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Abstract

Background

Small sample sizes combined with multiple correlated endpoints pose a major challenge in

the statistical analysis of preclinical neurotrauma studies. The standard approach of apply-

ing univariate tests on individual response variables has the advantage of simplicity of inter-

pretation, but it fails to account for the covariance/correlation in the data. In contrast,

multivariate statistical techniques might more adequately capture the multi-dimensional

pathophysiological pattern of neurotrauma and therefore provide increased sensitivity to

detect treatment effects.

Results

We systematically evaluated the performance of univariate ANOVA, Welch’s ANOVA and

linear mixed effects models versus the multivariate techniques, ANOVA on principal compo-

nent scores and MANOVA tests by manipulating factors such as sample and effect size,

normality and homogeneity of variance in computer simulations. Linear mixed effects mod-

els demonstrated the highest power when variance between groups was equal or variance

ratio was 1:2. In contrast, Welch’s ANOVA outperformed the remaining methods with

extreme variance heterogeneity. However, power only reached acceptable levels of 80% in

the case of large simulated effect sizes and at least 20 measurements per group or moder-

ate effects with at least 40 replicates per group. In addition, we evaluated the capacity of the

ordination techniques, principal component analysis (PCA), redundancy analysis (RDA), lin-

ear discriminant analysis (LDA), and partial least squares discriminant analysis (PLS-DA) to

capture patterns of treatment effects without formal hypothesis testing. While LDA suffered

from a high false positive rate due to multicollinearity, PCA, RDA, and PLS-DA were robust

and PLS-DA outperformed PCA and RDA in capturing a true treatment effect pattern.
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Conclusions

Multivariate tests do not provide an appreciable increase in power compared to univariate tech-

niques to detect group differences in preclinical studies. However, PLS-DA seems to be a use-

ful ordination technique to explore treatment effect patterns without formal hypothesis testing.

Introduction

The aim of controlled preclinical studies is usually to investigate the therapeutic potential of a

chemical or biological agent, or a certain type of intervention. For this purpose, animals are ran-

domized to a control group and a number of treatment groups in a manner similar to clinical tri-

als. For quantitative endpoints, treatment effects are evaluated by assessing mean differences

between control and intervention groups. In an effort to obtain as much information as possible

with minimal cost of life, usually multiple endpoints are included in the trial [1], which is further

motivated by the fact that the optimal efficacy endpoint for a specific disease might not be known.

In this context, the null hypothesis of no treatment effect (H0) can be rejected in two ways. The

standard approach consists of performing independent univariate tests on each variable sepa-

rately. However, this strategy might lead to an inflated family-wise error rate. In addition, differ-

ent endpoints are usually correlated, implying that preclinical trials are multi-dimensional in

nature. Consequently, the second approach is to use a multivariate technique, which accounts for

the covariance/correlation structure of the data. H0 is usually tested on some kind of linear combi-

nation of the original variables. Due to the increased complexity of analysis and interpretation of

results in this case, such an approach has found limited use in preclinical research so far.

A number of studies have highlighted the potential benefits of multivariate techniques in the

context of preclinical trials [2] and more specifically animal neurotrauma models [3–7]. Trau-

matic or ischemic events to the central nervous system such as stroke, spinal cord or traumatic

brain injury are followed by a multi-faceted pathophysiology which manifests on molecular, his-

tological and functional levels [8–11]. Individual biological mechanisms that are disrupted by or

result from the neurotrauma such as apoptosis [12, 13], neuroinflammation [14–18], oxidative

stress [18–20] and plasticity alterations [21, 22] have provided therapeutic targets in animal

models. However, translation of candidate therapies to humans continues to be mostly unsuc-

cessful [23–26]. Many studies indicate that individual biological processes interact together in

determining functional outcome, which is why multivariate measures might capture the com-

plex disease pattern more successfully and therefore detect therapeutic intervention efficacy

with increased sensitivity [3, 4]. However, no solid proof of the superiority of multivariate meth-

ods beyond these theoretical considerations has been ascertained so far.

The aim of our current study was to obtain empirical evidence as to whether univariate or

multivariate statistical techniques are better suited for detecting treatment effects in preclinical

neurotrauma studies. For this purpose, we performed simulations under a broad range of con-

ditions while simultaneously trying to mimic realistic experimental conditions as closely as

possible. We investigated the empirical type I error rate as well as empirical power of several

competing techniques and evaluated factors which impact their performance.

