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Kinin B1 Receptor Signaling in Skin 
Homeostasis and Wound Healing
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Kinins are proinflammatory peptides that are formed in the skin by the enzymatic action of tissue kallikrein 
(KLK1) on kininogens. Tissue kallikrein is produced by eccrine sweat glands and also by cells of the 
stratum granulosum and other skin appendages. Kinin formation may be favored during inflammatory 
skin disorders when plasma constituents, including kininogens, extravasate from venules and capillaries, 
which have increased permeability in response to the plethora of inflammatory mediators generated in the 
course of acute inflammation. By activating either kinin B1 or B2 receptors, kinins modulate keratinocyte 
differentiation, which relays on activation of several signaling systems that follows receptor stimulation. 
Participation of the kinin B1 receptor in wound healing is still a matter of controversy though some studies 
indicate that B1 receptor stimulation regulates keratinocyte migration by controlling metalloproteases 2 
and 9 production and by improving wound closure in a mouse model. Development of more stable kinin B1 
receptor agonists may be beneficial to modulate wound healing, especially if we take into account that the 
B1 receptor is up-regulated by inflammation and by cytokines generated in the inflamed microenvironment.
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INTRODUCTION

Kinins are bioactive peptides produced by the en-
zymatic action of two serine proteases (kininogenases), 

plasma and tissue kallikreins. These kininogenases are 
proteases that release the kinin molecule from two en-
dogenous and multifunctional protein substrates known 
as high and low molecular weight kininogens [1]. Plasma 



Matus et al.: The kinin B1 receptor in wound healing176

kallikrein participates in surface-dependent activation of 
blood coagulation, fibrinolysis, and inflammation and 
is encoded by a single gene (KLKB1) of approximately 
31 kb in length that is located on chromosome 4q34–35. 
KLKB1 was thought traditionally to occur only in the 
liver, but subsequent studies using quantitative RT-PCR 
showed that several non-hepatic tissues also synthesized 
plasma kallikrein [2].

By comparison, tissue kallikrein (KLK1) is the oldest 
member of a family that comprises a multigene group of 
15 serine proteases designated as KLK1 to KLK15 located 
in tandem within chromosome 19 q13.3-13.4. The other 
14 members, referred to as kallikrein-related peptidases, 
are characterized by their trypsin- or chymotrypsin-like 
enzymatic activity. In the skin, KLK5 and KLK7 (Figure 
1) have been shown to participate in keratinization, hy-
drolysis of desmosomal adhesion molecules and terminal 
keratinocyte differentiation [3,4]. So far, tissue kallikrein 
KLK1 is the only member of the family that exhibits 
kininogenase activity both in vitro and in vivo. Previous 
reports have shown that tissue kallikrein, kininogens, and 
kinin receptors are expressed in normal and pathological 
human skin suggesting that kinin peptides may be formed 

in their microenvironments so as to modulate important 
skin functions that could be of relevance to the pathogen-
esis of some skin disorders. Actually, kinins are proin-
flammatory peptides with the capacity to mimic the four 
clinical signs of inflammation including pain when they 
are in contact with a denuded epithelial surface.

In this review, we summarize the role of kinins and 
their receptors in skin homeostasis and how they contrib-
ute to keratinocyte differentiation and wound healing.

THE KININ SYSTEM IN THE HUMAN SKIN

Tissue Kallikrein (KLK1)
The presence of a kinin-releasing enzyme in human 

sweat was first reported by Fox and Hilton [5]. The occur-
rence of tissue kallikrein in human sweat was determined 
in experiments in which a specific immunoassay was used 
[6]. Subsequently, the amount of immunoreactive tissue 
kallikrein was measured in sweat obtained from differ-
ent regions of the body; the highest levels of the enzyme 
were found in samples taken from the trunk and forehead 
[7]. Additional studies described the major biochemical 
properties of the tissue kallikrein present in human sweat 

