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Functional movement screen 
dataset collected with two Azure 
Kinect depth sensors
Qing-Jun Xing   1, Yuan-Yuan Shen2 ✉, Run Cao2, Shou-Xin Zong2, Shu-Xiang Zhao1 &  
Yan-Fei Shen2 ✉

This paper presents a dataset for vision-based autonomous Functional Movement Screen (FMS) 
collected from 45 human subjects of different ages (18–59 years old) executing the following 
movements: deep squat, hurdle step, in-line lunge, shoulder mobility, active straight raise, trunk stability 
push-up and rotary stability. Specifically, shoulder mobility was performed only once by different 
subjects, while the other movements were repeated for three episodes each. Each episode was saved as 
one record and was annotated from 0 to 3 by three FMS experts. The main strength of our database is 
twofold. One is the multimodal data provided, including color images, depth images, quaternions, 3D 
human skeleton joints and 2D pixel trajectories of 32 joints. The other is the multiview data collected 
from the two synchronized Azure Kinect sensors in front of and on the side of the subjects. Finally, our 
dataset contains a total of 1812 recordings, with 3624 episodes. The size of the dataset is 190 GB. This 
dataset provides the opportunity for automatic action quality evaluation of FMS.

Background & Summary
Action quality evaluation plays an important role in various fields: physical rehabilitation1–4, posture correc-
tion5, sentiment analysis6,7, and sports training8–10. In most cases, experts, such as doctors, physiotherapists, and 
coaches, evaluate the individual’s physical state by observing specific limb movements based on their extensive 
experience. This process is inevitably influenced by their subjective attitude11, and experienced experts are scarce 
in many areas. Therefore, developing an automatic action evaluation system is very meaningful.

Building an automatic action evaluation system is not an easy endeavor and involves choosing the most 
appropriate one from a wide diversity of movement evaluation systems. Considering that the target population 
of our experiment is the general population, the basic functional abilities that they need to perform is walking, 
running, and jumping in their daily life. Based on a literature review and the advice of exercise rehabilitation 
experts, a functional movement screen (FMS) is the most appropriate functional test and was proposed by Gray 
Cook in the 1990s12. It is a simple, efficient screening tool that predicts the risk of sports injury. FMS can com-
prehensively evaluate the functional performance of individuals according to physical function evaluation crite-
ria. For FMS testing, seven fundamental movements (i.e., deep squat, hurdle step, in-line lunge, shoulder mobility, 
active straight raise, trunk stability push-up and rotary stability)13,14 are used to find the defects and deficiencies 
of the human body in terms of basic flexibility and stability.

FMS research has attracted wide attention in recent years and provided important theoretical and practical 
perspectives. The reliability and validity of FMS have been discussed for a long time, and numerous studies have 
confirmed that FMS is a reliable screening tool for physical functional evaluation15. In recent years, many appli-
cation studies have argued that the higher the FMS score is, the lower the risk of sports injury, and individuals 
with low scores have a significantly increased risk of sports injury. With the rapid advance of sensing elements 
and computer technologies, some researchers have begun to focus on the direction of intelligent functional 
movement screens with the help of automatic action evaluation. The study in 2014 by Whiteside et al.16 com-
pared FMS scores rated by a certified FMS professional with an inertial-based motion capture system consisting 
of 17 inertial measurement unit (IMU) full-body sensors. Based on the application of a self-set kinematics 
threshold for FMS scoring, discrepancies can be observed between automatic FMS scoring and manual scoring 
by professionals. Ross et al.17 used a data-driven method based on principal component analysis(PCA) and 
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linear discriminant analysis to classify the performance of 542 athletes in seven dynamic screening movements 
(i.e., bird-dog, drop-jump, T-balance, step-down, L-lop, hop-down, and lunge). The accuracy of the model ranged 
from 70.66% to 92.91%. However, the data for this study were captured by an optical motion capture system, 
which is expensive to apply. In 2020, the same team18 used machine learning methods to train athletes’ move-
ment data captured by IMU, and their model accuracy reached 75.1% to 84.7%, which is a huge improvement. 
Similarly, the study in 2020 by Wu et al.19 is an automatic functional movement screening system with 11 IMU 
sensors. The automatic scoring accuracy of this system can reach 66% 91% using the full movement feature 
set. Because the cost of inertial sensors is expensive and the intrusive wearing method is inconvenient, func-
tional movement screening systems based on IMUs are not friendly to home-based or broad applications. An 
automatic action quality assessment system based on a depth sensor becomes a better solution for people to be 
evaluated at home. Following the system guidance, the user completes the FMS test in front of the camera, and 
then they can quickly obtain a report of their physical functional quality.

Based on the above considerations, we present a publicly accessible dataset that collected seven FMS move-
ments from 45 participants with two Azure Kinect depth sensors. The dataset contains RGB images, depth 
images, and skeleton data. In contrast to prior works, a noninvasive depth camera was selected to capture the 
movement of FMS in our study. Possible applications of the data obtained are:

•	 Space-time feature representation of functional movements based on 3D skeleton data.
•	 Action recognition and evaluation of FMS based on noninvasive depth sensors.
•	 Development of an automatic functional movement screening system with depth sensors.