Methods

Simulation procedure

We performed a Monte Carlo study using the statistical software R [27] and following recom-

mendations of Burton et al. for the design of simulation studies [28]. Artificial data were based
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on a real study in a rat model of traumatic brain injury. In the preclinical trial, twenty animals

per group received either vehicle control or a therapeutic agent. Functional outcome was eval-

uated based on 6 different endpoints including 20-point neuro-score, limb placing score,

lesion and edema volume, and T2 lesion in the ipsilateral and contralateral hemisphere. All

variables were measured repeatedly on three time points, therefore resulting in a data matrix

with 18 columns. In order to obtain more general estimates of the mean vector and covariance

matrix for subsequent simulations, a non-parametric bootstrap procedure was applied using

the data from the saline control group from the in vivo study. Since two animals from this

group were excluded from the study, the resampling procedure was conducted with the avail-

able 18 animals. 10,000 samples were drawn from the original data with replacement and the

average mean vector and covariance matrix were then calculated. In order to retain the covari-

ance structure of the data, complete rows of the data matrix (corresponding to all measure-

ments from a single animal) were always sampled as a 18x1-dimensional vector. The nearPD R

function was then employed to force the calculated dispersion matrix to be positive definite.

The resulting mean vector and covariance matrix were used as parameters for multivariate dis-

tributions, from which data for subsequent simulations were sampled (see S1 Appendix of

Tables 1 and 2). We generated one control group and three treatment groups under each sce-

nario, which corresponds to a typical preclinical trial design where increasing doses of a thera-

peutic agent are tested against a control treatment.

Simulation factors

Sample size. We performed simulations with 5, 10, 15 and 20 measurements per treat-

ment group to investigate the impact of sample size. These values were selected to represent

realistic group sizes commonly encountered in preclinical trials. Additionally, we performed

simulations with 30, 40 and 50 replicates per group to investigate the effect of a larger sample

size beyond those typical for animal studies. In the course of this study we use the terms mea-

surements, subjects and replicates per group interchangeably.

Effect size. Treatment effects were based on Cohen’s d with values set to 0, 0.2, 0.5 and 0.8

corresponding to no effects, small, moderate and large statistical effect sizes relative to the con-

trol group, respectively [29]. We chose Cohen’s d because this standardized statistical measure

of effect size is independent of the scale of the original variables. The population mean values

for the treatment groups were then calculated using the formula μ1 = μ0±s�d, where μ0 corre-

sponds to the population mean of the respective variable in the control group and s signifies

the standard deviation of both groups in case of equal variance or the average standard devia-

tion in case of unequal variance. We performed simulations with no treatment effects in all

groups to investigate empirical type I error rate. Additionally, we investigated empirical power

by simulating either large, moderate or small effects in the treatment groups relative to the

control group.

Distribution of dependent variables. The dependent variables were simulated to follow a

multivariate normal distribution to comply with the assumptions of the investigated methods.

Additionally, we employed the multivariate lognormal distribution and the multivariate

gamma distribution in order to investigate the impact of departures from normality. The mul-

tivariate gamma distribution was modelled using its shape parameter α and its rate parameter

β. These parameters were derived from the target mean and variance values using the follow-

ing relationships: μ = α/β and σ2 = α/β2, where μ and σ2 correspond to the mean and variance

of the gamma distribution, respectively. Since we wanted to simulate specific values for the

mean and variance, we used the following equations to obtain the shape and rate parameter of
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the gamma distribution: α = μ2/ σ2 and β = μ/ σ2. The correlation matrix used for the simula-

tion of multivariate data sets is shown in S1 Appendix of Table 2.

Variance. Parametric univariate methods to detect mean differences assume that variance

in all groups is equal, which in the multivariate case extends to the assumption of homogeneity

of covariance matrices [30]. Therefore we first performed simulations with all groups having

equal variance. Then we simulated treatment groups having variance twice or 5 times higher

than the variance in the control group. This allowed us to investigate the impact of increasing

variance heterogeneity.

Factors were crossed to produce 252 different simulation scenarios with 1000 replicate data

sets generated under each combination of simulation conditions.

Methods to detect treatment effects

Univariate statistics. The univariate approach of investigating treatment differences

between groups consisted of a series of independent analysis of variance (ANOVA) tests on

each outcome variable separately. Furthermore, we applied Welch’s ANOVA as implemented

in the oneway.test R function, which does not assume equal variance between groups [31]. In

order to take the repeated measures nature of the input data into account, we also performed

linear mixed effects tests for each endpoint. Since we did not simulate an interaction between

treatment effect and time, we only included the main effects in the mixed effects model with-

out an interaction term. We rejected H0 of no treatment effect if the main effect for the treat-

ment factor was significant.

