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Peptides comprise a versatile class of biomolecules that present a unique chemical space
with diverse physicochemical and structural properties. Some classes of peptides are able
to naturally cross the biological membranes, such as cell membrane and blood-brain
barrier (BBB). Cell-penetrating peptides (CPPs) and blood-brain barrier-penetrating
peptides (B3PPs) have been explored by the biotechnological and pharmaceutical
industries to develop new therapeutic molecules and carrier systems. The
computational prediction of peptides’ penetration into biological membranes has been
emerged as an interesting strategy due to their high throughput and low-cost screening of
large chemical libraries. Structure- and sequence-based information of peptides, as well
as atomistic biophysical models, have been explored in computer-assisted discovery
strategies to classify and identify new structures with pharmacokinetic properties related
to the translocation through biomembranes. Computational strategies to predict the
permeability into biomembranes include cheminformatic filters, molecular dynamics
simulations, artificial intelligence algorithms, and statistical models, and the choice of
the most adequate method depends on the purposes of the computational investigation.
Here, we exhibit and discuss some principles and applications of these computational
methods widely used to predict the permeability of peptides into biomembranes,
exhibiting some of their pharmaceutical and biotechnological applications.

Keywords: pharmacokinetics, machine learning, cell membrane, peptides, blood-brain barrier, structure activity,
cell-penetrating peptides, drug system carriers
GETTING ACROSS THE BIOLOGICAL BARRIERS:
AN OVERVIEW ON THE SCIENTIFIC SIGNIFICANCE
AND CURRENT KNOWLEDGE

Penetration into biological membranes is a desired characteristic for bioactive molecules to reach
their target site related to the molecular mode of action (Doak et al., 2014; Daina and Zoete, 2016).
Molecules that naturally cross these biomembranes have been investigated aiming at different
biotechnological and pharmaceutical applications (Rossi Sebastiano et al., 2018; Derakhshankhah
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and Jafari, 2018). The selective control performed by these
biomembranes has protected the living organisms against
undesired and harmful effects of exogenous molecules and the
invasion of pathogens. However, these membranes have been the
main challenge to developing new potent therapeutic
compounds, and several strategies have been developed to
overcome this obstacle (Bennion et al., 2017; Roy Chowdhury
et al., 2018; Ahlawat et al., 2020). Two biomembranes have been
the focus of the pharmaceutical and biotechnological industries:
cell membrane and the blood-brain barrier (BBB) (Yang and
Hinner, 2015; Oller-Salvia et al., 2016; Zhou et al., 2021).

The cell membrane (also known as cytoplasmic membrane)
separates the cell from the exterior environment (Yang and
Hinner, 2015). This biomembrane consists of a phospholipid
bilayer that contains cholesterol between phospholipids that
maintain their fluidity (Szlasa et al., 2020). Lipids of the cell
membranes are highly diverse, and their structures vary in the
extent of saturation of the fatty acyl chains. Three major classes
of lipids can be distinguished in the cell membrane: sterols,
phosphoglycerides, and sphingolipids (Harayama and Riezman,
2018) (Figure 1). Furthermore, the lipid compositions of the
inner and outer monolayers are different, due to the different
functions performed by the two faces (Guschina and Harwood,
2008; Harayama and Riezman, 2018). The cell membrane
controls the passage of organic molecules and ions inside the
cell, maintaining its homeostasis (Derakhshankhah and Jafari,
2018). The cell membrane contains several transmembrane,
peripheral, and lipid-anchored proteins that perform a wide
variety of molecular functions, including ion transportation,
cell adhesion, cell signaling, and catalysis (Yang and
Hinner, 2015).

The BBB is a selective biomembrane that acts as a physical
and chemical barrier of molecules of the central nervous system
(CNS), controlling the homeostasis of the brain (Oller-Salvia
et al., 2016). The BBB is mainly composed of endothelial cells
present on the brain capillary walls that form tight junctions
among adjacent cells. Other cell types present in the BBB include
astrocytes and pericytes (Figure 2) (Daneman and Prat, 2015;
Zaragozá, 2020). The BBB restricts the passage of pathogens and
toxins while allowing the diffusion of some solutes present in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
blood to the cerebrospinal fluid (Daneman and Prat, 2015;
Zaragozá, 2020).

The development of molecules with high permeability into
the biomembranes is one of the biggest obstacles faced by drug-
oriented therapy strategies (Whitty et al., 2016; Sugita et al.,
2021). Some bioactive molecules show high molecular weight
and a strong hydrophilic nature which impair their entrance into
their biological compartments of molecular action (Alex
et al., 2011).

