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Simple Summary: Traditional Chinese medicine (TCM) is based on ancient Chinese medical prin-
ciples. In China, these medicines have played a marked role in treating various diseases and
maintaining human health for thousands of years. TCM is also increasingly considered a potential
alternative to the use of antibiotics in pig production and has attracted a great deal of research interest
because it is simple, convenient, cheap, and effective. However, there are few studies on the effects
of dietary TCM supplementation on the gut microbiota and the apparent nutrient digestibility of
weaned piglets. In our study, dietary Fructus mume and Scutellaria baicalensis Georgi improved growth
performance and increased the apparent ether extract (EE) digestibility by modulating gut microbial
composition and structure, favoring the health of weaned piglets.

Abstract: Traditional Chinese medicine (TCM) has long been demonstrated to exert a therapeutic
effect on various diseases and has been used as a substitute for antibiotics in pig production. However,
few studies have investigated the relationship between the intestinal microbiota and apparent nutrient
digestibility when weaned piglet diets are supplemented with TCM. One hundred and sixty-two
25-day-old weaning piglets were housed in an environmentally controlled nursery facility and
fed a basal diet (control group, n = 54) or a TCM complex (Fructus mume 1%, Scutellaria baicalensis
Georgi 3%) (TCM group, n = 54), or a fermented diet with a complex of these two TCMs (F-TCM
group, n = 54). Compared with the control group, in the TCM and F-TCM groups, the average
daily gain (ADG) increased (p < 0.05), the F:G ratio and diarrhea rate decreased (p < 0.05), and
the apparent digestibility of dry matter (DM) and ether extract (EE) of weaned piglets increased
(p < 0.05). Bacteroidetes and Firmicutes were the predominant phyla, representing approximately 95%
of all sequences. The abundance of four genera and 10 OTUs (belonging to Ruminococcaceae_UCG-
014, Lachnoclostridium, Prevotellaceae_NK3B31 group, Prevotella_1) were negatively correlated with
apparent EE digestibility (p < 0.05). The results suggest that weaned piglets fed with antibiotic-free
diets supplemented with Fructus mume and Scutellaria baicalensis Georgi gained more weight and
were healthier. When added to the diet, the complex of these two TCMs may have a direct impact on
apparent EE digestibility by modifying the gut microbial composition, which favors the health of
weaned piglets.

Keywords: traditional Chinese medicine; weaned piglets; apparent nutrient digestibility; gut
microbiota

1. Introduction

Traditional Chinese medicine (TCM) is used under the guidance of ancient Chinese
medicinal philosophies [1]. TCM has played a marked role in disease prevention and health
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improvement and has been investigated for thousands of years in China [2–4]. With a
desperate worldwide need to reduce antibiotic usage in human and veterinary medicine,
research into the therapeutic effects of TCM has attracted much attention in recent years.
TCM has been demonstrated to exert a therapeutic effect on various diseases, such as
diabetes [2], hypertension [5], gastric cancer [6], ulcerative colitis [7], colorectal cancer [8],
etc. Knowledge about the underlying pharmacological mechanisms of TCM is still scarce.

It has been suggested that the therapeutic effect of TCM is closely related to the gut
microbiota [1,9], which is the bridge between the body and the external environment, as
there is a reciprocal link between the two. On the one hand, the improvement produced
by the pharmacological activity of TCM depends on the gut microbiota [6,7]. The gut
microbiota can promote the transformation and metabolism of TCM components by metab-
olizing TCM into specific molecules, such as alkaloids, flavonoids, and polysaccharides,
which are easily absorbed in the intestine [2,6]. For example, paeoniflorin can be catalyzed
into paeoniflorgenin and paeoniflorin by Lactobacillus brevis and Bacteroides fragilis, and
puerarin is converted into daidzein by Bifidobacterium and E. faecalis, and aconitine can
be decomposed into lipoaconitine by Clostridium butyricum and B. fragilis [6]. On the
other hand, when present in the digestive tract, TCM can promote the growth of probiotic
bacteria and inhibit pathogens, as well as prevent bacterial transmission, thus regulating
the microenvironment and maintaining the balance of the microflora [6,7]. For example,
flavonoids, polysaccharides, and saponins in TCM serve as prebiotics that regenerates the
gut microbiota. Escherichia coli can be directly inhibited by cinnamon essential oil [8]. The
omics technologies, such as microbiomics and metabolomics, have been considered pivotal
tools to help us understand the underlying mechanisms between TCM and gut microbiota.

Apparent nutrient digestibility indicates the digestibility of feed ingredients by animals
and is also an important indicator used to evaluate the nutritional value of feed ingredients
in diets. Previous studies had reported that dietary supplementation with TCM improved
the growth performance of heat-stressed beef cattle by increasing the apparent digestibility
of organic matter (OM), crude protein (CP), and acid detergent fiber (ADF) when TCM
plus γ-aminobutyric acid (GABA) was used in the diet, and the apparent EE and neutral
detergent fiber (NDF) digestibility also increased [10,11]. Furthermore, in lambs and hogs,
dietary TCM increased the apparent digestibility of DM, OM, CP, and NDF [12]. The
research results cited above may suggest that TCM supplementation of the diet would be
favorable for improving the apparent nutrient digestibility of feed. Similar studies on pig
models have rarely been reported.

