simulated data were observed for exist-
ing loop calling methods. Such defects could be attributed to
several intrinsic issues of data. First, there is no internal normaliza-
tion criteria or reference of ground truth to convert relative contact
probabilities into absolutely comparable values, which complicates
the assumption of background model for contact frequency and
hampers the definition of significant threshold referring to true
EPIs. Multiplexed single molecule FISH combined with recent opti-
cal reconstruction of chromatin architecture (ORCA) that identify
kilobase-level EPIs could provide a potentially complementary ref-
erence dataset [85]. Second, 3C-based library construction causes
insufficient power of loop calling methods to detect long range
cis (>1 Mb on the same chromosome) and trans interactions [86].
Some targeted enrichment approaches, such as CHi-C, HiChIP and
ChIA-PET, could preferentially capture long range interactions.
Specifically, ligation-free strategies, like GAM, SPRITE, Trac-
looping and DamC provide more adequate power to identify long
range cis and trans loops [60].

3.4. Conventional 3C-based processing lacks ability to capture
simultaneous or cooperative interactions

The redundancy of enhancers compared to promoters implies
the relationship between enhancer and promoter cannot be 1-to-
1, and the percentage of enhancers interacted with multiple pro-
moters were estimated from 9% to 50% [14,87]. It was speculated
that simultaneous interactions between enhancers and promoters
are important to ensure stable gene expression in transcription fac-
tories [14,88]. Although conventional 3C-based techniques can be
used to detect multiple-contacts, it significantly lacks throughput
and resolution to locate CREs genome-widely [78,89]. To capture
simultaneous interactions at scale, several multi-way chromatin
contacts identification methods have been developed. For exam-
ples, tethered multiple 3C (TM3C), that maps genome-wide simul-
taneous chromatin contacts via ligation of fragments upon agarose
gel beads followed by paired-end sequencing [90]. Chromosomal
walks (C-walks) investigates higher-order organization by linking
multiple genomic loci together into proximity chains [91]. GAM
enables the detection of three-way chromatin contacts but the res-
olution (>100 kb) is not enough to capture the interactions
between multiple enhancers and promoters [66]. Multi-contact
4C (MC-4C) applies nanopore sequencing to measure multi-way
DNA conformations in individual alleles using modified 4C-seq
method [92,93]. Similar to MC-4C, Tri-C efficiently detects multiple
ligation junctions within single sonicated 3C fragments by oligonu-
cleotide capture [87]. SPRITE can identify multiple loci that simul-
taneously interact in a single cluster and long-distance [57].
Likewise, Trac-looping provides unbiased detection of multiple-
way chromatin interactions and captures chromatin interactions
across extremely large distances [67]. Taken together, the develop-
ment of multi-way methods with diverse strategies have made it
possible to detect multi-contacts among enhancers and promoters.
3.5. Current techniques face difficulties to exploit fine-scale
interactions at single cells

Given the rapid evolution of 3C-based techniques at multiple
contacts level, most of them generally capture snapshots of 3D
genome for the whole cell populations at specific time point. To
describe the highly dynamic 3D chromatin at single cells, several
groups have optimized the 3C-based techniques and applied them
to track chromatin conformation on single cells across different
development stages and conditions [94–98]. However, the geno-
mic resolution of current single cell chromatin conformation meth-
ods is limited due to either the highly variable chromatin structure
among cell populations or the technical issue of subsampling,
which significantly prevent the identification of stable EPIs at sin-
gle cell level. Despite all these, Dip-C improves the detection power
of chromatin contacts by combining a transposon-based whole-
genome amplification [99], while ChIA-Drop uses droplet-based
chromatin interaction analysis and reveals many promoter-
centered multivalent interactions at high resolution [69]. Such
technical progresses will initiate the in-depth exploitation of
fine-scale EPIs at single cell level.
4. Predicting unseen EPIs

