
EXPERIMENTAL AND THERAPEUTIC MEDICINE  28:  417,  2024

Abstract. Loganin, a major iridoid glycoside derived from 
Cornus officinalis, exerts strong anti‑inflammatory prop‑
erty. The present study aimed to investigate the underlying 
mechanism of loganin to reduce estrogen deficiency‑induced 
bone loss through a combination of network pharmacology, 
molecular docking and in vivo validation. First, the drug 
targets and structural interactions of loganin with osteoclasts 
on postmenopausal osteoporosis (PMOP) were predicted 
through network pharmacology and molecular docking. 
An ovariectomized (OVX) mouse model was established 
to experimentally validate loganin's anti‑PMOP efficacy, 
supported by its protective effect on bone destruction and 
excessive inflammatory cytokines. The top 10 core targets of 
loganin generated by a protein‑protein interaction network 
were the following: GAPDH, VEGFA, EGFR, ESR1, HRAS, 
SRC, FGF2, HSP90AA1, PTGS2 and IL‑2. Gene Ontology 
and Kyoto Encyclopedia of Genes and Genomes enrich‑
ment analyses indicated that loganin suppressed PMOP via 
mediating inflammation, bone formation, IL‑17 signaling 
pathway and NF‑κB signaling pathway. Molecular docking 
results indicated strong binding between loganin and core 

targets, in which the binding energy was approximately 
‑5.2 and ‑7.4 kcal/mol. In vivo mouse model revealed that 
loganin inhibited the expression of pro‑osteoclastic markers, 
such as tartrate‑resistant acid phosphatase, C‑terminal 
telopeptide, TNF‑α and IL‑6, enhanced the secretion of 
bone formation markers, such as procollagen type I intact 
n‑terminal pro‑peptide and IL‑10, and improved bone 
micro‑structure (bone volume/tissue volume and trabecular 
number), representative of the anti‑resorptive effect medi‑
ated by loganin. In summary, the present study combined 
network pharmacology and molecular docking to predict the 
underlying mechanism of loganin against PMOP, validated 
by the in vivo mouse model showing that loganin attenuated 
OVX‑induced bone loss by inhibiting inflammation.

Introduction

Postmenopausal osteoporosis (PMOP) is a common chronic 
bone disease characterized by excessive bone loss and 
the deterioration of bone microstructure due to estrogen 
deficiency (1). Estrogen deficiency also leads to chronic 
inflammation with elevated levels of proinflammatory media‑
tors, which contribute to the development of osteoporosis 
(OP) (2).

To date, anti‑osteoporotic drugs have been widely used 
in the clinical treatment of PMOP (3). Bisphosphonate is the 
first‑line medications for OP treatment, however, adverse events 
like atypical femoral fractures and osteonecrosis of the jaw 
are concerning (4). Therefore, it is demanded to develop novel 
drugs with higher efficacy and milder undesired effect (3). In 
Asian countries, Traditional Chinese Medicine (TCM) has 
been extensively used to prevent and treat various diseases 
including OP due to its superiority on safety and effective‑
ness (5‑8). Cornus officinalis (CO) is a common medicine in 
TCM that nourishes the liver and kidney and exerts protective 
effects against diseases such as aching lumbus and knees, 
dizziness, spermatorrhea and so on (9). A previous study has 
revealed that the master transcription factors of osteoclast 
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differentiation can be inhibited by CO treatment (10). Loganin 
is a major bioactive iridoid glycoside derived from CO (11). 
Li et al (12) found that loganin directly enhances the function 
of osteoblasts and prolongs their survival, indirectly inhibits 
the function of osteoclasts and reduces the number of osteo‑
clasts. However, the mechanism of action of loganin on PMOP 
has yet to be fully elucidated. The present study aimed to illus‑
trate the pharmacological mechanisms of loganin in treating 
PMOP through network pharmacology, molecular docking 
and in vivo validation.

Materials and methods

Target acquisition of loganin and osteoclast‑related genes. The 
active components of loganin were investigated by a combined 
searching and collection in the online databases including the 
Traditional Chinese Medicine Systems Pharmacology data‑
base (TCMSP; https://old.tcmsp‑e.com/tcmsp.php) (13), the 
Swiss Target Prediction databases (http://www.swisstargetpre‑
diction.ch) (14), the Similarity Ensemble Approach platform 
(SEA; https://sea.bkslab.org/) (14) and STITCH platform 
(http://stitch.embl.de/) (15). The names of loganin targets were 
standardized by the UniProt database (https://www.uniprot.
gov/) (16). Both ‘osteoclastogenesis’ and ‘osteoclast differ‑
entiation’ were the key words to search for targets related to 
osteoclast from three online public databases, including the 
Online Mendelian Inheritance in Man (OMIM; http://www.
omim.org/), the GeneCards database (https://www.genecards.
org/) and the TTD database (https://db.idrblab.net/) (17). 
A Venn diagram was constructed on an online website 
(https://bioinfogp.cnb.csic.es/tools/venny/index.html) to 
identify the overlapping target genes between loganin and 
osteoclast‑related genes for further bioinformatic analyses (1).