During weaning, piglets have to face a number of challenges that are critical and
stressful [13]. On the one hand, to accelerate the pace of banning the use of antibiotic growth
promoters (AGPs) in China, the addition of TCM to the feed has been considered a substitute
for antibiotics as a feed additive [14]. On the other hand, physiological characteristics after
weaning indicate that the weaned piglets may have unique intestinal microflora [15]. Thus,
at this particular stage, studies on the effect of dietary TCM on the gut microbiota and
the apparent nutrient digestibility of weaned piglets have an important scientific value.
Studies unraveling the relationship between the two related research strands have not been
reported so far.

The present study was conducted in two stages. First, TCMs with potent antibacterial
properties were selected for further application in the production of fermented feed. Second,
the growth performance, apparent nutrient digestibility, and fecal microbiota of weaned
piglets were investigated. This study focused on the correlation between gut microbial
communities and apparent nutrient digestibility in piglets.

2. Materials and Methods
2.1. Antibacterial Susceptibility Testing

The antibacterial properties of eight TCMs, namely Fructus mume, Scutellaria baicalensis
Georgi, Rhizoma imperatae, Paeoniae radix alba, Plantaginis semen, Eclipta prostrata, Fructus
arctii, and Portulaca oleracea L., were determined for both Escherichia coli and Salmonella
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isolates. All the minimum inhibitory concentration (MIC) tests were conducted twice in
order to ensure that the results were representative. The MICs of selected TCMs were
determined by the agar dilution method [16,17]. The methods and standards followed
the relevant regulations of the Clinical and Laboratory Standards Institute (CLSI) [18].
The double dilution method was used to dilute the eight TCM infusions to the required
concentration gradients, then sterile Mueller–Hinton (MH) agar was added and mixed to
prepare the agar plates, and the bacterial suspensions (Escherichia coli and Salmonella)
with a turbidity of 0.5 MCF were diluted and inoculated on the MH agar plates [17] in an
inverted culture for 16–18 h at 37 ◦C. The MICs of the Chinese medicines were recorded
when the plates showed no bacterial growth.

2.2. Preparation of Fermented MIXED Feed

The Bacillus subtilis, Lactobacillus, and Saccharomyces strains used in the present experi-
ment were isolated and generously given by the College of Food Science and Technology,
Guangdong Ocean University. A 300 g basal substrate including corn and soybean meal
(mass ratio 3:1), as well as TCMs with potent antibacterial properties (Fructus mume or
Scutellaria baicalensis Georgi in proportions of 1%, 3%, and 10%), was mixed and supple-
mented with sterile water to achieve a 60% moisture content. The mixed substrate was
divided into two treatment parts: one part was inoculated with B. subtilis, Lactobacillus, and
Saccharomyces (a proportion of 0.2% each, 108 cfu/g) and then transferred to a plastic bag,
while the other part of the mixed substrate was directly transferred to a plastic bag; all
plastic bags were sealed and incubated at 37 °C for 144 h. The composition of the fermented
mixed feeds is shown in Table 1.

Table 1. The composition of fermented mixed feeds.

No.
Mixed Substrate, g Fermentation Strain, g

Corn Soybean Fructus
mume

Scutellaria
baicalensis Georgi

Bacillus
subtilis Lactobacillus Saccharomyces

Mixed substrates fermented with the fermentation strains
1 222.75 74.25 3.00 - 0.60 0.60 0.60
2 218.25 72.75 9.00 - 0.60 0.60 0.60
3 202.50 67.50 30.00 - 0.60 0.60 0.60
4 222.75 74.25 - 3.00 0.60 0.60 0.60
5 218.25 72.75 - 9.00 0.60 0.60 0.60
6 202.50 67.50 - 30.00 0.60 0.60 0.60
7 225.00 75.00 - - 0.60 0.60 0.60

Mixed substrates fermented without the fermentation strains
8 222.75 74.25 3.00 - - - -
9 218.25 72.75 9.00 - - - -

10 202.50 67.50 30.00 - - - -
11 222.75 74.25 - 3.00 - - -
12 218.25 72.75 - 9.00 - - -
13 202.50 67.50 - 30.00 - - -
14 225.00 75.00 - - - - -

2.3. Fermented Mixed Feed Parameters

Each of the 14 mixed fermentation treatments was prepared in 6 repeated plastic bags,
corresponding to a 6-day (144 h) fermentation. The pH value was recorded every 24 h, and
a digital pH meter was used to measure the pH of samples after calibration with standard
buffers (pH 4.0 and 7.0). The results of pH values at different fermentation times is shown
in Table S1. Miscellaneous bacteria identification and antibacterial susceptibility tests were
performed every 24 h.
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2.4. Animals, Diets, and Experimental Design

This study was approved by and implemented under the supervision of the guidelines
for the care and use of experimental animals of the Ministry of Science and Technology of
the People’s Republic of China (Approval Number: 2006-398). The experimental protocols
were approved by the experimental Animal Ethical Committee of Anhui Science and
Technology University.