The continuous evolution of proximity-based 3D genome tech-
niques made them possible to detect EPIs in genome wide. Mean-
while, accumulated genomic, epigenomic, and transcriptomic
profiling data provided abundant resources for the identification
of active CREs. To detect meaningful EPIs in particular conditions,
the common practice would be to overlap high resolution chro-
matin interactions with tissue/cell type-specific active CREs
(Fig. 2C) [20]. Although the discovery of EPIs has been fueled by
integrating tissue/cell type-specific epigenomic profiles and 3D
genomic data, high resolution genome-wide loop data are only
available for limited human tissues/cell types thus far [100,101].
Unless the limitations such as low resolution, low sensitivity and
high cost were properly addressed, 3C-based techniques could
not be widely applied in most studies for chromosome loop iden-
tification. Besides, EPI was not the exclusive case in terms of spatial
neighborhood, thus the chromatin loops identified by 3C data
could be interpreted as either functional loops or other interactions
by chance. To predict the unrecognized EPIs at different contexts,
many computational methods have been developed by learning
or modeling existing 3D genomic data and other molecular pheno-
type profiles, such as open chromatin, transcript expression, his-
tone modification and TF binding [102,103] (Fig. 2D). Pioneered
by epigenetic mark-promoter linkage studies [28,104], over 30 in
silico methods currently have been proposed to predict EPIs in
human using diverse omics datasets and statistical models. Gener-
ally, existing computational EPI prediction methods could be
divided into two major categories including unsupervised and
supervised learning (Table 1).
4.1. Unsupervised learning methods

Attributing enhancers to their nearest genes was commonly
used approach to identify EPIs. Besides, increasing genomic/epige-
nomic features provided another approach to detect EPIs since
active enhancers and promoters that have distinct patterns com-
pared to inactive ones. These characteristics further enable the cor-
relation of epigenomic signals between enhancer and promoter to
be useful criterion for identifying potential interactions [28]. Sim-
ilarly, the relation between gene expression and EPIs was also a
feasible strategy to detect active EPIs, which makes use of linear/
non-linear regression to quantitatively estimate the regulatory



Table 1
Computational methods for EPI prediction.

Tool Year Method
category

Features Algorithm Links

Ernst et al.
[28]

2011 Correlation-
based

Histone marks, TF
binding

Pearson’s Correlation http://compbio.mit.edu/ENCODE_chromatin_states/

Thurman et al.
[104]

2012 Correlation-
based

DHS Pearson’s Correlation https://genome.ucsc.edu/ENCODE/downloads.html

DRE-target
[115]

2013 Correlation-
based

DHS, Sequence
homology

Pearson’s Correlation ftp://public:public@202.120.224.143/NAR2013.tar.gz

Andersson
et al. [11]

2014 Correlation-
based

CAGE Pearson’s Correlation http://fantom.gsc.riken.jp/5/

PreSTIGE
[106]

2014 Distance-based Distance, Insulator Linear Domain Models http://mendel.gene.cwru.edu:8080/

gkm-SVM
[139]

2014 Train Classifier DNA Support Vector Machine http://www.beerlab.org/gkmsvm/

IM-PET [123] 2014 Train Classifier Histone marks, TF
binding, DNA, RNA-seq

Random Forest www.healthcare.uiowa.edu/labs/tan/IM-PET_Package.tgz

ELMER [114] 2015 Correlation-
based

DNA methylation, RNA-
seq

Pearson’s Correlation https://static-content.springer.com/esm/art%3A10.1186%2Fs13059-
015–0668-3/MediaObjects/13059_2015_668_MOESM4_ESM.xlsx

RIPPLE [125] 2015 Train Classifier Histone marks, TF
binding, DHS, DNA-seq

Random Forest http://pages.discovery.wisc.edu/~sroy/ripple/index.html

PEGASUS
[116]

2015 Correlation-
based

Conservation Linkage Scoring ftp://ftp.biologie.ens.fr/pub/dyogen/PEGASUS/

Basset [140] 2016 Train Classifier DNA CNN https://github.com/davek44/Basset
TargetFinder

[126]
2016 Train Classifier Histone marks, TF

binding, DHS, CAGE
Gradient Tree Boosting https://github.com/shwhalen/targetfinder