Multivariate statistics. The first multivariate strategy we investigated was performing

ANOVA tests on principal component (PC) scores obtained from the original variables. We

used eigen decomposition of the population correlation matrix in order to calculate the PCs,

which is the preferred approach when variables are measured on different scales [30, 32]. Based

on the Kaiser criterion, we only retained components whose corresponding eigenvalue was

greater than one [33]. Component scores were obtained by multiplying the standardized data

matrix of original variables with the eigenvectors of the population correlation matrix [32].

The second multivariate technique consisted of a series of multivariate analysis of variance

(MANOVA) tests on each study variable with repeated measures. Each repeated measure was

considered a separate dependent variable for the respective MANOVA. Thus, we performed 6

MANOVA tests, each of which included the three repeated measures of one endpoint as the

dependent variables. The significance of the MANOVA tests was evaluated using four different

statistics which are commonly provided by statistical software such as R, SAS or SPSS: Wilks’

lambda [34], Lawley-Hotelling trace [35], Pillai’s trace [36] and Roy’s largest root [37].

In all cases, H0 was rejected when the p-value from the omnibus test was less than 0.05; no

specific contrasts or post hoc analyses were considered. Different techniques were evaluated

based on the empirical type I error rate or on empirical power. Empirical type I error rate was

defined as the number of significant statistical tests divided by the total number of tests when

no treatment effects were simulated. Empirical power was defined as the number of significant

tests divided by the total number of tests in the cases when treatment effects were simulated.

Multivariate dimensionality reduction techniques for pattern analysis

In addition to formally comparing the type I error rate and power of univariate and multivari-

ate statistics, we also investigated if ordination techniques might be useful to detect patterns of

treatment effects in multi-dimensional preclinical data sets. We focused on methods that per-

form ordination and dimensionality reduction based on Euclidean distances and are therefore

suitable for quantitative and semi-quantitative data. First, we applied PCA, linear discriminant
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analysis (LDA), redundancy analysis (RDA), and partial least squares discriminant analysis

(PLS-DA) on 1000 simulated data sets with 5 measurements per group and no treatment

effects. We plotted the first versus the second multivariate dimension and visually inspected

the plots. If the 95% confidence ellipse around the control group did not overlap with the con-

fidence ellipses around the data points for the treatment groups, we considered that the ordi-

nation method falsely captured a treatment effect pattern in the data. Next, we examined the

sensitivity of the ordination methods to detect true treatment effect patterns by simulating

1000 data sets with 5 measurements per group and huge treatment effects (Cohen’s d = 2.0).

We used this effect size as we did not observe a difference between groups when smaller effect

sizes were simulated. We considered that the respective method correctly accounted for a

treatment effect pattern in the data if the 95% confidence ellipse around the control group did

not overlap with the confidence ellipses around the simulated treatment groups.

Finally, we provide an applied example of combining dimensionality reduction techniques

with formal hypothesis testing using one simulated data set with 5 measurements per group

and treatment effects on only half of all the variables.

Results

Competing multivariate statistics

Prior to investigating the performance of univariate and multivariate techniques, we examined

the four MANOVA test statistics in order to identify the most appropriate for subsequent

comparisons. Fig 1 shows representative results for the type I error and power of the

Fig 1. Performance of different multivariate statistics. Example plots show empirical type I error and power of the MANOVA test using four common

multivariate test statistics. Type I error rate is shown for the simulation scenario with no treatment effects, equal variance in all groups and data drawn from a

multivariate normal distribution. An example of power analysis is shown for a simulation with large treatment effects (Cohen’s d equal to 0.8), equal variance in

all groups and data sampled from a multivariate normal distribution. Hotelling: Lawley-Hotelling trace; Pillai: Pillai’s trace; Roy: Roy’s largest characteristic

root; Wilks: Wilks’ lambda.

https://doi.org/10.1371/journal.pone.0230798.g001

PLOS ONE Systematic investigation of therapeutic efficacy in controlled preclinical neurotrauma trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0230798 March 26, 2020 5 / 20

https://doi.org/10.1371/journal.pone.0230798.g001
https://doi.org/10.1371/journal.pone.0230798


MANOVA test (see S1 Appendix of Figs 1–4 for complete results) using the four different sta-

tistical criteria. We observed the same trend under all simulation scenarios with Roy’s largest

root having a considerably high false positives rate over 30%. In contrast, the remaining statis-

tics exhibited very similar type I error rates. Pillai’s trace was the most robust measure followed

by Wilks’ lambda and Lawley-Hotelling trace. Roy’s largest root was not considered with

regards to power analysis due to the unacceptably high type I error rate. Pillai’s trace consis-

tently demonstrated the lowest power. In contrast, Wilks’ lambda was associated with a slightly

higher probability of correctly rejecting the null hypothesis in the presence of treatment effects

than Pillai’s trace but it was outperformed by Lawley-Hotelling trace. However, we chose

Wilks’ lambda for further analysis because it provided a good compromise between type I

error rate and power in comparison to the other multivariate test statistics.