In total, 162 crossbred (Duroc × Yorkshire) weaning piglets (weaned at 25 days of
age) with an initial average body weight (BW) of 7.55 ± 0.47 kg were selected for the
30-day experiment. All the piglets were randomly assigned to 3 dietary groups with
3 replications per treatment and 18 pigs per pen. The BW and sex were balanced among
each treatment as follows: (1) piglets in the control group fed the basal diet (control group;
n = 54); (2) piglets in the treatment group fed a diet with added selected TCMs with potent
antibacterial properties (Fructus mume 1%, and Scutellaria baicalensis Georgi 3%) added to
the basal diet (TCM group; n = 54); (3) piglets in the fermentation treatment group fed a diet
supplemented with a selected TCM complex (Fructus mume 1%, Scutellaria baicalensis Georgi
3%), fermentation strains (B. subtilis, Lactobacillus, and Saccharomyces; 0.2% each, 108 cfu/g),
and sterile water, fermented at 37 ◦C for 144 h (F-TCM group; n = 54) (Table 2). All corn-
and soybean-based diets had no antibiotics and conformed to the nutrient requirements
of the US National Research Council [19]. Environmentally controlled nursery facilities
with slatted plastic flooring and mechanical ventilation were used to house the pigs. The
pre-feeding period of the weaned piglets was as follows: from 25 to 30 days of age, all
piglets were fed with the basal diet, and the formal feeding trial was from 30 to 60 days
of age. All pigs were fed twice a day individually (at 06:00 and 18:00) and allowed free
access to feed and ad libitum water during the entire experimental period. There were no
antibiotics in the feed or administered therapeutically to the pigs.

Table 2. Composition and nutrient levels of the experimental diets.

Experimental Diets

Control TCM F-TCM

Ingredient (%), DM
Corn 67.00 63.00 62.40
Soybean meal 25.00 25.00 25.00
Self-made premix a 8.00 8.00 8.00
Fructus mume - 1.00 1.00
Scutellaria baicalensis Georgi - 3.00 3.00
Bacillus subtilis - - 0.20
Lactobacillus - - 0.20
Saccharomyces - - 0.20
Nutrition level (%) b, DM
Crude protein (CP) 22.97 ± 0.82 26.75 ± 0.73 27.85 ± 0.82
Ether extract (EE) 16.27 ± 0.58 15.48 ± 0.44 16.00 ± 0.24
Crude fiber (CF) 5.26 ± 1.57 6.29 ± 1.79 7.15 ± 0.46
Ash 5.40 ± 0.00 4.54 ± 0.02 5.36 ± 0.27
Nitrogen-free extract (NFE) 37.36 ± 2.99 44.21 ± 3.22 38.99 ± 4.59

a Ingredients: fish meal, choline chloride, vitamin, mineral elements, L-lysine hydrochloride, calcium hydrophos-
phate, stone powder, sodium chloride, enzyme preparation, flavoring agent, and sweetening agent. No antibiotics
were added. b Measured values (Mean ± SD).

2.5. Determination of the Growth Performance and Diarrhea Rate

The individual BW of pigs with empty stomachs was measured at 05:00 on Days 1,
15, and 30 of the experimental period; the feed offered and residual feed were weighed
and recorded daily and used to determine the ADG, average daily feed intake (ADFI), and
feed-to-gain (F:G) [11]. The incidence and severity of piglet diarrhea were assessed by fecal
consistency. If the piglets had moderately fluid feces and frothy diarrhea, in which the feces
were definitely unformed and very watery, they were considered to be diarrheic [20]. The
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diarrhea rate of piglets was recorded daily and calculated as follows: diarrhea rate (%) = the
number of pigs with diarrhea × diarrhea days/(total number of pigs × experimental days)
× 100%, where the number of pigs with diarrhea was defined as the number of piglets with
diarrhea observed each day [21].

2.6. Assessment of Apparent Nutrient Digestibility

According to the method described by Fouhse et al. [22] and Niu et al. [15], samples
of feed were collected daily during the experimental period, and the total daily feces
from each pig were collected on the last 3 days. The collected feces for each piglet were
composited and mixed thoroughly; approximately 100 g of feces was subsampled after
thorough mixing, and all feed and feces samples were dried at 65 ◦C to constant weight for
subsequent analysis.

Acid-insoluble ash (AIA) was used as an indigestible marker to assess the digestibil-
ity of the dietary components according to the procedure of the Association of Official
Analytical Chemists (AOAC 942.05) [23]. The DM was analyzed according to the pro-
cedures described by Xie et al. [24]. The EE content was measured using the Soxhlet
extraction method (AOAC 920.85), which was performed with a Soxhlet apparatus [15].
The CP content was measured via the Kjeldahl method (AOAC 984.13) using a Kjeltec
8400 analyzer unit (Foss, Beijing, China). CF analysis was carried out using the ANKOM
A200 filter bag technique (AOAC 962.09) [15]. The ingredient composition and nutri-
ent specifications of the basal and experimental diets were calculated as previously re-
ported, and the apparent nutrient digestibility was calculated by the following equation:
apparent nutrient digestibility = (nutrient/AIA)diet−(nutrient/AIA)digesta

(nutrient/AIA)diet [15,25,26].

2.7. Fecal Sample Collection, DNA Extraction, 16S rRNA Gene Amplification, and Illumina HiSeq
2500 Sequencing

The fecal samples were collected on the last day of the experiment from 18 pigs, where
two pigs were selected randomly within each pen (one male and one female). The feces
were stored at −80 °C for subsequent analyses.

The methods in this section are similar to those used in our previous studies [27,28],
in which the fecal microbial DNA was extracted using HiPure Stool DNA Kits (Magen,
Guangzhou, China) according to the manufacturer’s protocols. The 16S rDNA V3–V4
region of the ribosomal RNA gene was amplified by PCR (95 ◦C for 2 min, followed by
27 cycles at 98 ◦C for 10 s, 62 ◦C for 30 s, and 68 ◦C for 30 s, with a final extension at
68 ◦C for 10 min) using the primers 341F: CCTACGGGNGGCWGCAG and 806R: GGAC-
TACHVGGGTATCTAAT, where the barcode is an eight-base sequence unique to each
sample. PCR reactions were performed in triplicate in 50 µL mixtures containing 5 µL
of 10 × KOD Buffer, 5 µL of 2.5 mM dNTPs, 1.5 µL of each primer (5 µM), 1 µL of KOD
polymerase, and 100 ng of the template DNA.