The determination of the physicochemical and structural
parameters that govern the permeability of compounds into
biomembranes remains an open research field of investigation
and several studies have pointed out molecular properties that
are relevant to predicting the permeability of these compounds
(Daina and Zoete, 2016; Matsson et al., 2016; Matsson and
Kihlberg, 2017; Rossi Sebastiano et al., 2018). Furthermore,
some experimental methods have been applied to classify and
predict the permeability of compounds, as well as to validate the
predictive efficiency of the in silico models (Roy et al., 2019a;
Sugita et al., 2021; Wadhwa et al., 2021; Radan et al., 2022).

In the present review, we discuss the main chemical
parameters and experimental measurements involved in the
determination of the permeability of molecules into the
biomembranes and we correlate them with the main
computational tools and approaches applied to investigate the
peptides’ uptake. Additionally, we exhibit some biotechnological
and pharmaceutical applications of biomembrane-penetrating
peptides. Finally, we discuss some of the current limitations and
perspectives of the development of these in silico approaches.

Bioavailability of Compounds and Cell
Membrane Permeability
The bioavailability of some compounds is intimately related to
the efficiency of their penetration in biological membranes and
their intrinsic solubility (Yang and Hinner, 2015). With regards
to the oral bioavailability, for example, it has been mainly
described as a function of the gastrointestinal absorption that
occurs predominantly in the intestinal lumen (Bergström et al.,
2016; Alqahtani et al., 2021). The microvilli of the cells present in
the intestinal lumen are specialized membranes that show a high
GRAPHICAL ABSTRACT | Overview of the computational techniques applied to predict the permeability of peptides into biomembranes.
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surface area that permits to the cells, a high absorption rate of
nutrients and exogenous molecules, thus conferring the main
absorption route of the gastrointestinal tract (Alqahtani et al.,
2021). Based on this main mechanism of absorption,
the gastrointestinal penetration of compounds has been
computationally investigated through the analyses of the
intrinsic compound solubility, the solubility in the aqueous
phase, and cell membrane permeability (Bergström et al., 2016;
Daina and Zoete, 2016). The intrinsic solubility of compounds is
usually investigated by analysing the lipophilicity, aromaticity,
and molecular flexibility (Delaney, 2004; Ottaviani et al., 2010;
Ali et al., 2012).

Chemical Properties Related to Cell
Membrane Permeability
Physicochemical and structural properties related to
permeability into cell membranes were initially determined by
studies that investigated the bioavailability and solubility of
compounds (Lovering et al., 2009; Lovering, 2013; Daina et al.,
2014; Doak et al., 2014; Daina and Zoete, 2016; Matsson et al.,
2016; Rossi Sebastiano et al., 2018). These molecular properties
include the topological polar surface area (tPSA), partition
coefficients between the lipid and aqueous phases calculated
through logP and logD (pH 7.4), number of rotatable bonds
(NRB), fraction of sp3-hybridized carbon atoms (Fsp3),
molecular weight (MW), hydrogen bond acceptor (HBA),
hydrogen bond donor (HBD), and number of aromatic rings
(NAR) (Veber et al., 2002; Lovering et al., 2009; Lovering, 2013;
Doak et al., 2014; Daina and Zoete, 2016; Matsson et al., 2016; de
Oliveira et al., 2021).
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Experimental findings have demonstrated that uptake into
cell membrane is highly correlated with the partition coefficients
between water and organic solvents (Arnott and Planey, 2012;
Andrić and Héberger, 2015; Naylor et al., 2018). The
lipophilicity, logP, and logD (pH 7.4) are the most widely
applied parameters to investigate the intrinsic solubility of
molecules that directly imply, as a result, their cell permeability
(Doak et al., 2014; de Oliveira et al., 2021).

Studies have demonstrated that the tPSA is correlated with
the hydrogen bond pattern of the molecule in the aqueous phase.
High values of tPSA are related to the complexation with the
water molecules and with an increased molecular volume, which
impairs the membrane permeability (Bergström et al., 2016). The
penetration of compounds across cell membranes is typically
limited when tPSA exceeds 140 Å2. However, values higher than
this limit are usually acceptable for macrocyclic peptides (tPSA =
220 Å2) and peptides with chameleonic properties (tPSA = 280
Å2) (Matsson and Kihlberg, 2017; Rossi Sebastiano et al., 2018).
Chameleonic properties refer to the ability of some peptides to
change their conformation to expose polar groups in an aqueous
phase, hiding them when translocating through the cell
membranes (See Figure 3) (Whitty et al., 2016).