False positive rate

Empirical type I error rates of the methods we evaluated under different simulation scenarios

are summarized in Fig 2. Differences between univariate and multivariate methods were negli-

gible under all simulation conditions. Furthermore, all methods managed to remain close to

the nominal level of type I error rate around 5% even in the case of extreme variance heteroge-

neity (variance ratio between control and treatment group equal to 1:5). Interestingly, Welch’s

ANOVA was associated with a slightly higher false positive rate compared to other methods

when data were sampled from a multivariate lognormal distribution combined with extreme

variance heterogeneity. Furthermore, linear mixed effects models had a slightly higher type I

error rate in the case of 5 subjects per group.

Empirical power

The results we obtained for empirical power under different simulation conditions are depicted

in Figs 3–5. Linear mixed effects models outperformed the remaining methods in the case of

variance equality or moderate variance heterogeneity (variance ratio 1:2) with smaller sample

sizes of 5 to 20 subjects per group regardless of the effect size we simulated. Welch’s ANOVA

was as powerful as regular ANOVA when the variance between the control and treatment

groups was equal. Furthermore, Welch’s ANOVA outperformed all other methods when we

simulated moderate or small effect sizes combined with extreme variance heterogeneity (ratio

of 1:5 between the control and treatment groups) and data coming from multivariate lognormal

or gamma distributions. MANOVA tests were slightly more powerful than the two types of

ANOVA in the cases of equal variance but still failed to outperform linear mixed effects models

under these simulation scenarios. The multivariate strategy of ANOVA tests on PCA scores was

universally associated with the lowest rate of rejecting H0. It is also worth mentioning that ade-

quate levels of power of around 80% were achieved in the case of at least 20 measurements per

group and large treatment effects (Cohen’s d equal to 0.8, Fig 3). Simulating moderate treatment

effects (Cohen’s d equal to 0.5, Fig 4) required a sample size of at least 40 replicates per group in

order to achieve levels of power of around 80% Finally, the rate of rejecting H0 varied between

5% and 25% when we simulated small treatment effects (Cohen’s d equal to 0.2, Fig 5).

Comparison of ordination techniques for pattern analysis of treatment

effects

We investigated if the dimensionality reduction techniques LDA, PCA, RDA, and PLS-DA

could be useful for investigating patterns of treatment effects without formal hypothesis test-

ing. In 1000 simulated data sets without treatment effects and 5 measurements per group, we

counted how often the control group was separated from treatment groups along the first and
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second multivariate dimensions (indicated by non-overlapping 95% confidence ellipses). LDA

captured a false treatment effect pattern in 387 cases corresponding to a false positive rate of

38.7%. In contrast, the control group was not separated from treatment groups in any of the

simulated sets when using PCA, PLS-DA, or RDA for dimensionality reduction. Example

plots are shown in Fig 6 (the whole set of plots is available in S2 Appendix). Due to the unac-

ceptably high false positive rate, we did not further consider LDA. Next, we simulated 1000

Fig 2. Type I error rate of univariate and multivariate techniques under different simulation conditions. The title of each plot reports the multivariate

distribution from which the data were sampled as well as the variance ratio between the simulated control and treatment groups. ANOVA: Analysis of

variance; MANOVA: Multivariate analysis of variance; Mixed: Linear mixed effects model; MV: Multivariate; PCA: Principal component analysis.

https://doi.org/10.1371/journal.pone.0230798.g002
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data sets with huge treatment effects (Cohen’s d equal to 2.0) with 5 measurements per group

and investigated how often the control group was separated from treatment groups in reduced

multivariate space. PLS-DA managed to capture the true treatment pattern in 13.8% of the

cases whereas PCA only separated the control from treatment groups in 7.7% of the simula-

tions. RDA only marginally outperformed PCA and reported a true treatment effect pattern in

9.6% of the cases (the complete simulated set of plots is available in S3 Appendix).