Amplicons were extracted from 2% agarose gels and purified using the AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) according to the
manufacturer’s instructions and quantified using an ABI StepOnePlus Real-Time PCR
System (Life Technologies, Foster City, CA, USA). Purified amplicons were pooled in an
equimolar mixture and paired-end sequenced (2 × 250) on an Illumina HiSeq platform
according to the standard protocols. The raw reads were deposited into the NCBI Sequence
Read Archive (SRA) database (accession number: SRR9566631).

2.8. Bioinformatics Analysis
2.8.1. Read Filtering

Raw data containing adapters or low-quality reads would affect the subsequent as-
sembly and analysis. Thus, in order to obtain high-quality clean reads, the raw reads were
further filtered according to the following rules using FASTP (https://github.com/OpenG
ene/fastp, accessed on 14 September 2022): (1) removing reads containing more than 10%

https://github.com/OpenGene/fastp
https://github.com/OpenGene/fastp
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of unknown nucleotides (N), (2) removing reads containing less than 60% of bases with a
quality (Q-value) > 20.

2.8.2. Read Assembly

Paired-end clean reads were merged as raw tags using FLSAH [29] (version 1.2.11)
with a minimum overlap of 10 bp and mismatch error rates of 2%.

2.8.3. Raw Tag Filtering

Noisy sequences of raw tags were filtered by the QIIME [30] (version 1.9.1) pipeline
under specific filtering conditions [31] to obtain high-quality clean tags.

2.8.4. Chimera Checking and Removal

Clean tags were searched against the reference database (http://drive5.com/uchim
e/uchime_download.html, accessed on 14 September 2022) to perform reference-based
chimera checking using the UCHIME algorithm (http://www.drive5.com/usearch/man
ual/uchime_algo.html, accessed on 14 September 2022). All chimeric tags were removed,
and the effective tags finally obtained were used for further analysis.

2.8.5. OTU Cluster

The effective tags were clustered into operational taxonomic units (OTUs) of ≥ 97%
similarity using the UPARSE [32] pipeline. The tag sequence with the highest abundance
was selected as a representative sequence within each cluster. Between-group Venn analysis
was performed in R (version 3.4.1, https://cran.r-project.org/bin/windows/base/old/3.4.
1/, accessed on 14 September 2022) to identify unique and common OTUs.

2.8.6. Taxonomic Classification

The representative sequences were classified into organisms by a naive Bayesian
model using an RDP classifier [33] (version 2.2, http://rdp.cme.msu.edu/, accessed on
14 September 2022) based on the SILVA [34] database (https://www.arb-silva.de/, ac-
cessed on 14 September 2022), with the confidence threshold values ranging from 0.8 to
1. The abundance statistics of each taxon were visualized using Krona [35] (version 2.6,
https://github.com/marbl/Krona/releases/tag/v2.6.1, accessed on 14 September 2022).
Biomarker features in each group were screened by Metastats [36] (version 20090414) and
LEfSe software [37] (version 1.0, https://github.com/waldronlab/lefser, accessed on 14
September 2022).

2.8.7. Alpha Diversity Analysis

Chao1, Simpson, and all other alpha diversity indexes were calculated in QIIME. OTU
rarefaction curves and rank abundance curves were plotted in QIIME. An alpha index
comparison between groups was calculated by Welch’s t-test and Wilcoxon’s rank test. The
alpha index comparison among the groups was computed by Tukey’s HSD test and the
Kruskal–Wallis H-test.

2.9. Statistical Analysis

Data were compared among the groups using a one-way ANOVA test after normal test
processing and conversion if necessary. The relative abundance of microbial communities
in feces and data that did not follow a normal distribution were processed using the
nonparametric Kruskal–Wallis test. Correlation analysis was performed by Pearson’s
correlation tests. Significant differences were considered at p < 0.05. The initial body weight
was included as a covariate in the growth performance analysis. The statistical analyses
were conducted using SPSS Statistics (Version 22, https://www.ibm.com/analytics/spss-s
tatistics-software, accessed on 14 September 2022) [27,28].

http://drive5.com/uchime/uchime_download.html
http://drive5.com/uchime/uchime_download.html
http://www.drive5.com/usearch/manual/uchime_algo.html
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https://cran.r-project.org/bin/windows/base/old/3.4.1/
https://cran.r-project.org/bin/windows/base/old/3.4.1/
http://rdp.cme.msu.edu/
https://www.arb-silva.de/
https://github.com/marbl/Krona/releases/tag/v2.6.1
https://github.com/waldronlab/lefser
https://www.ibm.com/analytics/spss-statistics-software
https://www.ibm.com/analytics/spss-statistics-software
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3. Results
3.1. Antibacterial Characteristics

To evaluate the antibacterial characteristics of eight TCMs, we analyzed the MICs of
eight TCMs against Escherichia coli and Salmonella (Table 3). All eight TCMs had antibacterial
effects on Escherichia coli and Salmonella. Compared with other TCMs, Fructus mume and
Scutellaria baicalensis Georgi showed potent antibacterial properties and were then used in
the subsequent preparation of fermented mixed feed.