Molecular parameters related to the flexibility and complexity
of compounds, such as NRB, Fsp3, and MW have been indicated
to influence the translocation of molecules in the mobile aqueous
phase due to the reduced entropic environment (Veber et al.,
2002; Lovering et al., 2009; Lovering, 2013). The NRB evaluate
the flexibility of molecules. High flexible structures can form
intrachain hydrogen bond interactions, thus adaptively reducing
their polarity surface and improving their permeability into the
FIGURE 1 | Schematic representation of cell membrane showing its main chemical lipidic and protein components.
March 2022 | Volume 12 | Article 838259
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cell membrane (Kuhn et al., 2010). The Fsp3 is related to the
solubility of molecules in the aqueous phase and melting point
(Lovering et al., 2009). The NAR has been also pointed to as
relevant structural parameter related to the compound
lipophilicity and flexibility. Increases in its value usually result
in a significant increase in the logP in the molecule structure
(Ritchie and Macdonald, 2009).

Chemical Properties Related to BBB
Permeability
With regards to the chemical parameters that govern the
permeability of molecules into BBB, different evidences have
pointed out an interesting correlation between electrostatic
interactions and polar surface area with the experimental
values applied to the determination of BBB permeability
(Shityakov et al., 2013; Thai et al., 2020). The lipophilicity has
also a positive correlation with the BBB permeability (Hosoya
et al., 2010; Carpenter et al., 2014). In contrast, the presence of
a large number of hydrogen bonds is associated with
experimentally low permeability of the BBB (Thai et al., 2020).

Dipole potential is another crucial factor involved with the
passive penetration mechanism of the lipid bilayer. Some charged
molecules are able to modify the membrane dipole potential by
forming electrostatic interactions with the phosphatidylcholine
heads of the lipidic bilayer, leading to attractions or repulsions
(Cattelotte et al., 2009; Wang et al., 2019).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Recently, a study performed a statistical-based analysis of the
structural and physicochemical properties shared by molecules
that exhibit BBB penetration and indicated that nine molecular
descriptors showed highly significant c2 distribution: logD, logP,
nitrogen and oxygen count, nitrogen count, oxygen count,
ionization state, hydrogen bond acceptors, hydrogen bond
donors, and polar surface area (Dichiara et al., 2020).
Interestingly, another study demonstrated that in silico models
applied in the prediction of BBB penetration that considered
tPSA, HBD, and HBA values have shown superior performance
to predict this class of peptides when compared with other
classes of structural descriptors. These results demonstrate an
essential role of polar interactions in the BBB penetration (Zhao
et al., 2007). Studies have also demonstrated that molecular
descriptors based on the solvation free energy calculated
through 3D-RISM-KH theory, such as highest occupied
molecular orbital (HOMO), dipole moment, HBA, and HBD
play an important role in the BBB partitioning and could
satisfactorily model the permeability of molecules into BBB
(Lombardo et al., 1996; Roy et al., 2019a; Roy et al., 2019b).

Experimental Parameters Related to the
Permeability Into Biomembranes
The permeability into the biomembranes has been determined
by different experimental methods that include artificial
membrane-based assays, such as parallel artificial membrane
FIGURE 2 | Schematic representation of the blood-brain barrier, showing its main cell components (pericytes, astrocytes, and endothelial cells) and localization in
the brain capillary wall.
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permeability assay (PAMPA) - applied for cell membranes – and
blood-brain barrier specific PAMPA (BBB-PAMPA), which
contains adjusting in the lipid composition of the original
artificial membrane – applied for the BBB; as well as cell-based
assays, such as Caco-2 assay – applied for cell membranes, and
bovine brain microvessel endothelial cells (BBMEC) assay –
applied for BBB (He et al., 2020; Radan et al., 2022).

Currently, there are two main experimental parameters used
to evaluate BBB permeability: logBB, and logPS. The logBB is the
blood-brain partitioning data and it represents the concentration
of the molecule in the brain divided by the concentration in the
blood (Geldenhuys et al., 2015), according to Equation 1:

logBB  =  log
molecule½ �brain
molecule½ �blood  

(1)

The logPS represents the permeability surface-area product and
this parameter is usually measured using the perfusion method.
The logPS can be calculated using the Renkin-Crone equation
(Eq 2):

logPS = log − F   ln 1 −
Kin

F

� �
(2)

Where F is the perfusion flow rate, and Kin is the unidirectional
transfer constant. The Kin is equal to (Qbr/Cpf)/T, where Qbr is
the concentration of the molecule in the brain, Cpf is the
concentration of the molecule in the perfusion fluid, and T
represents the perfusion time.