Figure 1. Interactions of tissue kallikrein (KLK1), kallikrein-related peptidases (KLK5 and KLK7) and kinin 
receptors in the human epidermis. Kinins are formed in the skin by the enzymatic action of tissue kallikrein (KLK1) 
on kininogens; once formed, bradykinin, a kinin B2 receptor (B2R) agonist, is hydrolyzed by carboxypeptidases N and 
M to produce kinin B1 receptor (B1R) agonists. Both type of receptors activate signaling pathways (protein tyrosine 
phosphorylation, ERK1/2, PKC, cFos, NF-κB and/or PI3K/Akt) associated to the differentiation program of human kera-
tinocytes; epidermal growth factor receptor (EGFR) transactivation is also involved. Keratinocyte differentiation can be 
monitored by the appearance of several protein markers such as involucrin, cytokeratin 10 and profilaggrin. KLK5 and 
KLK7 participate in desquamation of the superficial epidermal layers.
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and showed that its relative molecular mass and inhibitor 
profile were identical to those described previously for 
KLK1 [8]. Immunocytochemical procedures performed 
on human skin tissue sections localized tissue kallikrein 
in the secretory granules of the “dark cells” in the fundus 
of eccrine sweat glands [9]. Expression of KLK1 mRNA 
in eccrine sweat glands was later confirmed by in situ hy-
bridization techniques [10]. Interestingly, KLK1 expres-
sion was also found in the stratum granulosum of normal 
epidermis and in appendageal structures such as the inner 
root sheath of hair follicular epithelium [10]. Immunohis-
tochemical procedures also localized the kinin-forming 
substrates (kininogens) in the interstitial tissue space and 
in the space between keratinocytes, making viable the 
hypothesis that kinins are formed in the skin [11]. High 
levels of kininogens occur during inflammatory skin 
disorders when plasma constituents extravasate from 
venules in response to the different mediators generated 
in the inflammatory milieu. Thus, the formation of kinins 
may be favored during some inflammatory skin diseases.

It has also been suggested that tissue kallikrein may 
promote skin wound healing since the active form of the 
enzyme induces keratinocyte migration and proliferation 
by a mechanism that is mediated by protease-activated 
receptor-1 and epidermal growth factor receptor (EGFR) 
activation, and independent of kinin receptors activation 
and nitric oxide (NO) formation [12]. In fact, tissue 
kallikrein-induced migration of wounded keratinocyte 
monolayers was associated with increased phosphoryla-
tion of EGFR, extracellular signal regulated kinases 1/2 
(ERK1/2) mitogen-activated protein kinase (MAPK) and 
release of heparin-binding EGF-like growth factor (HB-
EGF) and amphiregulin, two EGFR ligands [12].

Kinin Receptors
Once formed, kinin peptides exert their effects by 

activating two G protein-coupled receptors characterized 
by 7-transmembrane spanning helices; these receptors are 
known as B1 (BDKR1 gene, B1R) and B2 (BDKR2 gene, 
B2R). The human kinin B2R is preferentially activated 
by bradykinin and it mediates most of the physiolog-
ical effects produced by kinins in different tissues/cells 
throughout the body including the keratinocyte (Figure 1). 
Bradykinin and its parent molecule Lys-bradykinin have 
a short half-life (15 to 30 seconds in plasma) because they 
are rapidly hydrolyzed by several peptidases known as 
kininases [1]. Two of these kininases, carboxypeptidases 
N and M, cleave both kinin molecules at the C-terminal 
Arg converting them into Lys-des[Arg9]bradykinin or 
des[Arg9]bradykinin, both agonists of the kinin B1R [1]. 
Of the two B1R ligands described so far the human B1R 
has greater affinity for Lys-des[Arg9]bradykinin than for 
des[Arg9]bradykinin; the opposite occurs with the rodent 

B1R [13,14].
The kinin B1R is usually expressed at low levels but 

is rapidly up-regulated during inflammation or after ex-
posure to noxious stimuli such as lipopolysaccharide and 
proinflammatory cytokines (TNF-α, IL-1β, IL-2, IFN-γ). 
Kinin B1R up-regulation in different systems is correlat-
ed with nuclear translocation of NF-κB, a process that 
can be blocked by inhibitors of NF-κB stimulation. In 
addition, glucocorticoids and protein synthesis inhibitors 
are able to block B1R up-regulation. Up-regulation of the 
B2R by inflammatory cytokines such as IFN-γ, IL-1, and 
TNF-α has also been reported (reviewed in [13]). Both 
kinin B1 and B2 receptor agonists favor nociception and 
pain, vasodilatation, and vascular permeability [1,15]; 
B1R has also been shown to facilitate the chronic itching 
sensation in a diphenylcyclopropenone-induced model of 
chronic inflammation, an experimental model in which 
kinin B1R mRNA and protein levels are increased [16].