PETModule
[124]

2016 Train Classifier Histone marks,
Conservation, Motif

Random Forest http://hulab.ucf.edu/research/projects/PETModule/

EpiTensor
[119]

2016 Decomposition-
based

Histone marks Tensor Decomposition http://wanglab.ucsd.edu/star/EpiTensor/

JEME [141] 2017 Regression-
based

Histone marks, DHS,
DNA methylation,
eRNA

Linear Regression https://github.com/yiplabcuhk/JEME

McEnhancer
[135]

2017 Train Classifier DHS Markov Chain Model https://ohlerlab.mdc-berlin.de/software/McEnhancer_134/

SWIPE-NMF
[120]

2017 Decomposition-
based

eQTL, DHS Matrix Factorization https://github.com/kaiyuanmifen/SWIPE-NMF

EPIANN [130] 2017 Train Classifier DNA CNN + Attention Model https://github.com/wgmao/EPIANN
PEP [131] 2017 Train Classifier DNA Gradient Tree Boosting https://github.com/ma-compbio/PEP
CISD [138] 2017 Train Classifier MNase-seq Logistic Regression https://github.com/huizhangucas/CISD
FOCS [142] 2018 Regression-

based
DHS, CAGE, GRO-seq Linear Regression https://github.com/Shamir-Lab/FOCS

Cicero [111] 2018 Correlation-
based

scATAC-seq Graphical Lasso https://github.com/cole-trapnell-lab/cicero-release

TransDecomp
[121]

2018 Decomposition-
based

CAGE Decomposition https://github.com/anderssonlab/transcriptional_decomposition

Rambutan
[136]

2018 Train Classifier DNA, DHS CNN https://github.com/jmschrei/rambutan

SPEID [129] 2018 Train Classifier DNA CNN https://github.com/ma-compbio/SPEID
3DEpiLoop

[127]
2018 Train Classifier Histone marks, TF

binding
Random Forest https://bitbucket.org/4dnucleome/3depiloop

EP2vec [132] 2018 Train Classifier DNA Word2vec + Gradient
Boosted Regression
Trees

https://github.com/wanwenzeng/ep2vec

DeepTACT
[137]

2019 Train Classifier DHS, DNA CNN + Attention Model https://github.com/liwenran/DeepTACT

C3D [112] 2019 Correlation-
based

DHS Pearson’s Correlation https://github.com/LupienLab/C3D

EPIP [128] 2019 Train Classifier DHS, Histone marks Adaboost http://www.cs.ucf.edu/~xiaoman/EPIP/
DRAGON

[152]
2019 Polymer

Simulation
Histone marks, TF
binding

Maximum Entropy https://github.com/ZhangGroup-MITChemistry/DRAGON

CHINN [133] 2019 Train Classifier DNA CNN https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135052
CT-FOCS [143] 2019 Regression-

based
DHS Linear Mixed Effect

Models
http://acgt.cs.tau.ac.il/ct-focs

HiC-Reg [150] 2019 Regression-
based

DHS, Histone marks, TF
binding

Random Forests
Regression

https://github.com/Roy-lab/HiC-Reg

ABC [110] 2019 Distance-based Distance, DHS, Histone
marks

Activity-by-contact
Model

https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction

3DPredictor
[146]

2020 Train Classifier CAGE, CTCF Gradient Boosting https://github.com/labdevgen/3Dpredictor
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potential of enhancers towards given genes. In general, these unsu-
pervised methods could be classified into three categories: (1)
distance-based methods; (2) correlation-based methods and (3)
decomposition-based methods (Fig. 3A–C).
4.1.1. Distance-based methods
Linking enhancers to the nearest promoter had been widely