Methods
Participants.  The announcement inviting participants for our study was distributed throughout the campus 
of Beijing Sport University. In the end, forty-five healthy participants (22 women, 25 men), aged between 18 
and 59 years (mean = 28.7, s.d. = 10.76), were recruited for this study. Some basic characteristics of the partici-
pants were as follows: mass 46–116 kg (mean = 68.8, s.d. = 13.01), height 158–190 cm (mean = 171.9, s.d. = 7.98), 
and body mass index (BMI) 17.1–32.82 (mean = 23.14, s.d. = 3.1) (Table 1). All participants reported no known 
movement disorders or other health problems that could affect their mobility. Before starting the experiments, 
each subject was comprehensively informed about the procedure, introduced to the experimental instrumenta-
tions, and informed of any potential risks. Additionally, we required the participants to sign an informed consent 
form, in which each of them gave their written consent to participate in the research. The study was carried out 
according to the principles of the Helsinki Declaration and it was approved by the Institutional Review Board of 
Beijing Sport University. Data collection was completed between May 2021 and June 2021.

All participants’ demographic and anthropometric measurements were carried out during the first session 
(Table 1).

Functional movement screen (FMS).  FMS is a common screening system that can assess the fundamen-
tal movement patterns of an individual12–14,20 in sports rehabilitation. It comprises seven fundamental movement 
tests (Fig. 1, Table 2), which require a balance of mobility and stability, including neuromuscular and motor con-
trol13. The tests put the individual in extreme positions where weaknesses and imbalance of body become obvious 
if it is lacking appropriate stability and mobility.

The FMS movements are broken into two groups–preliminary movement tests (d-g in Table 2, d-g in Fig. 1) 
and advanced movement tests (a-c in Table 2, a-c in Fig. 1). Each test has an expert score that ranges from 0 to 3 
(Table 3). The scoring criteria of FMS are basic, effective, and reliable21,22. For more details please refer to these 
previous studies13,14.

Instrumentation.  Azure kinect camera.  The Azure Kinect sensor23 consists of a 12-megapixel (MP) RGB 
video camera, and a 1-MP depth sensor. The depth sensor’s principle is the time-of-flight (ToF) with amplitude 
modulated continuous wave (AMCW). The sensor casts modulated illumination in the near-IR (NIR) spectrum 
onto the scene, and the propagation time for light to travel from the camera to objects in the scene and back to 
the camera again is measured. These measurements are then processed to generate a depth map, which is a set of 
Z-coordinate values for every pixel of the image, measured in millimeters24. In this way, capturing human body 
joint points in three-dimensional space by the sensor is made possible.

Microsoft released an Azure Kinect development kit, including a range of software development kits (SDKs) 
and application programming interfaces (APIs). In our experiments, we used the kit for access to RGB and depth 
streams and the body tracking SDK, which can track the movements of multiple people simultaneously and 
provide the three-dimensional coordinates of 32 joints (Fig. 2a, Table 4) per person.

The data were collected using two Azure Kinect cameras positioned at a height of 96 cm from the ground 
(F-Kinect and S-Kinect in Fig. 2b). Additionally, FMS experts suggested adding two cameras with different 
angles so that they could observe the performance of subjects’ movements from multiple angles, improving the 
accuracy of scoring. Therefore, we also used two auxiliary Azure Kinect cameras positioned at heights of 24 cm 
and 96 cm from the ground (SL-Kinect and B-Kinect in Fig. 2b). However, we did not acquire the depth image 
data from these two cameras, and only color images were recorded and published as supplementary data.

All Kinect sensors had the same parameter settings (Table 5). Each Azure Kinect sensor device included 3.5-mm 
synchronization portals (“Sync In” and “Sync out”), which were used for image synchronization among the different 
devices. The four sensors were linked together by a 3.5-mm audio cable with a daisy-chain configuration, as shown 
in Fig. 2d. F-Kinect was the master, S-Kinect was subordinate 1, SL-Kinect was subordinate 2, and B-Kinect was 
subordinate 3. The four devices’ synchronization adhered to the official documentation instructions25. To control the 
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precise timing of each device, the exposure time was first set as 16670 μs by manual exposure, and then an offset of 
160 μs was used among the different depth sensor captures to prevent the lasers from interfering with one another.

Computer configuration.  To deploy the Azure Kinect DK successfully, the computer configuration needs to sat-
isfy certain prerequisites. Our host operating system is Windows 10 April 2018 (Version 1803, OS Build 17134) 
release (x64). The hardware system is configured as follows:

•	 Intel® CoreTM i7-7700 CPU @ 3.60 GHZ
•	 16 GB Memory
•	 NVIDIA GeForce GTX 1080
•	 USB3 port