In general, stimulation of both kinin B1 and B2 recep-
tors trigger a number of common intracellular signaling 
pathways that include calcium mobilization, phospholi-
pase C, arachidonic acid release, inositol 3-phosphate, 
MAPK phosphorylation, and EGFR transactivation, 
among others. Nevertheless, activation of specific in-
tracellular routes depends on both the stimulus and the 
biological effect that is characteristic for each cell type.

KERATINOCYTE PROLIFERATION OR 
DIFFERENTIATION?

The expression of both kinin B1R and B2R (mRNA, 
protein and binding sites) has been observed in normal 
human skin and in tissues obtained from patients suffer-
ing various skin disorders. By using in situ hybridization, 
RT-PCR and immunohistochemistry we and others have 
shown the expression of both kinin receptors in the hu-
man epidermis, in primary cultures of human keratino-
cytes and in HaCaT cells, an immortalized keratinocytes 
cell line [17-20].

The first functional studies reported that bradykinin 
induced phosphoinositide turnover and 1,2-diglyceride 
formation and tyrosine phosphorylation of several pro-
teins in cultured human keratinocytes [21,22]. Our group 
later demonstrated that the in vitro stimulation of B2R 
induced ERK1/2 MAPK phosphorylation, an event that 
is partially dependent on EGFR transactivation. ERK1/2 
MAPK phosphorylation was also dependent on pro-
tein kinase C (PKC) activation since the PKC inhibitor 
GF109203X abolished it [19]. Similar observations were 
recorded following stimulation of the kinin B1R in hu-
man keratinocytes; transactivation of EGFR was visual-
ized as phosphorylation of a band of 170 kDa. Additional 
experiments showed that EGFR transactivation resulted 
in phosphorylation of residues Tyr845, Tyr992, and Tyr1068 
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The fact that kinin B1R activation does not result in an in-
crease of [Ca2+]i mobilization suggests that keratinocyte 
differentiation may involve a Ca2+-independent PKC, a 
type of activity that represents 95% of total PKC activity 
[28]. On the other hand, the calcium increase induced by 
bradykinin is potentiated by a parathyroid hormone-relat-
ed peptide, a fragment that has been shown to regulate ke-
ratinocyte proliferation and differentiation [29]. Whether 
any of the parathyroid hormone-related peptides can also 
potentiate the keratinocyte differentiation induced by ki-
nin B2R agonists needs to be investigated.

Thus, by triggering specific intracellular signaling 
pathways kinin peptides may produce growth arrest and 
activation of keratinocyte differentiation to generate a 
cellular phenotype that can be identified by detecting 
specific differentiation markers.

DOES ACTIVATION OF THE KININ B1R 
FAVOR WOUND HEALING?

Wound healing is a complex cascade of events, or-
chestrated by growth factors and proteases; this process 
involves several phases: i) an inflammatory response, ii) 
wound re-epithelialization, angiogenesis and iii) granula-
tion tissue formation, wound contraction, scar formation, 
and tissue remodeling [30] (Figure 2). As a whole, acti-
vation and acceleration of healing require the interaction 
of different cellular types such as leukocytes, fibroblasts, 
endothelial cells, and keratinocytes.

Diverse in vitro and in vivo studies have demonstrat-
ed the expression of kinin B1R on several cellular players 
of wound healing. Kinins are important inflammatory 

of EGFR [20].
Several studies had reported that kinins increased 

DNA synthesis and cell proliferation in different cell 
systems (reviewed in [1]). However, neither bradykinin 
[23-25] nor Lys-bradykinin [19] stimulates keratinocyte 
proliferation when compared with the effect produced by 
EGF. Similar results were observed when keratinocytes 
were stimulated with the natural kinin B1R agonist, 
Lys-des[Arg9]bradykinin and 5-bromo-2’-deoxyuridine 
(BrdU) incorporation was assessed [20,26]. Moreover, 
after kinin stimulation, BrdU incorporation rate was 
lower than that observed on non-stimulated keratinocytes 
[20]. This finding contrasted with the fact that when the 
same keratinocytes were stimulated with EGF or fetal 
calf serum they exhibited a high BrdU incorporation rate 
[20].