used in many studies. Despite the simple rationale, methods apply-
ing this strategy was proved to be considerably effective. It was
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https://static-content.springer.com/esm/art%253A10.1186%252Fs13059-015%e2%80%930668-3/MediaObjects/13059_2015_668_MOESM4_ESM.xlsx
http://pages.discovery.wisc.edu/%7esroy/ripple/index.html
http://ftp%3a//ftp.biologie.ens.fr/pub/dyogen/PEGASUS/
https://github.com/davek44/Basset
https://github.com/shwhalen/targetfinder
http://hulab.ucf.edu/research/projects/PETModule/
http://wanglab.ucsd.edu/star/EpiTensor/
https://github.com/yiplabcuhk/JEME
https://ohlerlab.mdc-berlin.de/software/McEnhancer_134/
https://github.com/kaiyuanmifen/SWIPE-NMF
https://github.com/wgmao/EPIANN
https://github.com/ma-compbio/PEP
https://github.com/huizhangucas/CISD
https://github.com/Shamir-Lab/FOCS
https://github.com/cole-trapnell-lab/cicero-release
https://github.com/anderssonlab/transcriptional_decomposition
https://github.com/jmschrei/rambutan
https://github.com/ma-compbio/SPEID
https://bitbucket.org/4dnucleome/3depiloop
https://github.com/wanwenzeng/ep2vec
https://github.com/liwenran/DeepTACT
https://github.com/LupienLab/C3D
http://www.cs.ucf.edu/%7exiaoman/EPIP/
https://github.com/ZhangGroup-MITChemistry/DRAGON
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi%3facc%3dGSE135052
http://acgt.cs.tau.ac.il/ct-focs
https://github.com/Roy-lab/HiC-Reg
https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction
https://github.com/labdevgen/3Dpredictor


gene

Distance-based

Correlation-based

Decomposition-based

Tensor 

of 

features

Genomic 

loci

F
ea

tu
re

s =
S

U1

U2

U3

Training Classifier

Enhancer Feature 

Matrix

Promoter Feature 

Matrix

ML/DL

Positive 

set

Negative 

set

Unsupervised 
Algorithms

Supervised 
Algorithms

…

sample1

sample2

sample3

sample4

ser
utaef f

o le
na

P

insulatorenhancer

prediction 

training 

A

B

C

D

E Regression-based

P
an

el
 o

f 
S

am
p
le

s

= + × + × +⋯+ ×

gene
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methods. (B) Correlation-based methods detect EPI according to high correlation of chromatin features between enhancer and promoter from a panel of samples. (C)
Decomposition-based methods decompose feature matrix/tensor into subspaces, which capture the spatial features of genome thus could be used to detect EPI. Supervised
learning algorithms include (D) Training Classifier methods measure the relationship between gene activity and enhancers by estimating the regulatory potential of
enhancers for specific gene. (E) Regression-based methods build different machine learning classifier to distinguish positive EPIs from randomly selected negative set. ML:
machine learning, DL: deep learning.
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estimated that in 40% cases enhancers regulate the nearest genes
[11,105]. Setting additional criteria can increase the efficiency of
distance-based methods. For example, considering the cell type-
specific activated enhancer and promoters, PreSTIGE captured EPIs
that only exist in specific cell types [106]. In addition to distance,
false positive rate caused by distance-based methods were greatly
reduced by constraining the range of EPIs within topologically
associating domains (TADs) [107] or insulated neighborhoods
(INs) [108] which limit the regulatory potential of enhancers
within specific 3D genome architecture [109]. Recent activity-by-
contact (ABC) model scored the potential of EPI by combining dis-
tance effect and enhancer activity, demonstrating a superior
performance than existing approaches [110]. Nevertheless, as a
naïve strategy that barely consider long distance interaction,
distance-based methods were commonly used as baseline
approach to predict EPIs in many studies and the performance of
distance-based methods was usually not as good as subsequent
methods.