Fig 3. Empirical power of univariate and multivariate techniques in case of large treatment effects (Cohen’s d equal to 0.8). The multivariate

distribution from which the data were drawn as well as the variance ratio between simulated control and treatment groups are summarized in the title of

each respective plot. ANOVA: Analysis of variance; MANOVA: Multivariate analysis of variance; Mixed: Linear mixed effects model; MV: Multivariate;

PCA: Principal component analysis.

https://doi.org/10.1371/journal.pone.0230798.g003

PLOS ONE Systematic investigation of therapeutic efficacy in controlled preclinical neurotrauma trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0230798 March 26, 2020 8 / 20

https://doi.org/10.1371/journal.pone.0230798.g003
https://doi.org/10.1371/journal.pone.0230798


A practical example of applying ordination techniques and statistical

testing methods

In order to give an example of how ordination techniques can be combined with statistical

testing methods in practice, we simulated a data set with 5 variables per group and huge treat-

ment effects for 9 out of the total 18 variables which we randomly selected. The endpoints with

Fig 4. Empirical power of univariate and multivariate techniques in case of moderate treatment effects (Cohen’s d equal to 0.5). The multivariate

distribution from which the data were drawn as well as the variance ratio between simulated control and treatment groups are summarized in the title of

each respective plot. ANOVA: Analysis of variance; MANOVA: Multivariate analysis of variance; Mixed: Linear mixed effects model; MV: Multivariate;

PCA: Principal component analysis.

https://doi.org/10.1371/journal.pone.0230798.g004
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simulated treatment effects were 20-point neuroscore on day 1 and day 7, limb placing score

on day 1 and day 7, lesion volume on day 1 and day 7, edema volume on day 1 and day 14 and

T2 lesion in the contralateral cortex on day 1. The remaining 9 variables were drawn from the

same distributions in the control and the 3 treatment groups without simulated treatment

effects.

Fig 5. Empirical power of univariate and multivariate techniques in case of small treatment effects (Cohen’s d equal to 0.2). The multivariate

distribution from which the data were drawn as well as the variance ratio between simulated control and treatment groups are summarized in the title of

each respective plot. ANOVA: Analysis of variance; MANOVA: Multivariate analysis of variance; Mixed: Linear mixed effects model; MV: Multivariate;

PCA: Principal component analysis.

https://doi.org/10.1371/journal.pone.0230798.g005
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In the first step of the analysis, we applied PLS-DA which was the most sensitive technique

in our simulations to investigate if the control group differed from the treatment groups in

Fig 6. Comparison of ordination techniques for pattern analysis in the case when no treatment effects were simulated. Plots show results for one out of 1000

simulations with 5 measurements per group drawn from a multivariate normal distribution with equal variance between control and treatment groups. The ordination

technique was considered to falsely capture a treatment effect pattern in the data in case of non-overlapping 95% confidence ellipse of the control group with the

confidence ellipses for the treatment groups (dose1 to dose3). LDA: Linear discriminant analysis; PCA: Principal component analysis; PLS-DA: Partial least squares

discriminant analysis; RDA; Redundancy analysis.

https://doi.org/10.1371/journal.pone.0230798.g006

PLOS ONE Systematic investigation of therapeutic efficacy in controlled preclinical neurotrauma trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0230798 March 26, 2020 11 / 20

https://doi.org/10.1371/journal.pone.0230798.g006
https://doi.org/10.1371/journal.pone.0230798


reduced multivariate space. We observed that the control group was separated from the treat-

ment groups along the first multivariate axis which accounted for 36% of the variance (Fig 7).

In order to investigate which of the original variables are responsible for group separation, we

calculated the correlations of the original variables with the first PLS-DA multivariate dimen-

sion (axis 1) along which the control and treatment groups were separated. Correlations with

an absolute value below 0.5 were set to 0 in order to filter out unimportant variables. The cor-

relation pattern indicated that all variables with simulated treatment effects along with two

additional variables (lesion volume at day 14 and T2 lesion at day 14) contributed to the sepa-

ration of the control from the treatment groups. Therefore, PLS-DA managed to capture the

treatment effect pattern by identifying all original variables with simulated treatment effects as

important for group separation in reduced space.

Next, we followed up on the multivariate pattern analysis by performing statistical testing

with linear mixed effects models for each variable with repeated measures. The interaction

term between treatment and time was highly significant for all six endpoints thereby rejecting

H0 of no treatment effects even for T2 lesion, which was the only variable without any simu-

lated treatment effects at any time point. Next, we performed post-hoc analysis comparing the

treatment groups against the control group for each time point separately. Results are shown

in Table 1. The difference for the 20-point neuroscore was significant only between treatment

groups 2 and 3 compared to the control group and no statistically significant difference was

detected for 20-point neuroscore at day 7. Similarly, post-hoc analysis did not detect a treat-

ment effect for any of the groups for lesion volume at day 7 and edema volume at day 14. In

contrast, all treatment effects were identified for lesion volume at day 1, edema volume at day

1 and T2 lesion in the contralateral cortex at day 1.

The difference between the control and treatment groups 2 and 3 for T2 lesion at day 14

was reported as significant even though we did not simulate treatment effects for this variable.