Subject Age [years] Gender [F|M] Weight [kg] Height [cm] BMI [kg/m2]

s01 44 M 73 168 25.86

s02 23 F 51 164 18.96

s03 31 F 59 164 21.94

s05 21 M 69 173 23.05

s08 40 F 58 158 23.23

s09 25 M 83 180 25.62

s10 31 F 61 163 22.96

s11 22 M 72 173 24.06

s12 24 M 75 170 25.95

s13 25 M 86 187 24.59

s14 22 F 54 162 20.58

s15 45 M 67 168 23.74

s16 39 M 75 168 26.57

s20 24 M 63 181 19.23

s21 23 M 76 175 24.82

s22 22 M 87 183 25.98

s23 48 F 65 162 24.77

s24 30 F 60 168 21.26

s25 40 F 75 183 22.40

s26 59 F 70 161 27.01

s27 59 F 63 168 22.32

s29 43 F 58.5 163 22.02

s30 21 M 85 181 25.95

s33 49 F 75 162 28.58

s34 26 F 62 172 20.96

s35 38 M 62 168 21.97

s37 21 F 59 160 23.05

s38 32 F 51 168 18.07

s41 20 M 116 188 32.82

s42 20 F 64 175 20.90

s43 20 M 95 190 26.32

s44 20 F 51 171 17.44

s45 24 M 70 174 23.12

s47 20 F 57 168 20.20

s48 18 M 62 173 20.72

s49 20 F 72 176 23.24

s51 20 M 72 178 22.72

s52 24 M 70 172 23.66

s53 24 M 69 176 22.28

s54 24 M 75 177 23.94

s57 24 M 78 182 23.55

s59 22 F 58 164 21.56

s60 20 M 58 177 18.51

s61 22 F 46 164 17.10

s62 23 M 88 178 27.77

Table 1.  Demographic information of the subjects.
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Experimental field.  As shown in Fig. 2b, we set up a square working scene, surrounded by curtains (6 × 3 m) 
from three directions, and one side was open to allow the entrance of subjects. While conducting the movements 
for 01 to 03, the subjects faced F-Kinect, and otherwise, the subjects faced S-Kinect.

Acquisition protocol.  During the entire experiment, the participants visited the laboratory only once. 
After the participants came to the laboratory, they first watched the video tutorials of FMS, and then a stand-
ardized individual warm-up was performed. The warm-up was approximately 3 minutes in duration, which 

(a) (b) (c)

(d) (e) (g)(f)

Fig. 1  The seven movements of FMS. (a) Deep squat. (b) Hurdle step. (c) In-line lunge. (d) Shoulder mobility.  
(e) Active straight raise. (f) Trunk stability push-up. (g) Rotary stability.
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predominantly consisted of stretching exercises. Finally, the participants executed the seven movements of FMS 
in sequence in the middle of the field (Fig. 2d).

To reduce redundant movement and ensure the purity of the movement sequence, the participants were 
required to conduct a hold position before starting and to keep this position at the end. The hold position was 
the state of preparation for each functional movement, which is illustrated by the topmost picture of each part 
in Fig. 1.

In each movement, the participants were first provided with a short explanation and movement demonstra-
tions by an experimenter. Then, they were instructed to perform each movement of FMS in turn in the most 
natural way, and every movement was repeated three times except for shoulder mobility. Each subject spent 
approximately 50–60 min finishing the process of data acquisition. The total time to obtain all of the experimen-
tal data was approximately 5 days.

Not all movements were performed by all participants. For example, a few participants had to stop challeng-
ing movements because of physical pain, and their scores for the corresponding movements were labeled zero, 
which indicated that their bodies had functional defects.

In Table 2, the rightmost column provides an explanation of the movement number in our dataset and the 
corresponding relationship with the seven movements of FMS. For instance, the deep squat of FMS includes 
two situations, i.e., m01 and m02, where m01 is whole sole touching the floor, and m02 is the heels on the block. 
The former is more difficult than the latter. These two movement patterns make the functional evaluation of 
participants easier.

Data Records
Our own data acquisition software, based on official documents26 and APIs of Azure Kinect, was used to obtain 
the data (MKV format) from the sensors. All raw data were stored as videos (MKV format) within hard disk 
drives. The storage of all video files reached 7.3 Tb. After preprocessing frame extraction and skeleton extraction, 
the image files and skeleton data files were obtained and published as our dataset. The dataset mainly contained 
color images (JPG format), depth images (PNG format), human body skeleton data (JSON format), and expert 
scoring (JSON format). We anonymized each image by detecting faces and then blurring them to ensure that the 
subjects’ privacy was protected and that no face could be recognized. The dataset is available at Figshare (https://
doi.org/10.25452/figshare.plus.c.5774969)27. Please refer to the Code Availability for the related codes.

Dataset organization.  In the dataset, all data are contained in the FMS folder. The directory structure is 
shown in Fig. 3. Each directory contains several subfolders corresponding to the movements recorded. The con-
tent of the subfolders are introduced in the following:

Order Movement Purpose

Representation in dataset

ID Interpretation

a Deep squat
Assess bilateral, symmetrical, functional mobility of lower limbs, the 
shoulders and the thoracic spine, as well as motor control of the core 
musculature.

m01 Heels on the floor

m02 Heels on a 2-inch board

b Hurdle step Assess bilateral functional mobility and stability of lower limbs.
m03 Left leg up

m04 Right leg up

c In-line lunge Assess mobility, stability, and flexibility of lower limbs.
m05 Left leg in front

m06 Right leg in front

d Shoulder mobility Assess bilateral and reciprocal shoulder range of motion, as well as 
the scapular mobility and thoracic spine extension.

m07 Left arm up

m08 Right arm up

e Active straight raise Assess hamstring and soleus muscle flexibility while maintaining a 
stable pelvis and core.

m09 Left leg up

m10 Right leg up

f Trunk stability 
push-up

Assess the ability to stabilize the core and spine, and trunk stability 
in the sagittal plane. m11 Support on the ground with 

both hand

g Rotary stability Assess multi-planar trunk stability during a combined upper and 
lower extremity motion.

m12 Left limb up

m13 Right limb up

m14 Left arm and right leg up

m15 Right arm and left leg up

Table 2.  A brief description of the FMS movements.