4.1.2. Correlation-based methods
Many EPI prediction methods, including Ernst et al. [28], Thur-

man et al. [104], Cicero [111] and C3D [112] were developed based
on the correlation of epigenomic marks between enhancers and
promoters. To be specific, Ernst et al. calculated Pearson’s correla-
tion of histone modifications and TF binding between enhancers
and approximate promoters [28], while, Thurman et al. leveraged
DNase I hypersensitive sites (DHSs) across many cell types to com-
pute correlation [104]. Similarly, C3D was able to detect correlated
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CREs with more DHS data [112]. Besides, with single cell ATAC-seq
[35] profiles, Cicero was designed to detect correlation of open
chromatin at single cell level [111]. Instead, Andersson et al. [11]
used cap analysis gene expression (CAGE) [113] profiles to inspect
whether consistent transcriptional events could be observed
between enhancer locus (such as enhancer RNA (eRNA)) and target
genes across different tissues/cell types. ELMER uses inverse corre-
lation between DNA methylation and expression of nearby genes
to predict transcriptional targets [114]. DRE-target [115] identified
target genes of distal regulatory elements (DREs) as those obtain-
ing high phylogenetic correlation with DREs. Despite the improved
performance, DRE-target depended on Hi-C data which were not
widely available. Likewise, PEGASUS relied on evolutionary conser-
vation of synteny to estimate enhancer-gene associations
[116,117]. The performance of correlation-based methods was
not only influenced by the choice of features, it was also suggested
to be affected by the algorithm to calculate correlation [111]. Pear-
son’s correlation was very sensitive to outliers, usually generating
large numbers of false positive predictions. Among the correlation-
based EPI methods, only Cicero addressed this problem by using
graphical Lasso [111] which calculated regularized correlation
matrices, thus was more robust to outliers [118].
4.1.3. Decomposition-based methods
With accumulating genomic/epigenomic/transcriptomic data

from diverse tissues/cell types, matrix decomposition became a
feasible approach to detect EPIs by extracting meaningful co-
variation patterns from high-dimensional signals. Hitherto there
were three EPI methods based on matrix decomposition, including
EpiTensor [119], SWIPE-NMF [120] and TransDecomp [121].
EpiTensor collected various assays from many cell types and
combined all the data with a three-order tensor in which the
dimensions represent genomic loci, assay type and cell type
respectively. Tensor decomposition was then applied to resolve
the combined tensor into three subspaces: cell subspace, assay
subspace and locus subspace. By analyzing the eigenvectors of
locus subspace, genomic interactions were captured by linking
the peaks of eigenvectors following distance-based approaches
[119]. SWIPE-NMF firstly included six types of genomic segments
and then established association matrices for every pairs of seg-
ments. Extended version of three-factor penalized matrix factor-
ization (PMF) was then used to factorize the association matrices.
Enhancer-promoter interactions were then characterized from
the results of PMF [120]. TransDecomp implemented very different
strategies compared with EpiTensor and SWIPE-NMF. It collected
CAGE signals and decomposed the data to get two principle com-
ponents called positional independent (PI) and positional depen-
dent (PD). Then TransDecomp set 25 features related to the
components to train a random forest classifier to identify EPIs
derived from promoter-capture Hi-C [122]. The results showed
that features derived from PI and PD components were unique in
distinguishing active EPIs [121]. Different with correlation-based
methods that only rely on limited data type across large numbers
of samples, the decomposition-based methods leveraged multi-
scale information from omics data to learn unique patterns for
putative EPIs.
4.2. Supervised learning methods

With the development of 3C-based techniques, especially the
high throughput methods, such as high-depth Hi-C, HiChIP and
ChIA-PET in large numbers of cells, EPIs could be effectively
described across entire genome, which made it possible to use
supervised methods to identify potential EPIs (Fig. 3D and E).
4.2.1. Training classifier with machine learning
There were many efforts to detect EPIs by training classifiers. By