Other experimental parameters, such as effective permeability
coefficient (Peff), efflux ratio, membrane retention, and logP are
determined to evaluate both cell membrane and BBB
permeability, and in general, apply cutoff values that indicate
the efficiency of membrane permeation (He et al., 2020; Wadhwa
et al., 2021).

Some computational models are based on these in vivo and in
vitro experimental data or use them as comparative parameters
to evaluate the prediction efficiency of the permeability into the
biomembranes (Carpenter et al., 2014; Thai et al., 2020; Wadhwa
et al., 2021). However, the methods applied to obtain these
molecular properties are time-consuming and technically
challenging; and may also display a slightly different trend
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
when compared to each other, depending on the compared
experimental procedure or protocol (Martin, 2004; Vastag and
Keseru, 2009; Bagchi et al., 2019).

It is important to note that some in silico predictive models,
such as cheminformatic filters and molecular dynamics (MD)
simulations, usually assume passive diffusion as the main
transport route of molecules through biomembranes. Thus, the
active transport pathways, such as active influx transport,
receptor-mediated transcytosis, and carrier-mediated
transcytosis are usually not considered in the development of
some models, due to the complex membrane protein binding
processes which involve stereoselectivity (Bagchi et al., 2019).
PEPTIDES WITH PENETRATION INTO
BIOMEMBRANES: CELL-PENETRATING
PEPTIDES AND BLOOD-BRAIN BARRIER-
PENETRATING PEPTIDES

Peptides comprise a versatile class of biomolecules with high
biocompatibility that present unique pharmacokinetic and
pharmacodynamic properties (Kumar et al., 2018a; Capecchi
and Reymond, 2021). Some classes of peptides, such as cell-
penetrating peptides (CPPs) and blood-brain barrier-penetrating
peptides (B3PPs) have been explored as carrier systems of
bioactive molecules, such as gene constructs (Davoodi et al.,
2019), small interfering RNAs (siRNAs) (Pärnaste et al., 2017;
Tai and Gao, 2017; Tuttolomondo et al., 2017), and drugs
(Ramsey and Flynn, 2015; Park et al., 2019).

CPPs can naturally cross cell membranes without the
intermediation of molecular receptors (Koren and Torchilin,
2012). CPPs possess a wide range of biological activities (Farkhani
et al., 2014), such as antifungal (Budagavi et al., 2018), antibacterial
(John et al., 2019; Lee et al., 2019), neuroprotective (Baig et al.,
2018a; Jiang et al., 2021), and antiviral (Keogan et al., 2012; Zhang
et al., 2020) activities. In addition, this class of peptides has been also
explored as delivery systems of drugs, small interfering RNA
(siRNA), and gene constructs (Patel et al., 2019; Silva et al., 2019;
Klabenkova et al., 2021). CPPs have been described sharing different
structural and physicochemical properties: they are often
FIGURE 3 | Acceptable tPSA values for the cell membrane permeability. Chameleonic molecules are able to change their conformation to expose polar groups in an
aqueous phase, however hide them when translocating through the cell membranes.
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amphipathic or cationic (positive charge at physiological pH), show
sequence length between 5 and 40 amino acids, their structures are
soluble in water and partially hydrophobic, and their amino acid
sequence are rich in lysine and arginine residues (Milletti, 2012).

Several penetration mechanisms through cell membranes
have also been described for CPP structures, such as
translocation by passive diffusion, pore formation,
translocation across endosomal membrane, and endocytosis
(Gestin et al., 2017). Based on the physicochemical properties,
the CPPs are classified into three categories: (1) amphipathic
(e.g.: MAP and Pep1), (2) cationic (e.g.: Tat and Arg9), and (3)
hydrophobic (e.g.: TP2) (Milletti, 2012). Amphipathic CPPs
can also be divided into four subcategories based on their
hydrophilic and hydrophobic domains, as well as their
topology: (1.1) primary amphipathic that include peptides
defined by their hydrophobic domains, (1.2) secondary
amphipathic (or amphipathic a-helical) that forms a-helices
with one hydrophilic face and one hydrophobic face, (1.3)
amphipathic b-sheet that have a hydrophilic stretch and a
hydrophobic stretch, and (1.4) proline-rich amphipathic
peptides, that form polyproline II (PPII) structures (Milletti,
2012; Reid et al., 2019).

B3PPs, also known as brain-penetrating peptides or BBB shuttle
peptides, represent oligopeptide chains with permeability into the
BBB that represent interesting biotechnological applications due to
their favoring the increase in the brain uptake of large molecular
cargoes in a non-selective way (Geldenhuys et al., 2015;Oller-Salvia
et al., 2016; Dıáz-Perlas et al., 2018). These peptides have been
extensively investigated aiming the development of new
chemotherapeutic compounds due to their antiviral (Jackman
et al., 2018), anticancer (Chen et al., 2019), and neuroprotective
activities (Meloni et al., 2014).