On the contrary, stimulation of human keratinocytes 
with the kinin B2R agonist Lys-bradykinin produced a 
rapid increase in [Ca2+]i, c-Fos expression, nuclear trans-
location of NF-κB and a moderate (pro)filaggrin synthesis 
indicating that it modulates keratinocyte differentiation 
[19]. Interestingly, the kinin B1R agonist Lys-des[Arg9]
bradykinin also stimulated the synthesis of (pro)filaggrin, 
cytokeratin-10 and involucrin, three protein markers of 
keratinocyte differentiation [20] (Figure 1). PKC is a key 
component of the signaling route that triggers keratino-
cyte differentiation since its inhibition by GF109203X 
alters the expression of several differentiation markers 
[27]. Nevertheless, it is likely that the mechanisms in-
volved in keratinocyte differentiation may not be identi-
cal because kinin B2R stimulation produces an increase 
in [Ca2+]i whereas kinin B1R stimulation does not [20]. 

Figure 2. Wound healing phases. Major characteristics of the three wound healing phases and the periods of time 
involved in each of them are depicted. Participation of kinins and kinin receptors during these healing phases is also 
included.
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that later acquire a M2 phenotype (anti-inflammatory and 
tissue repair activities). Macrophages have an essential 
role because macrophage-depleted wounds show defec-
tive wound repair [30]. M1 macrophages secrete MCP-1 
that is crucial for wound healing since MCP-1 deficient 
mice have an anomalous re-epithelialization [37]. Anoth-
er important factor is TGF-β1 because knockout animals 
or inhibition of the major signaling pathways activated 
by TGF-β1 show an accelerated epithelialization and 
impaired inflammatory response [38,39]. By comparison, 
M2 macrophages acquire the capacity to produce plate-
let-derived growth factor (PDGF) and vascular endothe-
lial growth factor (VEGF), two mediators that initiate 
granulation tissue formation.

Schremmer-Danninger et al. [35] showed that B1R 
is increased in human skin biopsies obtained following 
surgery whereas kinin B2R expression did not change in 
the traumatized skin. Furthermore, using a murine model 
of thermal injury Rawlingson et al. [40] reported an early 
involvement of both kinin B1 and B2 receptors in plasma 
extravasation into the burn wound suggesting an import-
ant regulatory role for kinin receptors at the beginning of 
the wound healing process. Actually, kinin B1R agonists 
increase venular permeability by inducing contraction 
of endothelial cells and hence producing intercellular 
gaps through which plasma diffuse freely. Further, B1R 
agonists activate phospholipase C and NO generation in 
endothelial cells of precapillary vessels producing arteri-
olar dilatation [41]. On the other hand, the kinin B1R is 
an important player for recruitment of both neutrophils 
and macrophages at the site of injury and the high level 
of cytokines (TNF-α, IL-1β, IL-2, and IL-4), present in 
the inflammatory milieu up-regulate the expression of 
B1R in these leukocytes [41,42] (Figure 3). Stimulation 
of kinin B1R in human neutrophils results in chemotaxis, 
release of several proteases and up-regulation of CD11b/
CD18 integrins [42-44]. Interestingly, kinin B1R agonists 
also induce the expression of intercellular adhesion mol-
ecule, ICAM-1 in endothelial cells [44]. The interaction 
between both neutrophils and endothelial cells facilitates 
neutrophil migration into the injury site. In addition, ki-
nin B1R activation modulates the release of prostaglan-
dins, TNF-α, IL-1β and chemokines [41]. Importance 
of kinin B1R on leukocytes recruitment is supported by 
studies showing that kinin B1R knockout mice exhibit 
lower numbers of neutrophils and mononuclear cells than 
wild-type animals at the wound site [31]. Moreover, our 
results show that topical application of a kinin B1R ago-
nist onto the wounds increases recruitment of CD68 im-
munoreactive macrophages (unpublished results). Only 
a few studies have focused on the consequence of kinin 
B1R activation in macrophages, but early studies showed 
that stimulation of macrophages with a kinin B1R agonist 
induces TNF-α and IL-1 release, and increases NO levels 