Expert score Description

3 Complete without compensation

2 Complete with compensation or deviation from the stand, or both

1 Incomplete

0 Complete with pain in any part of the body

Table 3.  Scoring criteria description of the FMS.
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Fig. 2  (a) Thirty-two joints detected by the Azure Kinect depth sensor. (b) Top view of the experimental field. 
(c) RGB and Depth camera coordinate systems32. The depth camera is tilted 6° downward of the RGB camera, 
and the skeleton data are based on this coordinate system. (d) Daisy-chain configuration of the multidevice in 
our experiment25.

Joint index Joint name Joint index Joint name

0 Pelvis 16 Right hand tip

1 Spine navel 17 Right thumb

2 Spine chest 18 Left hip

3 Neck 19 Left knee

4 Left clavicle 20 Left ankle

5 Left shoulder 21 Left foot

6 Left elbow 22 Right hip

7 Left wrist 23 Right knee

8 Left hand 24 Right ankle

9 Left hand tip 25 Right foot

10 Left thumb 26 Head

11 Right clavicle 27 Nose

12 Right shoulder 28 Left eye

13 Right elbow 29 Left ear

14 Right wrist 30 Right eye

15 Right hand 31 Right ear

Table 4.  Joints index and joints names.

Camera config Config setting

RGB camera 1920∗1080 px @30 fps

Color image type MJPG

Depth camera 640∗576 px @30 fps

Depth image type DEPTH 16

Internal synchronization 160 μs

External synchronization 0 μs

Exposure time 16670 μs

Field of view (FOV) 75°∗65°(narrow FOV)

Table 5.  Azure Kinect sensor’s config setting.

https://doi.org/10.1038/s41597-022-01188-7
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•	 Images: the folder containing all color images and depth image files.
•	 ColorImages: the folder containing all color image files.
•	 DepthImages: the folder containing all depth image files.
•	 Front: the folder containing data from F-Kinect.
•	 Side: the folder containing data from S-Kinect.
•	 s01_m01_e1: the folder containing images for the 1st episode of the 1st movement performed by the 1st 

subject. The other directories are the same.
•	 Skeleton data: the folder containing all skeleton data files (JSON format).
•	 Experts_score.json: the file containing the three FMS experts’ scores for all episodes of movements.
•	 Preprocessing files: the folder containing files required or generated during the process of data preprocessing.

The dataset includes 3624 skeleton JSON files, of which 1812 files are from the front position and 1812 files 
are from the side position. Simultaneously, there are 3624 sets of color images and 3624 sets of depth images in 
the dataset. Each set corresponds to one episode of a movement. The JSON files and image files are created in the 
format of SensorPos_subjectID_movementID_timestamp_episodeNo.json and SensorPos_subjectID_movemen-
tID_timestamp_episodeNo_episode frameID_movement frameID.jpg/png, respectively, and the detailed explain-
ations about the nomenclature are as follows:

•	 SensorPos: the position of the Azure Kinect sensor relative to the subjects, i.e., ‘front’ or ‘side’.
•	 subjectID: index of subjects, e.g., s01, s02, etc.
•	 movementID: index of movements, e.g., m01, m02, etc.
•	 timestamp: the beginning time of movements, in the format “YYYYMMDDHHMMSS”.
•	 episodeNo: index of the episodes of movements, e.g., e1, e2, e3.
•	 episode frameID: index of episode frames, e.g., i0001, i0002, i0003.
•	 movement frameID: index of movement frames, e.g., r0001, r0002, r0003.

For example, the skeleton data file front_s01_m02_20210522141451_e3.json refers to the 3rd episode of the 
2nd movement performed by the 1st participant, at 14:14:51 on May 22, 2021. Different from the JSON files, 
the nomenclature of the images files also include information about the frame index. For example, front_s01_
m04_20210522141847_e2_i0001_r0213.jpg/png refers to the 1st frame of the 2nd episode, which is the 4th 

s62_m15_e3s01_m01_e1s01_m01_e1 s01_m01_e2s01_m01_e2 s01_m01_e3s01_m01_e3 s62_m15_e3s01_m01_e1 s01_m01_e2 s01_m01_e3

+-s01_m01
|    front_s01_m01_20210522141451_e1_i0001_r0000.jpg
|    front_s01_m01_20210522141451_e1_i0002_r0001.jpg
|    front_s01_m01_20210522141451_e1_i0003_r0002.jpg
|    
|    
|    
|    front_s01_m01_20210522141451_e1_i0152_r0151.jpg

+-front
|    front_s01_m01_20210522141451_e1.json
|    front_s01_m01_20210522141451_e2.json
|    front_s01_m01_20210522141451_e3.json
|    
|    
|    
|    front_s62_m15_20210530202823_e3.json

Skeleton dataSkeleton data

Dataset of FMSDataset of FMS

FrontFront SideSide

Experts_score.json Preprocessing filesPreprocessing filesImagesImagesImages

FrontFrontFront SideSideSide

ColorImagesColorImages DepthImagesDepthImagesDepthImages

Fig. 3  Dataset’s directory structure.
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movement performed by the 1st participant, at 14:18:47 on May 22, 2021. Meanwhile, this frame is the 213th 
frame of the 4th movement.