Construction and analysis of a protein‑protein interaction 
(PPI) network. With the parameters of ‘confidence score 
>0.4’ and ‘Homo sapiens’, the overlapping genes between 
loganin and osteoclast‑related were analysed in STRING 
(https://string‑db.org/) to build a PPI network. Subsequently, 
the gene‑gene connection data was exported from STRING 
database, and further analysed their interconnection network 
by using the visualized software Cytoscape (version 3.9.1) (1). 
Larger protein targets with more linked nodes had higher 
degrees, participated in more biological functions and were 
more likely to be therapeutic targets (17).

Enrichment analysis of Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways. 
For the target genes of loganin and osteoclast‑related genes, 
the Metascape data platform (https://metascape.org/) was 
used for GO functional annotations and KEGG pathway 
enrichment analysis (18). ‘Homo species’ was selected on 
the Metascape data platform to analyze biological processes, 
cellular components, molecular functions and KEGG 
signalling pathways, and bioinformatics online platforms 
(https://www.bioinformatics.com.cn/) were used to visualize 
the results (18).

Molecular docking. The mol2 files of 3D chemical structures 
of loganin were downloaded from the PubChem database 

(https://pubchem.ncbi.nlm.nih.gov). The structure of the target 
proteins was obtained from the RCSB Protein Data Bank 
(https://www.rcsb.org) (1). AutoDockVina v.1.2.2 software 
was then used to perform molecular docking between loganin 
and the target proteins (1). Finally, PyMoL v.2.5 was used to 
analyze and visualize the binding mode and interactions of 
candidate active ingredients and key target proteins (1).

Animals and materials. Loganin (≥98% of purity) was 
purchased from Chengdu Must Bio‑Technology Co., Ltd. A 
total of 28 healthy, SPF grade (weight, 17‑19 g), 7‑week‑old 
C57BL/6J female mice, were obtained from Guangdong 
Medical Laboratory Animal Center. The mice were main‑
tained at 21±1.5˚C in a 12/12‑h light‑dark cycle with standard 
food pellets and free access to tap water. After acclimation for 
1 week, all mice were randomly assigned into 4 groups (n=7 
per group): SHAM group, OVX group, OVX + Loganin‑L 
(5 mg/kg) group and OVX + Loganin‑H (20 mg/kg) 
group (19). The mice in loganin treated groups received the 
aforementioned concentrations of loganin, while the mice in 
OVX and Sham groups received intragastric administration 
of equal volume distilled water for 12 weeks. The animal 
protocol was approved by the Ethics Committee of The First 
Affiliated Hospital of Guangdong Pharmaceutical University 
(approval no. 00300814; Guangzhou, China), and was in 
adherence to the Guide for the Care and Use of Laboratory 
Animals (20).

Microcomputed tomography (Micro‑CT) analysis and ELISA 
tests. The left distal femurs of mice were scanned by Micro‑CT 
(SCANCO uCT‑100 detector; SCANCO Medical AG), and 
the bone trabecular in the area 0.8 mm above 0.5 mm from 
the growth plate were selected as the region of interest (ROI) 
for 3D reconstruction. Bone mineral density (BMD), bone 
volume/tissue volume (BV/TV), trabecular number (Tb.N), 
and trabecular separation (Tb.Sp) of the ROI were measured 
using analysis the Evaluation V.6.5‑3 software (SCANCO 
Medical AG).

Samples of serum were collected by eyeball extraction. 
The levels of C‑terminal telopeptide (CTX), tartrate‑resistant 
acid phosphatase (TRAP), procollagen type I intact n‑terminal 
pro‑peptide (P1NP), TNF‑α, IL‑6 and IL‑10 were measured 
by ELISA according to the manufacturer's instructions. The 
ELISA kits (cat. no. 20220711M) were obtained from Jiangsu 
Meimian Industrial Co., Ltd.