Some B3PPs belong to the CPP family, such as SynB3, Tat 47–
57, and pVEC. However, cell-penetrating properties of peptides do
not necessarily imply the ability to penetrate the BBB (Stalmans
et al., 2015). Studies have demonstrated that both classes of
peptides comprise different structural and physicochemical
properties (de Oliveira et al., 2021; Zou, 2021). The diffusing of
peptides across the BBB have been better correlated with hydrogen
bonding and water desolvation than logP (Chikhale et al., 1994). It
has also been demonstrated that B3PPs contain a differential
content of lysine, tyrosine, glycine, and arginine residues in their
sequences when compared with other classes of peptides (Kumar
et al., 2021b). Based on the physicochemical criterion, three families
of BBB-penetrating peptides were defined: diketopiperazines
(Teixidó et al., 2007), N-methylphenylalanines (Malakoutikhah
et al., 2010), and phenylprolines (Arranz-Gibert et al., 2015).
Some BBB-penetrating peptides have also been described with
different crossing mechanisms of the membrane, such as receptor-
independent (e.g.: adsorptive-mediated transcytosis), and receptor-
dependent mechanisms (e.g.: receptor-mediated transcytosis) (Lu,
2012). These peptides have been applied as a strategy to cross BBB
by endogenous transcytosis mechanism and invade brain
parenchyma allowing bioactive molecules to reach the CNS (Lee
and Jayant, 2019; Zhou et al., 2021).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
COMPUTATIONAL APPROACHES APPLIED
IN THE PREDICTION OF BIOMEMBRANE-
PENETRATING PEPTIDES

Structure- and sequence-based information of peptides, as well as
atomistic biophysical models, have been used in computer-assisted
discovery strategies to identify new structures with penetration in
biological membranes (Carpenter et al., 2014; Santana et al., 2021),
as well as in order to explore their molecular mechanism of
penetration (Thai et al., 2020). Computational strategies applied
to predict the permeability of peptides and other small molecules
into biomembranes include cheminformatic filters (Jeffrey and
Summerfield, 2010; Wager et al., 2010), molecular dynamics
simulations (Carpenter et al., 2014; Wang et al., 2019), artificial
intelligence algorithms (Schaduangrat et al., 2019; Alsenan et al.,
2020; Dai et al., 2021; de Oliveira et al., 2021), and statistical models
(Daina and Zoete, 2016; Daina et al., 2017). The computational
prediction of biomembrane-penetrating peptides has gained
continually attention of research groups due to the low-cost
approaches when compared to experimental methods that use
solely experimental assays (Derakhshankhah and Jafari, 2018;
Qiang et al., 2018; Kumar et al., 2021a; de Oliveira et al., 2021).

These computational methods usually apply molecular data
calculated computationally to predict the passive permeability of
peptides into biomembranes, and validate their results using
experimental data (Rezai et al., 2006; Dai et al., 2021; de Oliveira
et al., 2021;Kumar et al., 2021a; Shaker et al., 2021; Sugita et al., 2021).

Cheminformatic Filters
Cheminformatic filters were one of the first in silico models to
predict the permeability of molecules into the biomembranes
(Lipinski et al., 1997; Doak et al., 2014). These computational
models assume that the passive penetration of molecules into
these membranes is influenced predominantly by a set of
physicochemical and structural properties of compounds that
regulate their structural flexibility, solubility, and biophysical
interactions with the biomembranes (Wang et al., 2007; Doak
et al., 2014; Yang and Hinner, 2015). These filters are based on
numerical intervals of a set of molecular properties that can be
obtained using in silico calculations. These properties represent a
variation of the first reported ‘Lipinski’ rule of five (RO5) and
Veber rules (Wager et al., 2010) that analyze the following
molecular descriptors: logP, RTB, tPSA, HBA, HBD, and MW
(Doak et al., 2014; Matsson et al., 2016; de Oliveira et al., 2021;
Digiesi et al., 2021).