Fig 7. Partial least squares discriminant analysis (PLS-DA) to identify treatment effect patterns. We simulated a data set with 5 measurements per group

and huge treatment effects for 9 randomly selected endpoints out of the 18 variables in the data set. The control group was separated from the treatment groups

along the first multivariate dimension in the PLS-DA analysis We calculated the correlation of the original variables with this dimension to identify which

original endpoints explained the multivariate pattern. Correlations with an absolute value below 0.5 were set to 0 in order to filter out unimportant variables.

All 9 variables with simulated treatment effects were significantly correlated with the first multivariate axis. Two additional variables without simulated

treatment effects (lesion volume at day 14 and T2 lesion at day 14) were also significantly correlated with the first multivariate axis.

https://doi.org/10.1371/journal.pone.0230798.g007
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Altogether, post-hoc analysis following linear mixed effects models captured most but not all

individual differences between the control and treatment groups. In contrast, the multivariate

pattern analysis using PLS-DA marked all variables with simulated treatment effects as impor-

tant for group separation in reduced multivariate space.

Discussion

Using Monte Carlo simulations, we evaluated the performance of a number of univariate and

multivariate techniques in an effort to identify the most optimal strategy for detecting treat-

ment effects in preclinical neurotrauma studies.

Importantly, type I error rate was not drastically inflated beyond the 5% nominal rate for all

hypothesis testing methods under the simulation scenarios we investigated, even when

assumptions of normality and homogeneity of variance were violated. Nevertheless, we only

simulated a maximal variance inequality ratio of 1:5 between control and treatment group.

Moreover, sample size was always equal. Extreme heterogeneity is more problematic in case of

unequal group sizes especially when the smallest group exhibits the largest variance [38]. In

such cases, a variance-stabilizing transformation such as log-transformation of the response

variables is advisable. Alternatively, in the univariate case, a non-parametric technique might

be used (e.g. Friedman or Kruskal-Wallis test). In case that MANOVA is performed, a more

robust statistic might be chosen. Our results suggest that Pillai’s trace would be the most

appropriate under these conditions.

In terms of power, taking the repeated measures nature of the data into account proved to

be the optimal strategy as linear mixed effects models outperformed the other methods when

variance between groups was equal or when variance heterogeneity was moderate. Linear

Table 1. Post-hoc analysis following linear mixed effects models for variables with repeated measures.

Variable Control vs. dose 1 Control vs. dose 2 Control vs. dose 3

20 point neuroscore day 1 0.51 0.0001 0.0027

20 point neuroscore day 7 0.293 0.095 0.074

20 point neuroscore day 14 0.688 0.593 0.354

Limb placing score day 1 1.000 0.483 0.047

Limb placing score day 7 0.298 0.033 0.047

Limb placing score day 14 0.297 0.483 0.383

Lesion volume day 1 <0.0001 <0.0001 <0.0001

Lesion volume day 7 0.119 0.117 0.131

Lesion volume day 14 0.778 0.332 0.487

Edema volume day 1 0.0002 <0.0001 <0.0001

Edema volume day 7 0.266 0.494 0.824

Edema volume day 14 0.129 0.122 0.087

T2 lesion day 1 0.309 0.338 0.453

T2 lesion day 7 0.826 0.627 0.827

T2 lesion day 14 0.203 0.001 0.05

T2 lesion contralateral cortex day 1 0.004 0.0005 <0.0001

T2 lesion contralateral cortex day 7 0.230 0.286 0.316

T2 lesion contralateral cortex day 14 0.828 0.201 0.529

We performed linear mixed effects analysis for each endpoint with repeated measures followed by post-hoc pairwise comparisons between the control and each

treatment group for each time point separately. Variables with simulated treatment effects are highlighted with a bold font. The p-values from the post-hoc comparisons

are reported in the table. P-values less than 0.05 are highlighted with a bold font.

https://doi.org/10.1371/journal.pone.0230798.t001
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mixed effects are a flexible class of statistical methods which allow building models of increas-

ing complexity with different combinations of random intercepts and slopes. In practice, how-

ever, it might be challenging to assess the significance of fixed effects in the model based on F-

tests as the degrees of freedom might not be correctly estimated. In our current study, we used

the Kenward-Roger approximation for determining the degrees of freedom [39]. Alternatively,

likelihood ratio tests might be used in order to test if including the factor of interest signifi-

cantly improves the model fit compared to a model without the specific factor. Importantly,

this requires refitting the linear mixed effects model using maximum likelihood to estimate

parameters as usually these models are calculated using restricted maximum likelihood.

When the assumptions of normality and homogeneity of variance were violated, univariate

Welch’s ANOVA tests outperformed the remaining methods especially with small effect sizes.

Furthermore, the rate of rejecting H0 was equivalent to that of standard ANOVA when data

were sampled from a multivariate normal distribution with equal variance between groups.