Table 3. The MICs of the water maceration extracts of eight TCMs for Escherichia coli and Salmonella.

TCMs
MICs, mg·mL−1

Escherichia coli Salmonella

Fructus mume 25.00 30.00
Scutellaria baicalensis Georgi 35.00 40.00
Rhizoma imperatae 130.00 >250.00
Paeoniae radix alba >250.00 >250.00
Plantaginis semen >250.00 >250.00
Eclipta prostrata >250.00 >250.00
Fructus arctii >250.00 >250.00
Portulaca oleracea L. >250.00 >250.00

3.2. Growth Performance

The ADG, ADFI, and the F:G ratio of the experimental piglets were measured to assess
their growth performance (Table 4). The ADG of the TCM and F-TCM groups increased
significantly by 51.3% (p < 0.05) and 53.2% (p < 0.05) compared with the control group,
respectively. Compared with the control group, the F:G ratio of the TCM and F-TCM
groups decreased significantly by 33.5% (p < 0.05) and 26.2% (p < 0.05), respectively.

Table 4. The growth performance of weaned piglets (mean ± SD).

Measure
Experimental Diets

p-Value
Control TCM F-TCM

Initial BW, kg 6.69 ± 0.43 7.96 ± 0.89 7.99 ± 0.93 0.25
Final BW, kg 13.69 ± 0.80 b 18.55 ± 1.06 a 18.71 ± 2.04 a <0.05
ADG, g 259.26 ± 10.45 b 392.32 ± 7.16 a 397.19 ± 9.85 a <0.05
ADFI, g 535.67 ± 38.64 609.40 ± 14.50 654.44 ± 77.19 0.14
F:G, g/g 2.07 ± 0.01 a 1.55 ± 0.03 b 1.64 ± 0.08 b <0.05

a,b Values within a row without a common superscript letter are significantly different (p < 0.05).

3.3. Diarrhea Rate

The diarrhea rate of piglets was determined according to the literature [21] (Table 5).
Compared with the F-TCM group, the DM of feces decreased in control and TCM groups
(p < 0.05). Compared with the control group, the diarrhea rate of piglets in the TCM and
F-TCM groups was significantly decreased by 41.7% (p < 0.05) and 65.6% (p < 0.05).

Table 5. The DM of feces and the diarrhea rate of weaned piglets (mean ± SD).

Measure
Experimental Diets

p-Value
Control TCM F-TCM

Feces, DM % 60.16 ± 4.89 b 63.15 ± 3.80 b 67.34 ± 2.95 a <0.05

Diarrhea rate, % 22.22 ± 4.13 a 12.96 ± 3.23 b 7.66 ± 2.26 c <0.05
a,b,c Values within a row without a common superscript letter are significantly different (p < 0.05).
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3.4. Apparent Nutrient Digestibility

To determine whether TCM supplementation could improve the apparent nutrient
digestibility in weaned piglets, we assessed the digestibility of DM, CP, EE, CF, ash, and
NFE (Table 6). The apparent digestibility of DM and EE increased in the TCM and F-TCM
groups in comparison with the control group (p < 0.05), while no significant difference was
noted between the TCM and F-TCM groups. There was no significant difference in the
apparent digestibility of CP, CF, ash, or NFE among all the groups (p > 0.05).

Table 6. The apparent nutrient digestibility of weaned piglets (mean ± SD).

Nutrient
Experimental Diets

p-Value
Control TCM F-TCM

DM, % 62.93 ± 5.12 b 70.20 ± 0.99 a 66.59 ± 4.66 a <0.05
CP, % 64.48 ± 5.67 68.86 ± 4.16 72.93 ± 6.63 0.26
EE, % 79.05 ± 3.75 b 89.93 ± 6.48 a 85.09 ± 4.34 a <0.05
CF, % 72.14 ± 4.23 86.57 ± 5.34 62.77 ± 2.65 0.18
Ash, % 85.82 ± 4.71 86.67 ± 3.34 87.21 ± 5.72 0.94
NFE, % 85.53 ± 5.46 68.25 ± 3.81 74.93 ± 3.37 0.54

a,b Values within a row without a common superscript letter are significantly different (p < 0.05).

3.5. The Composition of Fecal Microbiota

At a cutoff level of 3%, no effect on the ACE and Chao richness estimators was
observed in all groups (Figure 1). The Shannon diversity estimator in the F-TCM group
was significantly increased (p < 0.05), while the Simpson index decreased compared with
the control and TCM groups (p < 0.01).

The OTU distribution of the microbial communities of the different treatment groups
had a certain degree of similarity and specificity. In order to understand the species
differences, Venn diagrams were used to show the common and unique information
among the different groups based on the OTU abundance information of the samples. As
shown in Figure 2, 549 microbial species were common to all groups; however, 101 OTUs
were unique in the control, and 136 and 146 OTUs were unique in the TCM and F-TCM
groups, respectively.

At the phylum level, Bacteroidetes and Firmicutes were the predominant phyla in
the fecal microbiota of piglets, with a total abundance of >95%, followed by the phyla
Actinobacteria and Proteobacteria (Figure 3A,D). The abundance statistics of each taxon
were visualized using Krona, the total profiling of the composition of microbial species
is shown in Figure S1, and the composition of microbial species at the phylum level of
Firmicutes (Figure S2), Bacteroidetes (Figure S3), and Actinobacteria (Figure S4) are presented
in supplementary materials.