mediators and can modulate keratinocyte differentiation 
and proliferation/migration of endothelial cells. However, 
the role of kinin B1R in wound healing has been scarcely 
investigated. So far, only three groups have addressed 
this topic, but have reported contradictory results. The 
recent study performed by Soley et al. [31] using kinin 
B1R knockout mice showed a delay of the skin healing 
process; in fact, wild-type mice showed a complete res-
olution of wound healing at day 12 whereas kinin B1R 
knockout mice resolved lesions at day 17, demonstrating 
that kinin B1R is an important player in this process. The 
results obtained by this group are in agreement with our 
results in which topical administration of the kinin B1R 
agonist, des[Arg9]bradykinin accelerated wound closure 
supporting participation of kinin B1R in wound healing 
[32]. On the contrary, Desposito et al. [33] observed that 
systemic treatment of mice wounds with the stable B1R 
agonist SarLys[Hyp3,Igl5,DPhe8]desArg9-bradykinin had 
no effect on wound closure. However, the extremely high 
EC50 (400 ± 46 nM) of this agonist in the mouse when 
compared with that of the natural agonist des[Arg9]brady-
kinin (EC50= 21 ± 3 nM) [34] may explain the lack of ef-
fect reported by them in this species. Moreover, Desposi-
to et al. [33], performed 8 mm diameter full-thickness 
wounds on the dorsal skin of agonist-treated mice and 
the results obtained were compared with those observed 
in similar wounds made on untreated mice. This type of 
comparison is difficult because there are different healing 
rates in different mice even when they come from the 
same litter. By comparison, our model considered a topi-
cal treatment and two full-thickness 6 mm punch wounds 
performed on the back of each mouse in such a way that 
comparison between wounds was performed in the same 
animal, avoiding animal variability.

THE KININ B1R IN THE INFLAMMATORY, 
PROLIFERATIVE, AND REMODELING 
WOUND HEALING PHASES

Inflammatory Phase
In this phase, migration of neutrophils and mono-

cytes from blood compartment to the wound removes 
blood clot and cell debris from damaged tissue (Figure 
2). Leukocytes are recruited by multiple released vasoac-
tive mediators such as kinins, histamine, prostaglandins, 
leukotrienes, thrombin, IL-8, monocyte chemoattractant 
protein-1 (MCP-1), or bacterial lipopolysaccharides and 
chemotactic peptides [30,35]. At the wound site, neutro-
phils are considered to be primarily bactericidal, killing 
microorganisms by means of reactive oxygen species and 
neutrophil extracellular traps [36]. On the other hand, 
monocytes are recruited by specific chemoattractants such 
as transforming growth factor-β (TGF-β) and MCP-1, and 
then differentiate into M1 pro-inflammatory macrophages 
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factor receptors and some of their ligands (TGF-α, TGF-β, 
amphiregulin, epiregulin, HB-EGF, neuregulins 1 and 2 
and keratinocyte growth factor). When receptors are ac-
tivated, they trigger a number of signaling cascades that 
lead to reorganization of the cytoskeleton and phosphor-
ylation of transcription factors involved in the expression 
of proteins/proteases required for keratinocyte migration, 
proliferation, and differentiation [47]. Wound healing 
experiments performed on TGF-α deficient-mice show 
that the early phase of re-epithelialization is delayed [48] 
whereas a lack of HB-EGF produces a marked setback 
in wound closure as a consequence of severe delay in 
keratinocyte migration [49]. As mentioned before TGF-β 
is an important factor for re-epithelialization because it 
initiates keratinocyte migration.

The activation of kinin B1R regulates positively 
keratinocyte differentiation, but does not increase kera-
tinocyte proliferation in vitro or in the margin of mice 
wounds treated with a B1R agonist [19,20,32]. Appar-
ently, kinin B1R stimulation produces opposite effects on 
cell migration depending on the cell type involved; our in 
vitro approach showed that kinin B1R agonists produce a 

[13,45,46].
In mouse models, neutrophil depletion does not 

negatively affect wound healing as profoundly as mac-
rophage depletion. However, in diabetes where infection 
risk is high, neutrophils are clearly required [30]. Thus, 
the kinin B1R is a key molecule for cell recruitment, as 
confirmed in a skin healing study, where the absence of 
the B1R produced a significant reduction of leukocytes 
infiltration and delay in resolution of the tissue repair 
process [31] (Figure 3).