Statistical analysis. Data are presented as the mean ± SD. 
SPSS software was used for statistical analysis (version 25.0; 
IBM Corp.). The one‑Way ANOVA test was used for the data 
with normal distribution, and the Kruskal‑Wallis test was 
used to analyze data that did not meet the assumptions of the 
ANOVA. The LSD test was used when data met normality and 
homogeneity of variance. Tamhane's T2 test was used when 
data met normality but not homogeneity of variance. P<0.05 
was considered to indicate a statistically significant difference.

Results

Prediction of compound‑diseases targets. After integration 
and deduplication of data derived from TCMSP, SwissTarget 
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Prediction, SEA and STITCH databases, 106 targets of loganin 
were retrieved. A total of 1,152 targets related to osteoclasto‑
genesis and osteoclast differentiation were captured from the 
OMIM, GeneCards and TTD databases, and crosschecked 
with the identified herbal component targets, generating 31 
potential targets of loganin as shown in Fig. 1A.

Construction of PPI network. Common targets shared by 
loganin and osteoclast differentiation were connected through 
STRING‑based PPI analysis, resulting in a complex network 
diagram consisting of 31 nodes and 182 edges (Fig. 1B). The 
node degree is a critical evaluation parameter in PPI network, 

in which a higher node degree represents a higher weight in 
the network. Basing on the node degree, the top 10 core targets 
in the PPI network were GAPDH, VEGFA, EGFR, ESR1, 
HRAS, SRC, FGF2, HSP90AA1, PTGS2 and IL‑2.

GO function and KEGG pathway enrichment analyses. GO 
and KEGG analyses were employed as important genetic tools 
to identify key biological pathways and processes that are 
associated with loganin's potential effect on OP treatment. The 
GO analysis revealed that loganin's target genes on osteoclast 
were mainly involved in cell migration, cell proliferation and 
peptidyl‑tyrosine phosphorylation (Fig. 2A). On the other 

Figure 1. (A) The Venn diagram overlapping loganin's component targets (List 1) and osteoclast‑related genes (List 2). (B) Protein‑protein interaction network 
of the overlapping genes between loganin and osteoclasts was constructed basing on the STRING database. Nodes represent different protein hits, and edges 
represent interactions between nodes. The darker the color, the higher the node degree.

Figure 2. (A) The GO enrichment analysis for the overlapping genes between loganin and osteoclasts associated with molecular functions, biological processes 
and cellular components. The x‑axis showing the significant enrichment in the genes counts. The y‑axis showing the categories in the GO of the target genes. 
(B) The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of overlapping genes between loganin and osteoclasts. GO, Gene Ontology.

https://www.spandidos-publications.com/10.3892/etm.2024.12706
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hand, the KEGG analysis indicated that loganin is likely to 
affect the Rap1, IL‑17, NF‑κB and HIF‑1 signaling pathways 
(Fig. 2B).

Molecular docking. In addition, molecular docking was utilized 
to evaluate the interactions between loganin and core target 
proteins. It is generally considered a strong binding affinity 
between the target and the protein when the binding energy 
is <‑5.0 kcal/mol, and a highest affinity when the binding 
energy is <‑7.0 kcal/mol (21). The binding energy of loganin 
to the core target proteins was between ‑5.0 and ‑7.0 kcal/mol 
(Table I), indicating that loganin potentially performs activity 
via actively interacting with the 10 core target proteins, as 
visualized in Fig. 3.

Effect of loganin on bone loss in OVX mice. To validate 
loganin's in vivo effect, an OVX mouse model was created 
and the bone volume and the microstructure of the left femurs 
were examined by Micro‑CT (Fig. 4A). Compared with the 
SHAM group, the trabecular bone in OVX group was sparsely 
fractured, discontinuous, and the number of bone trabeculae 
was significantly reduced, which was dose‑dependently 
rescued by 12‑week loganin treatment manifested by increased 
bone volume and improved bone microstructure. The bone 
parameters, including BMD, BV/TV and Tb.N, were reduced 
significantly in OVX mice compared with the SHAM group, 
while Tb.Sp was increased significantly (P<0.05). The trend 
was partially reversed by loganin treatment in a dose‑depen‑
dent manner (P<0.05) (Fig. 4B‑E). These results demonstrated 
that loganin treatment can effectively release the osteoporotic 
symptoms and improve bone quality.

To further assess the efficacy of loganin, serum collected 
from the in vivo experiments were tested for bone resorption 
biomarkers CTX, TRAP and bone formation biomarkers 
P1NP (Fig. 4F‑G). The serum levels of CTX and TRAP in 
OVX were significantly elevated compared with the SHAM 
group (P<0.05 and P<0.01). The increase of osteoclastic 
markers in OVX mice was reversed by loganin treatment 
(P<0.05). By contrast, the serum level of P1NP in OVX mice 
was significantly downregulated compared with the SHAM 

group (P<0.01), in which the decreased trend was reversed by 
loganin treatment (P<0.05). Collectively, loganin presented 
strong effect on the protection of excessive bone loss in OVX 
mice.