At the genus level, in the phylum Bacteroidetes, 10 genera with a relative abundance
of >1% were found to be dominant (Figure 3E). In the phylum Firmicutes, 17 genera with
a relative abundance of >1% were found to be dominant (Figure 3F). Among these, com-
pared with the control group, the relative abundance of Erysipelotrichaceae_UCG-004 and
Ruminococcaceae_UCG-014 were increased, and the abundance of Prevotellaceae_UCG-003
and Oscillospira were decreased in the TCM and F-TCM groups (p < 0.05, Figure 4). Com-
pared with the control and F-TCM groups, the abundance of Acidaminococcus, Prevotella_7,
and Megasphaera were increased, while the abundance of Bifidobacterium, Coprococcus_1,
Lachnoclostridium, Prevotellaceae_UCG-003, Faecalibacterium, and Oscillibacter were decreased
in the TCM group (p < 0.05, Figure 4). Compared with the control and TCM groups, the
abundance of Coprococcus_1, Lachnoclostridium, the Lachnospiraceae_FCS020 group, the Pre-
votellaceae_NK3B31 group, the Ruminococcaceae_UCG-014, and Ruminococcaceae_UCG-008
were increased, while the abundance of Acidaminococcus, Prevotella_7, and Megasphaera were
decreased in the F-TCM group (p < 0.05, Figure 4). Compared with the TCM group, the rela-
tive abundance levels of Coprococcus_1, Lachnoclostridium, the Lachnospiraceae_FCS020 group,
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the Prevotellaceae_NK3B31 group, Faecalibacterium, Oscillibacter, and Ruminococcaceae_UCG-
008 were increased, while the abundance of Acidaminococcus, Bifidobacterium, Prevotella_7,
and Megasphaera were decreased in the F-TCM group (p < 0.05, Figure 4).
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At the OTU level, compared with the control group, the relative abundance of Ru-
minococcaceae_UCG-014-related OTUs (OTU157 and OTU043), the Subdoligranulum-related
OTU214, and the Prevotellaceae-related OTU292 were increased, while the abundance of
the Ruminococcaceae_UCG-002-related OTU037 and the Prevotella_9-related OTU295 were
decreased in the TCM and F-TCM groups (p < 0.05, Figure 5). Compared with the control
and F-TCM groups, the abundance of the Christensenellaceae_R-7 group-related OTU210,
the Acidaminococcus-related OTU112, and the Prevotella_7-related OTU007 were increased,
while the abundance of the Candidatus Soleaferrea-related OTU133, the Oscillibacter-related
OTU300, the Oscillospira-related OTUs (OTU242 and OTU041), the Ruminiclostridium_9-
related OTU202, the Prevotella_1-related OTU069, the Prevotella_9-related OTUs (OTU131
and OTU057), and the Prevotellaceae_UCG-003-related OTU012 were decreased in the TCM
group (p < 0.05, Figure 5). Compared with the TCM group, the abundance of the Copro-
coccu_1-related OTU315, the Lachnoclostridium-related OTU148, the Candidatus Soleaferrea-
related OTU133, the Oscillibacter-related OTU300, the Oscillospira-related OTUs (OTU242
and OTU041), the Ruminiclostridium_9-related OTU202, the Ruminococcaceae_UCG-005-
related OTU180, the Ruminococcaceae_UCG-014-related OTUs (OTU354, OTU184, OTU157,
and OTU043), the Prevotella_1-related OTU069, and the Prevotella_9-related OTUs (OTU131
and OTU057) were increased, while the abundance of the Ruminococcaceae_UCG-002-related
OTU037, the Acidaminococcus-related OTU112, and the Prevotella_7-related OTU007 were
decreased in the F-TCM group (p < 0.05, Figure 5).
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Figure 3. The composition and structure of the fecal microbiota in weaned piglets (relative abundance
of more than 1%). The Bacteroidetes and Firmicutes phyla constituted approximately 95% of the
identified sequences (A), followed by Actinobacteria and Proteobacteria as follows: five families (B)
and 10 genera (E) in Bacteroidetes; eight families (C) and 17 genera (F) in Firmicutes; one family (D) in
Actinobacteria; two families (D) in Proteobacteria. P: phylum.
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3.6. Correlation between Fecal Microbiota and Apparent Nutrient Digestibility

In order to investigate the relationship between the intestinal microbial community
and apparent nutrient digestibility in piglets, the correlations were analyzed (Table 7 and
Figure 6).

Table 7. Correlations of fecal microbial richness and diversity estimators with apparent nutrient
digestibility.

Apparent
Digestibility, %

Correlation Coefficient

ACE Chao Shannon Simpson

DM 0.03 * 0.05 * 0.53 0.16
CP 0.34 0.28 0.82 0.97
EE 0.89 0.71 0.03 * 0.02 *
CF 0.67 0.82 0.10 0.17

Ash 0.74 0.61 0.82 0.59
NFE 0.34 0.72 0.44 0.44

* Significant correlation (p < 0.05).

As shown in Table 7, the microbial richness estimators (ACE, Chao) were positively
correlated with apparent DM digestibility (p < 0.05), and the microbial diversity indices
(Shannon, Simpson) were positively correlated with apparent EE digestibility (p < 0.05).
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white shows that the correlation was not significant (p > 0.05). F: family; G: genus.

At the genus level (Figure 6A), the relative abundance of the Ruminococcaceae_UCG-
014 and Lachnospiraceae_FCS020 groups were negatively correlated with apparent DM
digestibility (p < 0.05); the abundance of Ruminococcaceae_UCG-014 and Lachnoclostridium
was negatively correlated with apparent EE digestibility (p < 0.05); and the abundance of
Oscillospira was negatively correlated with apparent ash digestibility (p < 0.05).