Proliferative and Remodeling Phase
This phase is characterized by angiogenesis, migra-

tion of keratinocytes, and fibroblast proliferation that pro-
duces new extracellular matrix. Angiogenesis provides 
new blood vessels that deliver oxygen and nutrients for 
successful healing whereas migration of keratinocytes is 
a critical step for wound re-epithelialization. Keratino-
cytes receive signals to proliferate, migrate, and finally 
differentiate to restore the injured epidermis. For this 
purpose, keratinocytes express and/or activate surface 
exposed integrins (α3β1, αvβ6, αvβ5, and α9β1), growth 

Figure 3. Major signaling pathways triggered by kinin B1 receptor (B1R) agonists in the human keratinocyte 
and its cross-talk with endothelial cells, fibroblasts, neutrophils and macrophages. Stimulation of kinin B1R in 
the human keratinocyte results in phosphorylation (P) of JunB that translocates into the nucleus to bind AP-1 sites and 
activate interleukin-4 (IL-4) synthesis. Release of IL-4 and also vascular endothelial growth factor (VEGF) from kera-
tinocytes induces angiogenesis on blood vessels that expose VEGF receptors (VEGFR2) and IL-4 receptors (IL-4R) 
on the surface of endothelial cells. In addition, fibroblasts produce fibroblast growth factor-2 (FGF-2) and neutrophils 
and macrophages release VEGF that enhances the angiogenic response. Cytokines generated in the inflammatory 
milieu (TNF-α, IL-1β, IL-2) may up-regulate the kinin B1R expressed by keratinocytes, neutrophils, macrophages and 
endothelial cells.
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on the effect of kinin B1R agonists on fibroblasts are 
contradictory; in human embryonic lung fibroblasts they 
stimulate type I collagen synthesis, whereas in rat cardiac 
myofibroblast they decrease collagen secretion [55,56]. 
Further, kinin B1R agonists have been reported to have 
no effect on mouse fibroblast migration and proliferation 
[33]. In alliance with macrophages and fibroblasts, the 
new vessels move into the wound to initiate formation 
of granulation tissue. Endothelial cells initiate angio-
genesis in response to growth factors like FGF-2 and 
VEGF, which are partially secreted by macrophages. The 
importance of VEGF-A for an adequate wound healing 
(Figure 3) has been demonstrated by using neutralizing 
VEGF-A antibodies onto porcine wounds, treatment that 
strongly impaired angiogenesis and formation of granu-
lation tissue [57,58]. Several reports deal with participa-
tion of kinin peptides in angiogenesis; they produce an 
angiogenic effect on endothelial cells, by up-regulating 
FGF-2 expression, potentiating migration and cell growth 
or by stimulating VEGF synthesis and release [59]. We 
have shown that B1R stimulation produced significant 
endothelial cell migration and release of both MMP-2 
and MMP-9, but did not increase endothelial cell prolif-
eration [50]. Our in vitro studies so far indicate that kinin 
B1R agonists stimulate keratinocytes to release VEGF 
and IL-4, growth factors that promote endothelial cell 
migration and release of MMP-2 and MMP-9, two crucial 
events during angiogenesis (Figure 3).

PARTICIPATION OF KININS AND THEIR 
RECEPTORS IN OTHER SKIN DISORDERS

Psoriasis
Early studies showed that human biopsies obtained 

from patients suffering basal cell carcinoma, lichenificat-
ed atopic eczema, and psoriasis have expression levels of 
tissue kallikrein (KLK1) and kinin receptors that are sim-
ilar to those observed in normal skin [18,35]. On the other 
hand, several reports have indicated that angiotensin-con-
verting enzyme inhibitors (ACEI) may induce and/or 
exacerbate psoriasis, an effect that may be due to inhibi-
tion of kinins degradation by ACEI; then, the increased 
levels of kinins in the skin might increase inflammation 
and make psoriasis worse [60]. Interestingly, presence 
of ACE insertion polymorphism has been associated to 
occurrence of psoriasis. This allele has been associated 
to low ACE activity, a quality that results in reduced ki-
nin degradation [61]. In agreement with this idea is the 
fact that psoriasis patients have elevated plasma levels 
of kininogens, the substrates required for kinin release 
[62]. However, the vascular response to kinins when 
they are injected intradermally into psoriasis patients is 
not altered when compared to normal volunteers [63]. 
Another source of kinins in psoriasis patients may come 