Effect of loganin on the serum levels of inflammatory cytokines 
in OVX mice. To explore the effects of loganin on inflammation, 
the serum levels of inflammatory cytokines were examined 
(Fig. 5A‑C). In the OVX group, the serum levels of TNF‑α and 
IL‑6 increased, while IL‑10 decreased (P<0.01 and P<0.05). 
Administration of loganin suppressed the increased levels 
of TNF‑α and IL‑6 and promoted the secretion of IL‑10 in 
a dose‑dependent manner (P<0.05). These findings indicated 
that loganin can inhibit the inflammatory response induced by 
estrogen deficiency.

Discussion

PMOP caused by estrogen deficiency, is a common chronic 
bone disease that majorly occurs in women >50 years old (1), 
which leads to imbalanced bone metabolism where bone 
resorption exceeds bone formation (13). Due to the rapid aging 
of the global population, the number of individuals with PMOP 
is increasing, resulting in challenges to individual families and 
health care (22). Therefore, it is vital to develop novel drugs 
for the prevention and treatment of PMOP. A recent study 
revealed the anti‑OP effect of loganin by regulating osteoblast 
and osteoclast differentiation (23). In the present study, the 
mechanism of action of loganin was explored via network 
pharmacology and molecular docking and its in vivo protec‑
tive effect on OVX‑induced bone loss was experimentally 
validated.

Network pharmacology provides an in‑depth analysis 
on how different network factors interact with potential 
drug candidates, enabling to repurpose existing drugs for 
a variety of conditions (24). In the present study, a total of 
106 herbal component targets of loganin were retrieved and 
crosschecked with 1,152 targets involved in osteoclastogen‑
esis and osteoclast differentiation, generating 31 potential 
mechanistic targets of loganin on osteoclasts. To further 
gain the mechanistic insights of loganin's actions on osteo‑
clast formation, GO and KEGG enrichment analyses were 
performed to cluster the 31 potential targets of loganin. GO 
analysis demonstrated that loganin is likely to affect bone 
turnover through regulating biological processes including 
migration, proliferation, nitric‑oxide synthase regulator 
activity and enzyme activator activity in osteoclasts. From 
a different perspective, KEGG pathway analysis revealed 
that the genetic effect imposed by loganin on osteoclasts 
was enriched in some essential pathways, such as the 
IL‑17, NF‑κB and HIF‑1 signaling pathways. IL‑17 is a 
well‑described mediator of bone resorption in inflammatory 
diseases, which stimulates osteoblasts to produce receptor 
activator of NF‑κB ligand (RANKL) that fuels osteoclas‑
togenesis (25,26). NF‑κB is a well‑known inflammatory 
signaling pathway that is implicated in the development of 
endocrine system illnesses, particularly OP (27). A recent 
study identified that loganin can decrease the levels of 
RANKL (21). Besides, loganin was shown to ameliorate 
cartilage degeneration and osteoarthritis development in 

Table I. Docking results of loganin and core target proteins.

No. Targets PDB ID Affinity (kcal/mol)

  1 GAPDH 6YND ‑7.3
  2 VEGFA 1MKK ‑6.5
  3 EGFR 7SI1 ‑6.6
  4 ESR1 7R62 ‑6.9
  5 HRAS 7JIG ‑5.2
  6 SRC 6ATE ‑5.7
  7 FGF2 5X1O ‑6.3
  8 HSP90AA1 7S8Y ‑7.3
  9 PTGS2 5IKR ‑7.3
10 IL‑2 3QB1 ‑7.4

PDB, Protein Data Bank.
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an osteoarthritis mouse model through inhibition of NF‑κB 
activity and pyroptosis in chondrocytes (28). The HIF‑1 
signaling pathway is a classic multifunctional signaling 
pathway that plays an important role in inf lammatory 
responses and bone formation and absorption, which can 
regulate the regeneration process of bone and blood vessels 
through osteogenic and angiogenic coupling (29,30). These 
results collectively suggested that loganin influences PMOP 

through acting on multiple inflammation‑related pathways. 
In total, 31 potential targets were further constructed into a 
PPI network where the topology properties of the network 
were analysed. According to the node degree value in the 
PPI network, the top 10 genes were GAPDH, VEGFA, 
EGFR, ESR1, HRAS, SRC, FGF2, HSP90AA1, PTGS2 
and IL‑2. By computing the molecular interactions, it was 
observed that loganin exhibited strong binding affinities to 