At the OTU level (Figure 6B), the relative abundance of the Ruminococcaceae_UCG-
014-related OTUs (OTU043 and OTU157) and the family Prevotellaceae-related OTU371
were positively correlated, while the abundance of the family Ruminococcaceae-related
OTU037 and the Prevotella_9-related OTU295 was negatively correlated with the apparent
DM digestibility (p < 0.05). The abundance of the Subdoligranulum-related OTU214 was
negatively correlated with the apparent CP digestibility (p < 0.05); the abundance of
the Prevotella_9-related OTU295, the family Ruminococcaceae-related OTUs (OTU103 and
OTU165), and the family Bacteroidale_S24-7 group-related OTU113 was positively correlated
with apparent EE digestibility, while the abundance of the Ruminococcaceae_UCG-014-
related OTUs (OTU157, OTU354, and OTU180), the Prevotellaceae_NK3B31 group-related
OTUs (OTU056, OTU065, OTU116, and OTU188), the Prevotella_1-related OTU069, the
family Ruminococcaceae-related OTU292, and the Lachnoclostridium-related OTU148 was
negatively correlated with the apparent EE digestibility (p < 0.05). The abundance of
Oscillospira-related OTU041, Prevotellaceae_NK3B31 group-related OTU188, and family
Prevotellaceae-related OTU292 were positively correlated with apparent CF digestibility
(p < 0.05).

4. Discussion

With the implementation of the policy to remove AGPs in animal production in China,
natural plants and their application as AGP substitutes have gained increasing interest
in the research community because of their safety, efficiency, and availability [38]. TCMs
are considered better alternatives for improving animal health and resisting infectious
diseases. Fructus mume (“wumei” in Chinese) has long been used in China to treat chronic
coughs, expectoration, ulceration, chronic diarrhea, and gastrointestinal diseases [39–44].
This medicinal effect is due to its antioxidant [44], antibacterial [45], and anti-inflammatory
properties [43,44], and its protective ability against gastrointestinal diseases via the op-
sonization of intestinal commensal bacteria, as well as its ability to alleviate epithelial injury
and inflammation [39]. Scutellaria baicalensis Georgi (“huangqin” in Chinese) is also an old
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and well-known component of TCM and is widely used for the treatment of bronchitis,
hepatitis, tumors, and inflammatory diseases [46–50]. Numerous research studies have
indicated that the therapeutic effects of Scutellaria baicalensis Georgi are due to its various
pharmacological activities, including its antiangiogenic, anti-inflammatory, antimicrobial,
immunoenhancing, and antioxidative effects [51–54]. Very little was found in the literature
on the effects of dietary TCM in weaned piglets. Our study systematically investigated
the data and aimed to ascertain the effects of these two TCM feed additives on the growth
performance, apparent nutrient digestibility, and fecal microbiota of weaned piglets.

Prior studies have reported that fermented feed significantly increases the body weight
and ADG of piglets [55], laying hen chicks [56], and geese [57]. Several reports have
shown that TCM additives significantly improved the final BW, ADG, and FCR in lambs
and hogs [12] and promoted growth performance in heat-stressed beef cattle, which was
associated with better physiological status [11]. These findings are contrary to a previous
study showing that dietary TCM led to greater feed intake but no significant differences in
the final BW, ADG, or F:G ratio [58]. There were few reports on the effects of fermentation
with TCM mixtures on the growth performance of weaned piglets. In our study, dietary
supplementation with Fructus mume and Scutellaria baicalensis Georgi, fermented or not
fermented, led to no significant differences in ADFI during the experiment period. The
findings of the current study do not support previous research where the authors suggested
that the inclusion of supplemental TCMs may improve pigs’ appetite [58]. The results of this
study showed that the final BW and ADG increased, while the F:G ratio and diarrhea rate
decreased in weaned piglets in the TCM and F-TCM groups, suggesting that Fructus mume
and Scutellaria baicalensis Georgi supplementation in the diet improves growth performance,
leading to greater weight gain and improved health [10–12]. However, fermentation with
Fructus mume and Scutellaria baicalensis Georgi in the diet had no significant effect on the
growth performance of piglets.

One interesting finding in our study was observed in the TCM and F-TCM groups, in
which ADG was increased while ADFI was not significantly changed; considerably more
work will need to be carried out to determine apparent nutrient digestibility in piglets.
Previous studies have explored whether dietary TCM increases the apparent digestibility
of CP in finishing pigs [59] and CP, Ca, P, and NDF in weaned piglets [60]. Dietary TCM
has also been suggested to improve the apparent digestibility of OM, CP, ADF, Ca, and P in
beef cattle, even under heat stress [10,11]. However, the findings of the current study do
not support the previous research; as shown in Table 6, there was no significant difference
in the apparent digestibility of CP or CF among the three groups. In addition, the partial
substitution of fermented feed in the diet increased the apparent digestibility of CP and
CF in growing-finishing pigs [61]; CP and EE in Xuefeng black-boned chickens [62]; and
DM, CP, CF, NDF, and ADF in lactating dairy cows [63]. Data on fermented TCM feed are
lacking; in our study, feed fermented with TCM increased the apparent digestibility of DM
and EE compared with the non-fermented group (TCM group), suggesting that fermented
feed with Fructus mume and Scutellaria baicalensis Georgi mixture increased the digestibility
of DM and EE in weaned piglets.