In our dataset, the skeleton data and expert score data are stored in JSON format, which uses human-readable 
and machine-processable text to store the transmit data objects consisting of collections of attribute-value pairs 
and ordered lists of values. The internal structure of the JSON files is explained in the following section.

Internal structure of the skeleton data files.  Each episode of movements has a JSON format document, which 
stores skeleton data. Box 1 shows a document of the 1st episode of the 1st movement performed by the 1st par-
ticipant. It contains information as follows:

•	 frames: a list of skeleton data from all frames of the episode in frame order.
•	 original_frame_num: original frame number in the movement for each frame in episode.
•	 total_frames: frame number of the episode.
•	 bodies: a list of skeleton data for all tracked people. It contains everyone’s skeleton data in the frame (in our 

dataset, there is only one person per frame.)
•	 frame_id: the index of the current frame.
•	 num_bodies: the number of people in the frame.
•	 timestamp_usec: the timestamp of the current frame.
•	 body_id: the index of the tracked body in the current frame.
•	 confidence_level: a list of the confidence level of the joints (the index of each item corresponds to the index 

of the joint).
•	 joint_orientations: a list of quaternions of the joint orientation values (in the order of w, x, y, z).
•	 joint_position_2d_color: a list of 2D pixel coordinates (on the order of x, y) of the joints in the color image.
•	 joint_positions: a list of Cartesian coordinates of the joints in the camera coordinate system.

Internal structure of expert score files.  In our dataset, each episode of movements was annotated by three FMS 
experts, and the annotation files were stored in the document of experts_ score.json. Box 2 shows the internal 
structure of the document, which is a nested relationship. It contains information as follows.

•	 s01/s02/s03/: the keys are the subject IDs and the subfield of the key stores expert scores of all movements by 
the corresponding subject.

•	 m01/m02/m03/: the keys are the movement IDs and the subfield of the key stores expert scores of all episodes 
of the corresponding movement.

•	 e1/e2/e3: The keys are the episode IDs, and the subfield is a list that stores the expert scores of the correspond-
ing episode.

Technical Validation
Sensor accuracy.  The technical validation of the Azure Kinect sensor has been reported in previous stud-
ies28–30, which indicates that the officially stated values are accurate, namely s.d. ≤17 mm, and distance error 
<11 mm. Hence, we do not provide test-retest reliability information about the sensor.

Box 1 Information of the document front_s01_m01_20210522141451_e1.json. 

{“frames”:
	 [{“bodies”:
	 [{“body_id”: 1,
	 “confidence_level”: [2, 2, 2,...],
	 “joint_orientations”:
	 [[0.5473520159721375,

		  −0.4423481523990631,
		   0.5430209636688232,
		  −0.4581070840358734],...],
	 “joint_position_2d_color”:
	 [[985.2445068359375,
		  577.977294921875],...],
	 “joint_positions”:
	 [[129.94537353515625,
		  −243.37063598632812,
		  3150.84033203125],...]}],
	 “frame_id”: 0,
	 “num_bodies”: 1,
	 “timestamp_usec”: 156033},...],
	“original_frmae_num”: [0, 1, 2,...],
	“total_frames”: 152}

https://doi.org/10.1038/s41597-022-01188-7
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Comparison with published datasets.  We have not found a public dataset of FMS on the major journal 
websites of sports sciences. Although a few researchers have begun to study the automatic evaluation of FMS with 
the help of wearable inertial sensors, their datasets have not been publicly available. In addition, the tester has to 
wear cumbersome inertial sensors that cannot be operated by individuals at home. To tackle these problems, we 
propose a vision-based FMS dataset that provides help for the process of transition from marker-based methods 
to marker-less methods.

Missing episodes and frames.  Limited by the physical condition of some subjects and the difficulty of 
rotary stability, 37 episodes were not well executed as planned: 11 episodes for m12, 19 episodes for m13, 5 epi-
sodes for m14 and 2 episodes for m15. These missing episodes were recorded in the missing movement episodes.
xlsx file (in Preprocessing files folder). This phenomenon also showed that rotary stability seems to be the most 
difficult movement in FMS.

Because the depth sensor can barely recognize the human skeleton under severe self-occlusion situations, 
skeleton data of such frames are missing and this information is stored in the Statistics of frames without skel-
eton folder. For these missing skeleton data, interpolation can be performed. Overall, the number of episodes 
containing no-body skeleton frames recorded by the front sensor is less than that from the side sensor (Fig. 4a). 
Given the frame number of missing data Nnobody and the total frame number Ntotal in one episode, we can calcu-
late the loss rate (γ) of skeleton data as follows:

N

N
100%

(1)
nobody

total
γ = × .