Figure 3. Molecular docking of loganin to the 10 core targets. The blue sticks represent the ligand, the green sticks represent the interactive amino acid residues 
and the yellow dotted lines represent the formed hydrogen bonds.

https://www.spandidos-publications.com/10.3892/etm.2024.12706
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the top 10 hub targets derived from the PPI network, which 
further indicated that loganin can interact with the core 

targets gene‑encoded protein receptors. Taken together, it is 
reasonable to assume that the anti‑OP effect led by loganin 

Figure 5. Effect of loganin on inflammatory cytokines in vivo. (A) TNF‑α. (B) IL‑10. (C) IL‑6. Results were expressed as the mean ± SD (n=7). *P<0.05 and 
**P<0.01. OVX, ovariectomized; L, low dose; H, high dose.

Figure 4. The protective effect of loganin on OVX‑induced bone loss. (A) Representative micro‑CT images indicated that the bone loss was suppressed by 
loganin treatment (scale bar, 100 µm). (B‑E) Micro‑CT quantitative parameters for bone microstructure, including BMD, BV/TV, Tb.N and Tb.Sp. (F‑H) 
Serum levels of bone metabolism markers. Results were expressed as the mean ± SD (n=7). *P<0.05 and **P<0.01. OVX, ovariectomized; micro‑CT, microcom‑
puted tomography; L, low dose; H, high dose; BMD, bone mineral density; BV/TV, bone volume/tissue volume; Tb.N, trabecular number; Tb.Sp, trabecular 
separation; CTX, C‑terminal telopeptide; TRAP, tartrate‑resistant acid phosphatase; P1NP, procollagen type I intact n‑terminal pro‑peptide.
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is largely depending on the regulation of the top 10 core 
genes which highly relates to multiple biological processes 
and signaling pathways. Next, in vivo studies were conducted 
to complement the in silico analyses. Loganin treatment 
significantly overturned the excessive bone loss caused by 
estrogen deficiency, characterized by elevated femoral BMD, 
BV/TV and Tb.N and reduced number of femoral Tb.Sp. 
Similarly, osteoclastic markers TRAP and CTX in serum 
dose‑dependently decreased following loganin treatment, 
whereas bone formation marker P1NP was upregulated. 
TRAP and CTX are strong metabolic markers that corre‑
spond with osteoclast activity, while P1NP is an indicator of 
the cumulative quantity of new bone production (31). These 
in vivo results suggested that loganin treatment suppressed 
osteoclastogenesis and promoted osteoblast formation, 
exhibiting protective effect against PMOP.

Moreover, inf lammation, which plays an important 
role during the development of PMOP, has been identi‑
fied as a potential risk factor for PMOP (1). Estrogen 
deficiency is found to contribute to OP progress through 
elevating the proinf lammatory and pro‑osteoclastic 
cytokines, such as IL‑6 and TNF‑α, resulting in hyperacti‑
vation of osteoclasts and imbalanced bone turnover (32,33). 
Additionally, Sapra et al (34) demonstrated that IL‑10 is 
an anti‑osteoclastogenic cytokine that maintains bone 
health by inhibiting osteoclastogenesis. In the present 
study, it was found that loganin reduced the secretion of 
pro‑inflammatory cytokines TNF‑α and IL‑6 and increased 
the anti‑inflammatory factor IL‑10. The results together 
suggested that loganin has an inhibitory effect on inflam‑
matory response, potentially alleviating the progression of 
PMOP. TNF‑α alone cannot produce complete osteoclasts 
with resorption function (35,36). These limits of TNF‑α in 
osteoclast differentiation are overcome by the presence of 
other inflammatory cytokines such as IL‑6 (35‑37). IL‑6 
can promote osteoclast differentiation in the presence of 

RANKL in vitro, but it cannot differentiate osteoclasts 
on its own without RANKL (35,38). IL‑6 in the presence 
of TNF‑α also generates functional osteoclasts in vitro, 
which is independent to RANK/RANKL signaling (35,37) 
(Fig. 6).

In conclusion, the combination of network pharmacology 
and molecular docking revealed that loganin displayed 
anti‑PMOP effect via acting on multi‑targets and multiple 
inflammation‑related signaling pathways on osteoclast 
differentiation. This is consistent to the in vivo results that 
loganin robustly attenuated OVX‑induced bone loss and 
inflammatory response. The present study provided evidence 
for loganin as a novel potential therapy for PMOP, although 
more comprehensive and in‑depth investigations are needed 
in the future.
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