These results suggest that Welch’s ANOVA might be more appropriate for statistical testing of

treatment effects than the much more popular standard ANOVA F-test. Additionally, univari-

ate methods offer the advantage of directly investigating differences on endpoints of interest

whereas multivariate tests are applied on a linear combination of the original variables. Never-

theless, ignoring the correlation structure of the response variables may result in misleading

conclusions. Correlated variables reflect overlapping variance and therefore univariate tests

provide little information about the unique contribution of each dependent variable [30].

The issue of correlated outcome measures is addressed by employing multivariate methods.

When differences are evaluated between groups which are known a priori, MANOVA is the

technique of choice. In our study, MANOVA offered a marginally higher power than univari-

ate ANOVAs when the assumption of variance homogeneity was met. However, a practical

issue of this method is that standard software reports four different statistics which do not

always provide compatible results. Under all simulation conditions we investigated, Roy’s larg-

est root was associated with an unacceptably high type I error rate. This would make interpre-

tation of results with real high-dimensional data sets with few measurements per variable very

ambiguous. However, Wilks’ lambda, Lawley-Hotelling trace and Pillai’s trace were robust to

false positives. In agreement with previous reports, Pillai’s criterion was the most conservative,

which would make it more appropriate when assumptions of MANOVA are violated [40, 41].

Nevertheless, we opted to use Wilks’ lambda for subsequent comparisons between different

techniques because it offered similar robustness but slightly increased power. Another trade-

off of MANOVA and multivariate techniques in general is the complexity of interpretation. If

the omnibus test is significant, a researcher will often want to more precisely identify the vari-

ables which are responsible for group separation. Ideally, follow-up tests should retain the mul-

tivariate nature of the analysis. Such strategies include descriptive discriminant analysis [30,

42] or Roy-Bargmann stepdown analysis [30, 43].

A crucial factor we did not consider in our study is missing data which cannot be handled

by multivariate statistical methods. If the degree of missingness is within a reasonable range

(e.g. not more than 10%) and the assumption of missing at random is satisfied, then a multiple

imputation technique might be employed to estimate the missing data from the existing mea-

surements. Otherwise, a more flexible data analysis method must be employed such as for

instance linear mixed effects models, which are able to handle missing data.

Since MANOVA only very marginally outperformed univariate ANOVAs and failed to pro-

vide an increase of power compared to linear mixed effects models, we believe that this does

not offset the increased complexity and inability to handle missing data. Therefore, our results

would suggest that MANOVA tests are not a practical option for formal hypothesis testing in

preclinical studies with small sample sizes.
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It is important to note that different methods achieved acceptable levels of power of around

80% only when we simulated large treatment effects with 20 measurements per group or mod-

erate effects with at least 40 replicates per group. This finding highlights a serious issue not

only in neurotrauma models but in preclinical research altogether, namely that typical sample

sizes in animal studies do not ensure adequate power unless the effect size is large. Accord-

ingly, some authors argue that animal studies should more closely adhere to the standards for

study conduct and reporting applicable to controlled clinical trials [1, 44]. In a randomized

clinical study, sample size is calculated a priori based on a specific effect size, assumptions

about the variance in the response variable, and the desired level of power. In theory, the

ARRIVE guidelines which were developed in order to improve the quality of study conduct

and reporting of animal trials [45] as well as animal welfare authorities [46] require formal jus-

tification for sample size selection. Group size should be appropriate to detect a certain effect

with adequate power while simultaneously ensuring that no more animals than necessary are

used [46]. In practice, power calculations for preclinical trials are challenging for a number of

reasons. For instance, information about the variance in the response variable might not be

available a priori, however this issue might be tackled by performing a small scale pilot study.

Another problem may be that the estimated effect is small while the variance in the selected

endpoint is high, which results in such large group sizes that might not be acceptable for ani-

mal welfare regulators. One possible way to address this problem is to identify methods which

are associated with higher power in small samples or try to reduce the variability in the

response variables by possibly including other covariates in the analysis [47]. A recent develop-

ment in the effort to increase power of animal studies includes performing systematic reviews

and meta-analysis of existing studies [48]. This approach is well established in clinical research

and it allows scientists to appraise estimated effect sizes more systematically and put them in

the context of existing reports. The majority of preclinical meta-analyses which have been per-

formed in the field of neurotrauma so far are related to experimental stroke (e.g. [49–54]).

However pre-clinical meta-analyses on e.g. spinal cord injury [55, 56] and subarachnoid hem-

orrhage [57] have also been published.