Cheminformatic filters applied in CPPs prediction: The
CPPs has been described, at least in part, using the conventional
filters applied to test the bioavailability and drug-likeness of
molecules, such as Lipinski and Veber (Lipinski et al., 1997;
Veber et al., 2002; Muegge and Mukherjee, 2016). However, it is
well known that several CPP structures cannot be adequately
predicted using these filters due to their unique chemical space,
the existence of chameleonic properties, as well as the presence of
diverse molecular mechanisms of cell membrane penetration
March 2022 | Volume 12 | Article 838259
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that include phagocytosis and pore formation (Dıáz-Eufracio
et al., 2018; de Oliveira et al., 2021). The beyond the rule of five
(bRO5) filter is most suitable to analyze some classes of
compounds, such as cyclic peptides that are located beyond the
chemical limits determined by conventional filters (Matsson
et al., 2016; Rossi Sebastiano et al., 2018). Table 1 describes
some cheminformatic filters applied in predicting of
bioavailability of drugs and peptides (Lipinski et al., 1997;
Veber et al., 2002; Doak et al., 2014; Dıáz-Eufracio et al., 2018)
and compares them with the previously reported chemical space
of CPPs (de Oliveira et al., 2021).

Cheminformatic filters applied in B3PPs prediction: The
central nervous system multiparameter optimization (CNS
MPO) filter is the most used cheminformatic model to
evaluate the permeability of compounds through the BBB and
it was built using a set of commercially available CNS drugs (119
compounds) and CNS candidates (108 compounds) and tested
using a large set of proprietary compounds (11,303 compounds)
(Wager et al., 2010). The CNS MPO uses six molecular
parameters: HBD, logP, pKa, logD (pH = 7.4), MW, and tPSA
that result in a 6-point scale. The CNS MPO has been widely
implemented to evaluate the permeability of compounds into the
BBB (Rankovic, 2017; Urbina et al., 2021). Similarly, Lagorce
et al. (2015) developed a molecular filter that bases its screening
on the statistical analysis of molecular properties obtained from
small molecules, using the following cutoff values: MW (135 -
582), logP (-0.2 to 6.1), HBA (≤ 5), HBD (≤ 3), and tPSA (3 –
118) (Lagorce et al., 2015).

Artificial Intelligence Algorithms
Artificial intelligence (AI) is a field of study that develops
algorithms for machines to learn patterns from a set of data to
find solutions for real-world problems based on a cognitive
behavior associated with the human brain (Hessler and
Baringhaus, 2018). Currently, several AI models have been
developed to solve different types of biological and chemical
problems (Sato et al., 2010; Dimitri and Lió, 2017; Yang et al.,
2018; Nocedo-Mena et al., 2019; Shoombuatong et al., 2019;
Zoffmann et al., 2019; Kong et al., 2020; Miao et al., 2021; Orsǒlić
et al., 2021). Machine learning (ML) is one field of artificial
intelligence that has considerably increased in the last decades
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
(Garg and Mago, 2021). It represents the science that develops
and studies algorithms able to learn patterns from data (training)
and return information from new ones (testing) (James et al.,
2013; Saldıv́ar-González et al., 2022).

Several ML techniques have been proposed to solve different
computational problems, including classification, time series
regression, natural language processing, optimization, and
dimensionality reduction. For example, classification and
regression problems can be solved with artificial neural
network (ANN), deep learning (DL), k-nearest neighbors (k-
NN), support vector machine (SVM), decision tree (DT), and
random forest (RF) (Balaji et al., 2021). Clustering problems can
be treated using k-means, hierarchical cluster analysis (HCA),
and DBSCAN. Visualization and dimensionality reduction
problems can be solved using principal component analysis
(PCA), locally-linear embedding (LLE), and t-distributed
stochastic neighbor embedding (t-SNE) (Yau et al., 2019;
Roohi et al., 2020). Figure 4 illustrates the main categories of
ML science divided into two categories: (1) supervised learning
that consists of algorithms that need labels or information about
the output of a time series to be trained; and (2) unsupervised
learning that corresponds to techniques that do not use any
previous information to be trained.

The prediction of biomembrane-penetrating peptides has
been an interest of the biotechnological and pharmaceutical
industries due to the development of new therapeutic
compounds and carrier systems. ML algorithms have been a
valuable tool to predict the pharmacokinetic properties of
peptides with reduced costs and time. Different studies have
been reported success in the prediction of biomembrane-
penetrating peptides (Pandey et al., 2018; Fu et al., 2020; de
Oliveira et al., 2021; Kumar et al., 2021a). ML algorithms also
have been widely applied in the virtual screening of large
compound libraries belonging to different chemical classes
(Bhadra et al., 2018; Galúcio et al., 2019; Shoombuatong et al.,
2019; Orsǒlić et al., 2021; Santana et al., 2021).

ML-based models applied for CPPs prediction: Regarding
the prediction of CPPs, Pandey et al. (2018) proposed an ML
framework named KELM-CPPpred that applies a kernelized
extreme learning machine (ELM) and uses as molecular
descriptor the amino acid composition of the peptides
TABLE 1 | Comparison between the chemical spaces and cheminformatic filters of peptides and commercial drugs with bioavailability.