Episodes with no-body skeleton frames in the statistical analysis met the condition of γ ≥ 0.01. There were 
59 episodes with no-body skeleton frames recorded by the front Kinect and 347 episodes with no-body skeleton 
frames by the side Kinect in our dataset (Fig. 4a). This shows that the problem of self-occlusion is more serious 
for the side sensor, and the angular position relationship between the human body and camera should be set 
carefully while capturing human skeleton data with depth cameras. In Fig. 4b,we notice that the active straight 
raise (m09, m10) is the movement that contains the most no-body skeleton episodes, which indicates that the 
position between this movement and the camera should be adjusted appropriately to improve the accuracy of 
the action quality evaluation results.

Sensor synchronization.  We synchronized the front and side Azure Kinect sensors according to the 
instructions of the official document25, and the color images of the two sensors were completely synchronized. 
To prevent the lasers from interfering with one another, the front sensor was offset from the side sensor by 160 μs 
or more, so depth images of the two sensors differed by 160 μs in our dataset. In the case of synchronization, the 
frame number of the same episode captured by the front and side sensors should be the same.

(b)(a)

Fig. 4  No-body skeleton data frame distribution of the front and side Azure Kinect sensors. (a) Number of 
episodes with no-body frames captured by the front and side sensors. (b) Distribution of episodes with a no-
body skeleton frame in the movements.

Box 2 Information of the document score_by_three_experts.json. 

{“s01”: {
	 “m01”: {
	 “e1”:[2, 2, 2],
	 “e2”:[2, 2, 2],
	 “e3”:[2, 2, 2]},
	 “m02”: {...},
	 “m03”: {...},
	 ...},
	 “s02”: {...},
	 “s03”: {...},
	 ...}
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However, frame loss is always inevitable. To obtain an overall view of this problem, we report some statistical 
results of frame loss in Fig. 5. The difference of frame number for the same episode (total 1812 episodes) cap-
tured by two sensors was always less than 30 (Fig. 5a), and the frame number of 64.4% (1167) episodes captured 
by the two sensors was the same. Specifically, the frame number difference for 23.5% (426) of the episodes cap-
tured by the two sensors was less than 5, the difference in the frame number for 8.8% (159) of episodes captured 
by the two sensors was less than 10, and only 3.3% (60) of the episodes captured by the two sensors had a frame 
difference greater than 10 (Fig. 5b). Notably, 78.4% of episodes that lose frames belonged to the 1st episode 
(Fig. 5c), and most of them happened in the first 60 frames (1st & 2nd second, 30 fps) of the episodes. This also 
indicates that the workflow is unstable for just a few seconds after the camera is turned on, and the sensor needs 
to be warmed up for a time. For the image frames lost in the segment, the video frame interpolation method can 
be used to compensate.

Distribution of expert scoring.  To provide a new dataset for the automatic action evaluation system of 
FMS, three FMS experts with rich experience (at least two years) completed the FMS screening for each subject. 
The experts included a teacher of Sport Medicine and Physical Therapy Department of Beijing Sport University 
with a PhD in Sport Science (expert 1), a researcher of Chinese Academy of Sport and Health of Beijing Sport 

(a)

(b) (c)

Fig. 5  Distribution of missing frames. (a) Frame number difference of all episodes captured by the front and 
side sensors. (b) Distribution of frames number difference. (c) Distribution of frame loss in different episodes.

Fig. 6  Expert score distribution of FMS movements.
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University with a PhD in Sport Science (expert 2), and a teacher of Strength and Conditioning Department of 
Beijing Sport University (expert 3). The movement performance of the subjects was rated by watching the videos 
from four angles simultaneously with experts according to the standard FMS scoring rules13,14. The interrater reli-
ability of the FMS experts resulted in an ICC of 0.928 (95% CI:0.878, 0.958) and was considered good. The FMS 
composite scores ranged from 8 to 18 points (mean = 13.1, median = 13 points, s.d. = 2.18).

The score distribution of each movement is shown in Fig. 6. Because the number of executions for the same 
movements performed by different subjects may vary, the expert score Sm of one movement by a certain subject 
is a statistical sample, which was calculated as follows:

S round
KN

S1 ,
(2)
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i

K

j

N

ij
1 1

∑∑=









= =

where round(.) means the rounding function and Sij denotes the score of the i th episode by the j th expert. Each 
movement has K (K {1, 2, 3}∈ ) episodes, and each episode is scored by N (N = 3) experts.

From Fig. 6, we observe that the score distribution of each movement is approximately Gaussian. Movements 
with a score of “2” are the most common, followed by a score of “1”, and finally a score of “3”. Because of the 
difficulty in conducting the movement of rotary stability, this movement has almost no scores of “3”. Moreover, 
Shoulder mobility (m07, m08) is the movement that obtained the highest score of “1”, which reflects that shoul-
der injuries are common.

Movement features.  Spatiotemporal features are very important for action recognition and evaluation. 
To automatically evaluate the movements of FMS, the 3D coordinates and angles of joints can be used. For each 
movement, if the peak values of the coordinates and the angles exceed a specified threshold, movement has 
occurred. Moreover, the temporal information of the coordinates and angles can reflect the quality of movement. 
For the movements of FMS, we analyzed the trajectories of the coordinates and angles of the major joints.