However, since a meta-analysis is not always practicable, especially when a novel study is

conducted, we investigated if ordination techniques might be useful to detect treatment effect

patterns with small sample sizes. Multivariate techniques classically rely on data sets consisting

of more observations than variables, which is not always the case in animal studies especially

in the omics era. Therefore, we first evaluated if LDA, PCA, PLS-DA, or RDA falsely report

non-existing patterns in simulated data sets without treatment effects. With 5 measurements

per group and 18 variables, LDA was associated with a false positive rate of 38.7% while PCA,

PLS-DA, and RDA did not capture false patterns in the data. The extreme over-fitting we

observed for LDA is due to multicollinearity in the data set (see S1 Appendix of Table 2 for the

correlation matrix used for simulating multivariate data sets) combined with a small sample

size [58]. While this is not necessarily a novel finding, our simulation results highlight the dan-

gers of carelessly applying a dimensionality reducing technique to multivariate data sets with

more variables than measurements, which often leads to false inferences. In contrast, PCA is

capable of overcoming the “large p, small n” problem by reducing the large number of vari-

ables to a few uncorrelated components. The method only imposes the constraint that the first

component captures the direction of greatest variance in the data hyper-ellipsoid [32] and

does not perform regression or classification of data. Therefore multicollinearity poses no

issue. However, group assignment is ignored and so differences between groups do not neces-

sarily become apparent in reduced space. RDA is the supervised version of PCA and it imposes

the constrain that the dependent variables in reduced space are linear combinations of the

grouping variable. Surprisingly, RDA demonstrated only a slightly increased sensitivity to
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detect true treatment effect patterns in our simulations compared to PCA. Conversely,

PLS-DA clearly outperformed both PCA and RDA. Although PLS-DA uses the quantitative

variables to predict group membership similarly to classical LDA, classification is performed

after dimensionality reduction [59]. PLS-DA thereby overcomes the problem of multicolli-

nearity and simultaneously tries to maximize group differences, which was the most effective

strategy in our simulations. Nevertheless, differences between methods only became apparent

when we simulated huge treatment effects (Cohen’s d equal to 2.0). However, in our practical

example of combining ordination techniques with statistical testing methods to investigate

treatment effects, PLS-DA managed to identify all variables with simulated treatment effects as

important for the observed multivariate pattern. Follow-up statistical tests did not capture all

differences successfully. PLS-DA might therefore be a useful strategy to preselect important

endpoints for targeted statistical testing with the goal of reducing the overall number of tests.

Conclusion

Assessing therapeutic success in preclinical neurotrauma studies remains challenging when

small samples are combined with small effect sizes. Our simulation study demonstrated that

linear mixed effects models offer a slightly increased power in case of equal variance whereas

Welch’s ANOVA should be used when homogeneity of variance is not present. Additionally,

PLS-DA offers a higher sensitivity to detect treatment effect patterns than PCA and RDA,

whereas classical LDA leads to overfitting and false inferences in multivariate data sets with

few measurements per group. Although we based our simulation on a real neurotrauma pre-

clinical study, our findings might be more generally applicable to multivariate data sets with a

similar correlation structure as we applied standardized measures of effect sizes which are not

restricted to a specific endpoint or type of study.

Ultimately, translational success of animal trials in neurotrauma would greatly benefit from

appropriate sample size calculation prior to conduct of the study. When this is not feasible, it

is advantageous to re-evaluate estimates of treatment effect with combined evidence from

existing studies (if available) by performing systematic reviews and meta-analyses.

Supporting information

S1 Appendix. The file contains the mean and variance vector of the simulated control

group and the correlation matrix used to sample data from multivariate distributions

under different simulation scenarios. Figs 1–4 show comparisons of type I error rate and

empirical power of the four different multivariate statistics used to evaluate the significance of

MANOVA tests.

(PDF)

S2 Appendix. Comparison of ordination techniques to detect treatment effect patterns

when no treatment effects were simulated. The file contains the results from 1000 simulated

data sets without treatment effects, 5 measurements per group with data obtained from a mul-

tivariate normal distribution with equal variance in all groups. LDA, PCA, RDA, or PLS-DA

were considered to falsely capture a non-existing treatment effect pattern if the 95% confidence

ellipse around the control group did not overlap with the confidence ellipses of treatment

groups (dose1 to dose3).

(PDF)

S3 Appendix. Comparison of ordination techniques to detect treatment effect patterns

with huge simulated treatment effects (Cohen’s d equal to 2.0). The file contains results

from 1000 simulated data sets with 5 measurements per group and data obtained from a
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multivariate normal distribution with equal variance in all groups. PCA, RDA, or PLS-DA

were considered to correctly capture a treatment effect pattern if the 95% confidence ellipse

around the control group did not overlap with the confidence ellipses of the treatment groups

(dose 1 to dose3).

(PDF)
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