leveraging various 1D genomic/epigenomic features, classifiers
could be established to distinguish Hi-C/ChIA-PET supported EPIs
from random selected negatives. IM-PET was the first method fol-
lowing this strategy [123]. It implemented four features, including
enhancer and promoter activity profile correlation, transcription
factor and target promoter correlation, coevolution of enhancer
and target promoter and distance constraint between enhancer
and target promoter [123]. Therefore, IM-PET was a combination
of several strategies mentioned above, but this made it not user-
friendly since the way of calculating those integrated features
was not easy to fix, which raises additional challenges. PETModule
implemented a similar feature sets with IM-PET but showed higher
performance [124]. Instead, in subsequent studies, such as RIPPLE
[125], TargetFinder [126], 3DEpiLoop [127] and EPIP [128] directly
used epigenomic/transcriptomic profiles, including TF binding, his-
tone marks, DHSs and expression data to train comprehensive clas-
sifier. Both RIPPLE and TargetFinder carried out careful feature
evaluation and identified expression level as the most distinct fea-
ture, and DHS, CTCF binding were also informative in trained mod-
els. Besides, TargetFinder included ChIP-seq data for over 100 TFs
and the feature importance of those data was top-ranked. Both RIP-
PLE and TargeFinder achieved high performance in identifying EPIs
within specific cell types. However, the requirement of plenty of
features made it impractical to apply RIPPLE and TargetFinder to
train specific classifiers for more tissues/cell types.

Efforts had also been put to explore the possibility of EPIs detec-
tion with sequence features only. There were several methods
developed based on this approach, including SPEID [129], EPIANN
[130], PEP [131], EP2vec [132] and CHINN [133]. DNA sequences
were usually represented with one-hot encoding, but with the
development of deep learning methods, especially the great suc-
cess of word2vec in nature language processing, word embedding,
like dna2vec, had been considered in motif feature analysis [129–
132]. Among those methods, SPEID and EPIANN used one-hot
encoding while PEP and EP2vec tried dna2vec approach to repre-
sent DNA sequence. All sequence-based methods focused on effi-
ciently extracting the information from DNA sequences. To
pinpoint it, SPEID implemented a bidirectional long short-term
memory (BiLSTM) [134] module before training classifier, while
EPIANN applied attention mechanism to directly locate the func-
tional DNA elements. PEP and EP2vec trained a word embedding
model first, and then trained classifiers with embedded DNA
sequences. In addition, to identify cell type-specific EPIs,
sequence-based methods required active enhancers and promoters
to be well defined in given condition, such as CHINN used DNA
sequences of the interacting open chromatin regions [133].

To overcome the limitation of sequence-based methods, some
algorithms used widely available open chromatin profiles to sup-
ply cell type-specific signatures. For example, McEnhancer [135]
learned related DHS-gene pairs from small number of known pairs
and used a semi-supervised strategy to predict unlabeled ones.
Besides, Rambutan [136] used convolutional neural network
(CNN) to extract features from both DNA and DNase-seq data,
and the summarized features together with the distance between
enhancer and promoter were finally used to make predictions.
Similarly, DeepTACT [137] applied CNN layers to extract features
from raw data, but the merged features were further processed
with BiLSTM and attention layers to make better integration. Other
type of chromatin accessibility data, such as MNase-seq could also
be used in EPI prediction [34]. CISD implemented MNase-seq to
train classifier to distinguish EPIs derived from ChIA-PET loops
against randomly selected ones [138].

According to different algorithms aforementioned, statistical
learning methods could be divided into two categories: typical
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machine learning and deep learning. Machine learning methods
used random forest, logistic regression, and support vector
machine (SVM) to establish classifiers directly with Hi-C/ChIA-
PET loops and various feature sets. According to RIPPLE, ensemble
learning methods, such as random forest, usually performed better
than other classification methods [125]. However, feature selection
could not be performed by random forest. To solve this problem,
RIPPLE combined random forest with Lasso for feature selection.
On the other hand, deep learning methods used CNN, recurrent
neural network (RNN) and attention model to extract informative
features from raw input and the then implemented simple
machine learning to train classifiers. Deep learning methods usu-
ally performed better when sample size is large enough. Specifi-
cally, when implementing attention layers, learning kernel could
locate the relatively precise position of enhancer elements
[23,130].

Interestingly, some machine learning methods which were not
originally designed for EPI prediction could also be applied to this
topic. For example, gkm-SVM [139] and Basset [140] were devel-
oped to identify regulatory elements, but when the input was set
as the EPI samples and concatenated features of enhancers and
promoters, both gkm-SVM and Basset were easily transformed into
EPI prediction methods.