Molecular
properties

Oral drugs Peptides

Lipinski et al.
(1997)

Veber et al.
(2002)

Doak et al.
(2014)

Santos et al.
(2016)*

Diaz-Eufracio et al.
(2018)**

de Oliveira et al.
(2021)***

MW ≤ 500 – ≤ 1,000 ≤ 700 27.03 ≤MW ≤5,036.65 331.48 ≤ MW≤ 3,750.51
logP ≤ 5 – -2 ≤ cLogP ≤ 10 ≤ 7.5 -17.87 ≤ cLogP ≤ 39.89 -42.12 ≤ cLogP ≤ 2.97
tPSA – ≤ 14 ≤ 250 ≤ 200 ≤ 2,064.83 101.29 ≤ tPSA ≤ 1,782.83
Fsp3

– – – ≤ 0.55 – 0.37 ≤ Fsp3 ≤ 0.84
NRB – ≤ 10 ≤ 20 ≤ 20 ≤ 209 9 ≤ NRB ≤ 137
HBD ≤ 5 - ≤ 6 ≤ 5 ≤ 76 4 ≤ HBD ≤ 69
HBA ≤10 - ≤ 15 ≤ 10 ≤ 71 5 ≤ HBA ≤ 55
NAR – – – – – ≤ 10
March 2022 |
*Investigated oral available peptides; **Investigated the linear and cyclic pentapeptides; ***Investigated CPP structures and described their chemical space.
Table edited from de Oliveira et al. (2021).
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sequences to differentiate CPP from non-CPP sequences.
Similarly, Qiang et al. (2018) developed a tool named CPPred-
FL that applies 45 trained RF models using 19 descriptors related
to amino acid composition, specific-position information, and
physicochemical properties to predict CPPs. Fu et al. (2019)
developed an ML algorithm using SVM with an RBF kernel to
predict CPPs using as feature composition the amino acid
composition of the sequences.

It has been demonstrated that ML algorithms that use an
optimized combination of sequence- and structure-based
descriptors have a superior accuracy when compared with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
those that use only sequence- or only structure-based
descriptors (Manavalan et al., 2018; de Oliveira et al., 2021).
Sequence-based descriptors of peptides are associated with
information calculated from the primary structure of the
peptide. Examples of these descriptors include the fraction of a
specific amino acid (f[AA]), amino acid composition (AAC),
pseudo-amino acid composition (PseAAC), dipeptide
composition (DPC), quasi-sequence order (QSO), and grouped
amino acid composition (GAAC) (Chen et al., 2016; Wei et al.,
2017; Pandey et al., 2018). In contrast, the structure-based
descriptors are associated with structural and physicochemical
FIGURE 4 | Representation of main categories on machine learning state-of-art, divided between supervised learning, such as classification and regression
problems; and unsupervised learning that includes clustering and dimensionality reduction problems.
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properties, such as NAR, NRB, Fsp3, logP, MW, tPSA, etc
(de Oliveira et al., 2021). Some hybrid descriptors, such as the
‘composition, transition, and distribution (CTD)’, include
attributes obtained directly from the polypeptide chain,
including the secondary structure, solvent accessibility,
normalized van der Waals volume, polarity, hydrophobicity,
polarizability, and charge (Govindan and Nair, 2011). Figure 5
shows an overview of the two classes of structure- and sequence-
based descriptors of peptides applied in the prediction models.

Recently, Manavalan et al. (2018) proposed a ML framework
based on the physicochemical properties and amino acid
sequence composition of peptides to predict CPPs and non-
CPPs using a combination of different ML algorithms that
include SVM, RF, ERT, and K-NN (Manavalan et al., 2018).
Molecular fingerprints associated with structure and sequence-
based have also been applied in some ML algorithms to predict
CPP structures. Based on these descriptors, Kumar et al.
proposed the CellPPD-Mod, a computational tool that uses RF
to differentiate CPPs from non-CPPs with lengths up to 25
residues using molecular fingerprints, amino acid composition
descriptors, and 48 two-dimensional (2D)/three-dimensional
(3D) molecular features (Kumar et al., 2018b). Similarly, de
Oliveira et al. (2021) proposed the BChemRF-CPPred, a ML
framework based on ANN, SVM, and Gaussian process classifier
(GPC) that uses as input data an optimized combination of
sequence-based and structure-based features of peptides (de
Oliveira et al., 2021).