Recently, studies have found that the gut microbiota may explain the therapeutic
effects of TCM [6,64]. An increasing number of studies have investigated the interactions
between the gut microbiota and TCM, suggesting that the gut microbiota can directly affect
the absorption, metabolism, and pharmacological activity of TCM [2,3,65]. In our study,
the composition of fecal microbiota in weaned piglets was analyzed. Dietary Fructus mume
and Scutellaria baicalensis Georgi decreased the diversity but did not have a significant
effect on the richness of fecal microbiota; this finding is inconsistent with that of Zou
(2021), who reported that a Huangqin decoction (HQD) could increase the diversity of
the intestinal microbiota of cholestatic mice [66]. This inconsistency may be due to the
different species. The current study also found that feed fermented with these two TCMs
improved the diversity of fecal microbiota in piglets. Previous results suggested that eight
Chinese herbs (Chinese name: “jian ji san”) fermented with Zygosaccharomyces rouxii and
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their fermentation products increased the diversity of the foregut microbial community
of broiler chickens [67], which is in agreement with our results. According to these data,
we can infer that dietary Fructus mume and Scutellaria baicalensis Georgi affected the fecal
microbial composition by altering its diversity in weaned piglets.

In our study, Bacteroidetes and Firmicutes were the predominant phyla in the fecal
microbiota of piglets, similar to the findings of previous studies [28,68,69]. As mentioned
in the literature review, the gut microbial mediation of the potential therapeutic mechanism
of TCMs can be attributed to the production of short-chain fatty acids (SCFAs) [67,70],
mostly acetic, propionic, and butyric acids, which play an important role in maintaining
the intestinal health of pigs [70,71]. In Figure 4, there is a clear trend of the increased
relative abundance of Acidaminococcus, Prevotella, and Megasphaera in the TCM group and
a decreased abundance in the F-TCM group; all three genera are considered to be SCFA-
producing bacteria [70,72], suggesting that the diet supplemented with Fructus mume and
Scutellaria baicalensis Georgi increased the abundance of SCFA-producing bacteria in the
hindgut, which may have promoted the intestinal health of the weaned piglets. However,
the prefermentation of these two TCMs, dietary fibers, and other indigestible carbohydrates
led to their degradation before being fed to the piglets [70], explaining the decreasing
tendency of apparent CF digestibility and the abundance of Acidaminococcus, Prevotella, and
Megasphaera in the F-TCM group. Another important finding in the current study was that
the relative abundance of Coprococcus, Lachnospiraceae_FCS020 group, and Oscillibacter were
increased in the F-TCM group; these genera have been identified as the most active and
healthy microbiome constituents in the intestinal environment in healthy adult humans
and animals [28,73–75]. Thus, these findings suggest that fermentation with Fructus mume
and Scutellaria baicalensis Georgi results in the improved healthy intestinal flora, which, in
turn, could favor the intestinal health of weaned piglets.

Another important objective of this study was to investigate the relationship between
the gut microbial characteristics and the apparent nutrient digestibility in weaned piglets,
so the correlation between the apparent nutrient digestibility and significant microbial
genera and OTUs were further analyzed. Significant correlations between microbial di-
versity and apparent EE digestibility were observed, suggesting a potential link between
changes in the intestinal flora and apparent EE digestibility. At the OTU level, the relative
abundance of 10 OTUs that increased in the F-TCM group was positively correlated with
apparent EE digestibility, while four OTUs for which the abundance was decreased in
the F-TCM group were negatively correlated with apparent EE digestibility. Within these
OTUs, most belong to the families Ruminococcaceae and Prevotellaceae, which are consid-
ered to be the core bacteria detected in 99% of fecal samples obtained from commercial
swine worldwide [76]. Prior studies have shown that the abundance of Ruminococcaceae
is negatively correlated with high-fat-diet (HFD)-induced obesity in a ripened pu-erh tea
extract (PETe) intervention in mice [77], while the relative abundance of Prevotellaceae and
Prevotellaceae_NK3B31_group was observed to increase through supplementation with pea
seed coats (PSCs) and stachyose in mice and rats fed an HFD [78,79]. According to these
findings, we can infer that the digestion and absorption of nutritional lipids in the diet
were closely related to the changes in the Ruminococcaceae and Prevotellaceae families. Our
correlation results are consistent with previous studies focusing on the gut microbiota and
the apparent nutrient digestibility of grower pigs and sows [15,80] and support the possible
relationship between the gut microbiota and the regulation of dietary nutrient utilization
in piglets.

5. Conclusions

Dietary supplementation with Fructus mume and Scutellaria baicalensis Georgi in
antibiotic-free feed improved the final BW and ADG, increased the abundance of SCFA-
producing bacteria in the hindgut, and decreased the F:G ratio and diarrhea rate, yielding
healthier weaned piglets that gained more weight. Fermentation with these TCMs en-
hanced the apparent digestibility of DM and EE and improved the healthy intestinal flora,
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which, in turn, could favor the intestinal health of weaned piglets. There was a significant
correlation between the increased apparent EE digestibility in the TCM diets and the diver-
sity of fecal microbiota. Dietary TCMs affect the fecal microbial composition by changing
the abundance of certain genera belonging to the Ruminococcaceae, Prevotellaceae, and Lach-
nospiraceae families, which may further increase the apparent EE digestibility of weaned
piglets. Nevertheless, our study cannot demonstrate causality, and further experimental
studies are needed to address this.
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