4.2.2. Regression-based methods
Although training classifiers to distinguish active EPIs from

others was a promising strategy, the regulatory potential of speci-
fic enhancers to their target genes could not be properly quantified.
This limitation could be addressed by regression-based methods.
When considering gene expression level as the effect indicator of
neighboring CREs, the regulatory ability of separate enhancers
could be inferred from training regression model among a panel
of expression data together with epigenomic profiles in many cell
types. In other words, the parameters learned from regression
model may represent the degree of enhancers influencing target
genes. Based on this rationale, JEME [141] quantitatively estimated
the universal regulatory potential of enhancers while cell type-
specific EPIs were then identified by training a random forest clas-
sifiers. Similar to JEME, FOCS [142] implemented a leave-n-out
algorithm to obtain robust regression model linking nascent RNA
transcription (measured by GRO-seq [47]) with DHSs data for cor-
related enhancer and promoter activity across many samples. CT-
FOCS extended the FOCS model to use multiple replicates per cell
type to infer cell type-specific EPIs [143]. Therefore, compared with
the classifier learning, the regression-based methods can properly
evaluate regulatory potential by directly associating CREs with
gene transcription.

4.3. Existing issues and challenges for EPI prediction

Despite the great achievements, there are limitations among
strategies applied in the current state-of-art computation methods.
Distance-based methods highly depend on accurate identification
of cell type-specific regulatory elements, which usually requires
multiple genomic and epigenomic features. Distance-based meth-
ods are also hampered by the fact that many enhancers regulate
distal promoters. Correlation-based methods and regression-
based methods have higher performance, but they require large
panel of samples, thus is usually not generalizable when unseen
cell type is given. In contrast, supervised learning methods which
train classifiers are applicable in predicting EPI across cell types.
The merits and disadvantages of each EPI prediction strategy have
been discussed before [102,103]. Here, we supplemented some
critical problems that significantly affect the performance of cur-
rent methods and briefly summarized related challenges of future
prediction task.
First, there is no widely accepted ground truth to systematically
evaluate the existing methods, probably due to the low power and
high false positive rate of current technologies in capturing chro-
matin interactions. A recent benchmark study generated a set of
candidate enhancer-gene interactions (BENGI) by integrating the
candidate active CREs with experimentally validated genomic
interactions on specific tissues/cell types [144]. They found that,
overall, the correlation-based methods did not outperform the
distance-based methods, and the supervised methods, like Tar-
getFinder [126], were only modestly better than distance-based
methods for most benchmark datasets when trained and tested
with the same cell type but underperformed when applied across
cell types. Second, the inflated performance of supervised learning
methods was frequently observed [145]. The key problem could be
attributed to the improper generation of training dataset and
biased sampling procedure, in which the positive samples shared
same features but negative samples obtained varied feature distri-
bution. Random-split strategy in preparation of training dataset
seems to overcome such problems [145,146]. Third, methods using
deep learning have problems in doing feature selection. To address
this problem, SPEID evaluated feature importance by measuring
the decreasing of method performance when replacing certain fea-
ture value with random noise [129]. To evaluate feature impor-
tance in deep leaning-based methods, one can use the feature
selection strategies including SHAP [147], DeepLIFT [148], and
Deep Feature Selection [149]. Fourth, most of existing computa-
tional methods modeled the chromatin interaction by either spa-
tial proximity or transcriptional outcome, which makes them
face difficulty in verifying causal relationship instead of showing
only correlation. Although methods, such as HiC-Reg [150], 3Dpre-
dictor [146], MEGABASE [151], DRAGON [152] and ABC [110], can
quantitatively measure the interacting probability or intensity,
how such prediction values are proportional to functional readout
is largely unknown. Recent biochemical experiments showed that
the increased EPI could lead to decreased gene activation
[17,19,23], which further complicates the establishment of causal
link between spatial proximity and transcriptional outcome. Lastly,
computational EPI prediction methods are facing challenges and
new opportunity brought by advanced techniques. For example,
some 3D genomic techniques, such as C-walks [91], GAM [66],
MC-4C [92], SPRITE [57] and ChIA-drop [69], have been developed
to detect multiplex chromatin interactions in single allele. In these
data, multiple cis-regulatory elements can interact with same tar-
get gene simultaneously, which is difficult scenario for current EPI
methods, especially for methods implemented training classifiers.
Methods based on regression could detect multiple interactions
theoretically [153,154], but whether the interactions are active
simultaneously or just gloss caused by the average of bulk cells
remain elusive.
5. Validating functional EPIs and future direction