The direction of the vertical axis of the camera coordinate system is from top to bottom (Fig. 2c). To be 
consistent with the actual directions of human movement, we reverse the vertical axis of the camera coordinate 
system (i.e., reflection transformation) to create a new y-axis in our analysis.

(a) (b)

(c) (d)

Fig. 7  Left hip joint trajectory and left knee angles in deep squat for three levels: 3 score (green), 2 score (orange), 
1 score (blue). (a) Normalized y-axis of trajectory of the hip joint in m01. (b) Flexion/extension knee angle in 
m01. (c) Normalized y-axis of trajectory of the hip joint in m02. (d) Flexion/extension knee angle in m02.
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To perform a trajectory analysis of the joint features (i.e., the joint coordinates and joint angles), we applied a 
three-step normalization method in this part. A Butterworth filter was used to remove the noise as the first step. 
The second step was to interpolate the feature data into a predefined length. The last step was to normalize the 
data using a z-score of d (the time series of coordinates x, y, and z):

μ
σ

=
−

Z
d( )

,
(3)

where μ and σ are the mean value and the s.d. of d, respectively. In Figs. 7–13, for the analysis of the joint angles, 
only the first two steps were used, and all three steps were used for the joint trajectory analysis.

The feature trajectories over time for all of the movements are shown in Figs. 7–13, and we visualized the 
trajectories of the joints that had clear change in value. Each score was drawn using a different color: (i) the score 

(a) (b)

Fig. 8  Left knee joint trajectory and angles in hurdle step for three levels: 3 score (green), 2 score (orange) and 
1 score (blue). (a) Normalized y-axis of the trajectory of the knee joint in m03. (b) Flexion/extension left knee 
angle of the leg in m03.

(a) (b)

Fig. 9  Left hip joint trajectory and left knee angles in in-line lunge for three levels: 3 score (green), 2 score 
(orange), 1 score (blue). (a) Normalized y-axis of trajectory of the hip joint in m05. (b) Flexion/extension knee 
angle of the left leg in m05.

(a) (b)

Fig. 10  Left wrist joint trajectory and wrist spacing in shoulder mobility for three levels: 3 score (green), 2 score 
(orange), 1 score (blue). (a) Normalized x-axis of trajectory of the wrist joint in m07. (b) Normalized wrist 
spacing in m07.
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(a) (b)

Fig. 11  Left ankle joint trajectory and the angle ranges between the horizontal plane and the test leg in active 
straight raise for three levels: 3 score (green), 2 score (orange), 1 score (blue). (a) Normalized y-axis of the 
trajectory of the ankle joint in m09. (b) Angle ranges between the horizontal plane and the test leg in m09.

(a) (b)

Fig. 12  Neck joint trajectory and the angle ranges between the horizontal plane and thoracic vertebra in trunk 
stability push-up for three levels: 3 score (green), 2 score (orange) and 1 score(blue). (a) Normalized y-axis of the 
trajectory of the neck joint in m11. (b) Angle ranges between the horizontal plane and the thoracic vertebra in 
m11.

(a) (b)

(c) (d)

Fig. 13  Knee joint trajectory and angles in rotary stability for three levels: 3 score (green), 2 score (orange) 
and 1 score (blue). (a) Normalized y-axis of the trajectory of the left knee joint in m12. (b) Flexion/extension 
of the left knee angle in m12. (c) Normalized y-axis of the trajectory of the left knee joint in m14. (d) Flexion/
extension knee angle in m14.
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of “1” (blue), (ii) the score of “2” (orange) and (iii) the score of “3” (green). The feature trajectories of the same 
movement are similar. Every movement is presented from the preparatory phase to the intermediate phase and 
then to the final phase.

For the deep squat (Fig. 7), the hip trajectory is presented on the y-axis (Fig. 7a,c), and the knee angle is the 
basic feature of deep squat, with a large range from 180° to 40° in Fig. 7b,d. Moreover, the comparison between 
Fig. 7a–d shows that m02 is a simplified version of m01, and its maximum score is 2. For the hurdle step (Fig. 8), 
the knee trajectory is presented on the y-axis (Fig. 8a) and the angle range of the knee joint is the same as that on 
the deep squat, but with one more round trip phase. For the in-line lunge (Fig. 9), the hip trajectory is presented 
on the y-axis (Fig. 9a), and the angle range of the knee joint is from 180° to 60° (Fig. 9b). The trajectory of the “1” 
score is more unstable. Compared with the other movements, shoulder mobility (Fig. 10) requires the subjects to 
maintain the same position for a long time (250 normalized times) and perform the movement only once. For 
the active straight raise (Fig. 11), Fig. 11a shows the ankle trajectory on the y-axis, and Fig. 11b shows that the 
angle range between the horizontal plane and test leg ranges from 100° to 90°. The round trip phase is signifi-
cantly more abundant than the normal phase, which is caused by the instability of the human body recognition 
algorithm in cases of self-occlusion. For the trunk stability push-up (Fig. 12), the neck trajectory is presented 
phase y-axis (Fig. 12a), and Fig. 12b shows the changes in the angle between the horizontal plane and thoracic 
vertebra. The angle variation range of the “1” score is larger, while that of the “3” score is the smallest. For rotary 
stability (Fig. 13), the ankle x-axis trajectory is presented in Fig. 13a,c, and the knee angle range is presented in 
Fig. 13b,d. The messy curves in the figure show that most subjects cannot execute the movement correctly, and 
the rotary stability is the most difficult movement in the FMS.