weak keratinocyte migration whereas its topical applica-
tion onto wounds in an in vivo mouse model significantly 
reduced the wound area, probably by augmenting kerat-
inocyte migration [32]. The in vivo microenvironment is 
much more complex than the in vitro situation and possi-
bly the topical application of a kinin B1R agonist induces 
the release of cytokines (IL-4) and growth factors (HB-
EGF) [32,50] or activates metalloproteases like MMP-2 
and MMP-9, key players of keratinocyte migration [51] 
(Figure 3). Coincidently, stimulation of kinin B1R pro-
duces a transient c-JunN-terminal kinase phosphoryla-
tion and JunB nuclear translocation, transcription factor, 
which is known to regulate IL-4 expression [50]. Using 
a mouse model of wound healing, we observed that im-
munoreactivity for both MMP-2 and MMP-9 gelatinases 
was concentrated around wound borders and that cells 
expressed both MMPs in a cytoplasm area that was in 
close contact with the extracellular matrix [32] suggest-
ing an association with extracellular matrix degradation 
or cleavage of growth factors/cytokines sited throughout 
the matrix.

An essential requirement for keratinocyte adhesion 
and migration is to change the integrins profile to allow 
its release from tight and adherens junctions. Integrins 
mediate cell-matrix interactions (cell polarity and migra-
tion) and act as signaling molecules across the plasma 
membrane that transduce both “inside-out” and “out-
side-in”. The integrin repertoire in basal keratinocytes is 
restricted to α2β1, α3β1, α9β1, and α6β4, whereas during 
wound healing α3β1 and α9β1 are up-regulated. Integrins 
can also regulate the balance between cell proliferation 
and differentiation to produce an effective re-epithelial-
ization and a firm attachment of the new epithelial layer 
[47]. Thus, lack of integrins α3, α6, β4, β1, and β6 results 
in a disorganized basement membrane and abnormal cell 
adhesion, proliferation and differentiation [52]. There are 
few studies concerning the role of kinin B2R on integ-
rin expression/activation [53,54], but there are no stud-
ies that analyze the effect of kinin B1R agonists on the 
expression/activation of integrins in keratinocytes and 
during wound healing.

When formation of new stroma or granulation tissue 
begins macrophages, fibroblast and blood vessels move 
into the wound at the same time. In this phase, macro-
phages provide a continuing source of growth factors, 
like PDGF and TGF-β1, necessary to stimulate fibropla-
sia and angiogenesis. In the wound, and influenced by the 
local microenvironment, macrophages undergo pheno-
typic switching from M1 to M2 phenotype, an event that 
depends on down-regulation of IL-10 and up-regulation 
of IL-4 and IL-13 [30]. Likewise, fibroblasts, activat-
ed by PDGF and TGF-β1 in concert with extracellular 
matrix molecules, proliferate, migrate, and produce the 
new matrix necessary to support cell ingrowth. Studies 



Matus et al.: The kinin B1 receptor in wound healing182

cate network of interactions that exist between different 
mediators, their receptors and the cells which are respon-
sible for their production.

CONCLUSION

Biological actions of kinins range from increase in 
vascular permeability to angiogenesis and keratinocyte 
differentiation. In the skin, kinins and other members 
of the kallikrein system have been investigated for their 
participation in several physiological and pathological 
processes. Kinins, and in particular kallikrein-related 
peptidases (KLK5 and KLK7), modulate keratinocyte 
differentiation and precise steps of wound healing such 
as plasma extravasation, leukocytes chemotaxis, kerati-
nocyte migration, and angiogenesis. In addition, kinins 
can enhance their effects by inducing the release of an-
giogenic molecules (IL-4 and VEGF) from keratinocytes, 
endothelial cells, neutrophils, and macrophages.

The complexity of wound healing is amplified by 
local factors, such as ischemia and infection, also by 
systemic factors such as age, nutritional status, and pa-
thologies such as diabetes mellitus. The final result is the 
formation of a scar, which is sufficiently functional. How-
ever, in some cases, the repair process is disorganized or 
insufficient resulting in hypertrophic scars, keloids, or 
chronic wounds that do not heal. Therefore, new studies 
could help us to establish the role of kinin peptides and 
especially of kinin B1R agonists in wound healing, al-
lowing us in the future to identify new molecular targets 
that contribute to re-epithelialization and wound closure 
during chronic wound healing as it occurs in diabetic 
patients.
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