Even if the advance of biochemical and computational methods
has deepened our understanding of precise transcriptional control
in the 3D genome, the biological function of CREs as well as the
links between enhancer and their regulated targets identified by
current techniques remain to be validated (Fig. 2E). Using trans-
genic reporter assays and massively parallel reporter assays, candi-
date enhancers could be dissected regardless of their native
genomic context and endogenous target genes [5,155,156]. In vivo
enhancer manipulation can be performed by Clustered Regulatory
Interspaced Short Palindromic Repeat (CRISPR) associated Cas
(CRISPR/Cas) system currently. Several lines of CRISPR/Cas strate-
gies, including nuclease-active genome-editing screens and
nuclease-inactive epigenome-editing screens, have been success-
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fully applied to characterize large numbers of enhancers in their
native genomic context [5]. On the other hand, super-resolution
DNA FISH and microscopy complement with proximity-based
techniques provide an unprecedented view of chromatin interac-
tions at kilobase-scale resolution [157]. However, accurate identi-
fication of active CREs and bona fide EPIs in particular condition
are usually two uncoupled experiments, which cannot answer
which EPIs are true functional and eventually modulate transcrip-
tional event of target genes or other molecular phenotypes. The
objective of validating true functional EPIs have sparked enormous
interest in designing novel coherent experiment. For examples, by
introducing chromatin loops at desired genomic loci, chromatin
loop reorganization using CRISPR-dCas9 (CLOuD9) can selectively
inspect gene expression at targeted loci [158]; CRISPR affinity
purification in situ of regulatory elements (CAPTURE) simultane-
ously identifies locus-specific transcriptional regulator complexes,
chromatin-associated RNA and DNA interactions [159]; CRISPR-
genome organization (CRISPR-GO) system can efficiently control
the spatial positioning of genomic loci relative to specific nuclear
compartments, enabling interrogation of chromatin interaction
dynamics and associated molecular events [160]; light-activated-
dynamic-looping (LADL) system allows light-inducible loop forma-
tion followed by single-molecule RNA-FISH for nascent expression
quantification [161]. These new technologies greatly facilitate the
one-stop evaluation of true biological functions for individual EPIs.

The evolution of advanced biotechnologies and accumulated func-
tional genomics data are constantly revolutionizing thegenome-wide
identification of functional EPIs. By integrating multilayer tissue/cell
type-specific evidence from uncoupled assays on genomic, epige-
nomic and transcriptomic profiling, the false positive rate of func-
tional EPIs discovery could be reduced [162]. For example,
tissue/cell type-specific quantitative trait locus mapping on gene
expression (eQTL), chromatin accessibility (caQTL) and promoter
interaction (pieQTL) have been used to refine or ascertain true func-
tional EPIs together with active CREs profiling and 3C-based tech-
niques [77,163–166], which will ultimately facilitate the
interpretation of non-coding regulatory variant effect on 3D genome
and complex disease [167]. In addition, the high throughput CRISPR/
Cas-based perturbation screenings, such as Mosaic-seq [168],
crisprQTL mapping [169] and CRISPRi-FlowFISH [110], on multiple
target genes have offered promising strategies to simultaneously val-
idate the endogenous effect of CREs with their putative target genes.
AlthoughtheseCRISPR/Cas-basedsystemsarestill in its infancywhich
only identified several hundreds of high-confidence EPIs, we believe
they will initialize fundamentally novel computational methods by
combining advanced 3D genomic data in the near future.
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