Joint position and orientations.  In this section, we analyzed the range of motion of the lower limb joints 
(left hip, left knee, left ankle) in deep squat and the minimum wrist spacing in shoulder mobility. All data were 
from the front Azure Kinect sensor and low pass filtered at 50 Hz using a second-order Butterworth filter.

The mean joint angle range in the deep squat was first recorded with the Azure Kinect body tracking SDK 
and then compared to the results of 3D Vicon motion analysis system31 as shown in Table 6. Angles obtained via 
the 3D Vicon motion analysis system were 24.1° for ankle dorsiflexion, 109.9° for hip flexion and 87.3° for hip 
flexion. Measurements derived with the Azure Kinect body tracking SDK were 32.0°, 114.1°, and 89.2° for the 
ankle, knee and hip, respectively. From Table 6, we can observe that differences between the two vision-based 
systems at the hip, knee and ankle were slight under different experimental conditions, with mean differences 
of 7.9°, 4.2° and 1.9°, respectively. This phenomenon shows that the values of the joint position and orientations 
obtained from the Azure Kinect body tracking SDK are reasonable. Moreover, the differences may be due to 
various factors, such as the different subjects and the measurement system.

Additionally, the range of motion of the ankle, knee and hip in deep squat as well as the minimum wrist 
spacing in shoulder mobility were analyzed to examine differences in the performance among these types of FMS 
scoring. These data were statistically analyzed using the Kruskal-Wallis test, performed using SPSS v.25 (SPSS, 
Chicago, IL, USA). Statistical significance was identified at p < 0.05 except for the range of motion of the ankle 
(p = 0.427) (see Table 7). This suggests that the range of changes in the hip and knee angles can better distinguish 
the quality of performance in the deep squat than the range of ankle flexion angles. In shoulder mobility, the 
minimum wrist spacing can better distinguish the quality of performance. Based on the above results, we believe 
that the range of joint angles can be used as a feature to improve the accuracy of scoring in the vision-based auto-
matic evaluation model. Meanwhile, more movement features should be added to further improve the accuracy 
of the model prediction.

Variable

Our Study David Krause et al.31

Mean ± S.d. Mean ± S.d.

Ankle dorsiflexion Range (deg) 32.0 ± 8.4 24.1 ± 6.6

Knee Flexion Range (deg) 114.1 ± 17.8 109.9 ± 17.6

Hip Flexion Range (deg) 89.2 ± 17.3 87.3 ± 10.5

Table 6.  Comparison of the joint angle range of deep squats in our experiments with the results of the 3D Vicon 
motion analysis system.

Variable

Score 3 Score 2 Score 1

pMean ± S.d. Median Mean ± S.d. Median Mean ± S.d. Median

Ankle Dorsiflexion Range (deg) 31.6 ± 5.4 29.7 32.9 ± 7.5 34.7 31.3 ± 10.1 29.7 0.427

Knee Flexion Range (deg) 117.5 ± 17.6 124.2 121.1 ± 13.2 119.2 103.9 ± 22.9 106.9 0.000

Hip Flexion Range (deg) 97.1 ± 19.4 100.2 94.4 ± 6.9 93.5 80.0 ± 20.9 84.1 0.000

Wrists spacing (cm) 29.9 ± 9.8 29.8 32.9 ± 7.8 31.7 40.3 ± 9.3 41.9 0.001

Table 7.  Joint angle excursion during the deep squat and wrist spacing in the shoulder mobility. p < 0.05 
indicates significant differences among the three grades.
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A baseline analysis.  In this section, we provide a baseline analysis for the automatic FMS movement assess-
ment tasks. Here, only data from the front view camera are processed, and 3D skeleton sequences extracted from 
the original videos are used as input directly. Training and testing data are performed on the same view. As the 
most common metrics used for classification in machine learning, the F1 score and accuracy are reported in our 
study.

Generally, our baseline model has three major phases: data preprocessing, feature representation, and classi-
fier model. The estimated skeleton data can often be noisy in real scenes. To obtain robust feature data, normali-
zation and alignment are performed first to deal with intraclass variations. Second, a simple network composed 
of a fully convolutional network (FCN) architecture (refer to Fig. 14 for the network’s structure) and one fully 
connected layer is adopted to learn effective feature representation from 3D skeleton joints. Finally, the FMS 
scoring (1–3 points) is predicted with the help of a softmax classifier. Table 8 shows the FMS movement assess-
ment results for the testing data, presented for each folder of the 5-fold cross-validation. The automatic evalua-
tion performance for different FMS movements with vision-based sensors is reported separately.

Usage Notes
The dataset is available at Figshare (https://doi.org/10.25452/figshare.plus.c.5774969). For more detailed infor-
mation about Azure Kinect, refer to the Azure Kinect DK documentation website (https://docs.microsoft.com/
en-us/azure/Kinect-dk/). For anything not covered, please contact Qing-Jun Xing at xqj_fitness@163.com.

Code availability
Our codes for data acquisition and data processing are provided on the following Github repository: https://
github.com/sselab2021/FMS_human_3d-skeleton_by_Azure-Kinect.
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