ML-based models applied in B3PPs prediction: BBB-
penetrating peptides have also been predicted using ML
algorithms (Dai et al., 2021; Liu et al., 2021). Dai et al. (2021)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
proposed the BBBpred, a computational tool that uses sequence-
based features and involves differentMLalgorithms toperforms the
B3PP prediction, such as extremely random tree (ERT), eXtreme
gradient boosting (XGB), KNN, multilayer perceptron (MLP), RF,
SVM, and logistic regression (LR) (Dai et al., 2021). Similarly,
Kumar et al. proposed the B3Pred, a computational tool to evaluate
the prediction of the permeability of three datasets of natural and
synthetic peptides that uses as molecular descriptors some
structure-based properties combined with multiple ML
algorithms, such as DT, RF, LR, KNN, Gaussian Naive Bayes
(GNB), XGB, and SVM (Kumar et al., 2021a).

Zou (2021) proposed using SVM to identify B3PPs employing
physicochemical properties of the peptides. The authors used
Pearson’s correlation coefficient and maximal information
coefficient to extract useful information to predict the
permeability, which was integrated by a similarity network
fusion algorithm (Zou, 2021). Recently, He et al. (2021)
proposed a mutual information maximization meta-learning
(MIMML) algorithm, a novel deep meta-learning method that
predicts bioactive peptides using sequence-based descriptors and
applies mutual information maximization and convolution
kernel. This ML framework was developed to predict different
classes of bioactive peptides, such as anti-angiogenic, anti-
bacterial, anti-tubercular, anti-fungal peptides. Specifically, for
B3PPs, the MIMML outperformed when compared to its
counterpart algorithms (He et al., 2021).

Although some ML-based tools have been developed
exclusively to predict B3PPs using sequence and structure-
based descriptors obtained from peptides, other studies
explored these algorithms to classify small molecules according
FIGURE 5 | Structure- and sequence-based molecular descriptors that are applied in the prediction of biomembrane penetrating peptides.
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to their penetration through the BBB. Recently, Shaker et al.
(2021) used Light Gradient Boosting Machine (LightGBM)
algorithm to predict the penetration of small molecules across
the BBB using as input data 2,432 1D/2D descriptors calculated
using the Dragon program (Shaker et al., 2021). Similarly, Liu
et al. (2021) used SVM, RF, XGB, and ensemble models to
predict the uptake of small molecules by the BBB using as feature
nine molecular fingerprints (EState, MACCS, PubChem, FP4,
KR, AP2D, FP4C, KRC, and APC2D) (Liu et al., 2021). In
another study, Urbina et al. (2021) proposed a Bayesian ML
model to predict the penetration of active and inactive
compounds using extended connectivity fingerprint descriptors
and compared the proposed method with two versions of CNS
MPO algorithms termed Pf-MPO.v1 and Pf-MPO.v2 (Urbina
et al., 2021).

Quantitative Structure-Property
Relationships
Quantitative structure-property relationships (QSPRs) are
statistical methods based on regression data analyses that have
been widely applied in Computational Chemistry to perform
bioprospection and develop new bioactive compounds (Melo-
Filho et al., 2016; Gomes et al., 2017; Rajathei et al., 2020;
Tutumlu et al., 2020; Al-Attraqchi and Venugopala, 2021). The
QSPR represents mathematical models that aim to create
correlations between the biological property (e.g.: toxicity,
penetration in biomembranes, etc) and a set of descriptors
obtained from the analyzed compounds (Neves et al., 2018;
Toropov and Toropova, 2020). Among the molecular descriptors
applied in QSPR analyses we can cite physicochemical (logP, MW,
pKa, etc), structural (NAR,NRB, etc), atomic (number ofO,N, etc)
properties, as well as experimental data (logBB, logPS, etc).
However, QSPR methods depend on the existence of
experimental information previously deposited in online
databases or on the performing of experimental tests.

Several criteria have been chosen to evaluate the quality of
those models, including the total number of compounds applied
in the training dataset, results of the correlation coefficients; and
standard error estimation (Neves et al., 2018). The QSPR models
have been applied to evaluate the penetration of different classes
of compounds into the biomembranes, including the cell
membrane (Dowaidar et al., 2017) and the BBB (Zhang et al.,
2008; Fan et al., 2010; Bujak et al., 2015). The QSPR models that
predict the penetration of compounds into BBB use some
experimental parameters applied to evaluate the penetration,
such as logBB and logPS (Nikolic et al., 2013). QSPR models,
clustering, and correlation studies that use these experimental
data to evaluate the BBB permeation demonstrated a success rate
for different classes of compounds (Nikolic et al., 2013; Bujak
et al., 2015). Similarly, QSPR studies have also been combined
with ML algorithms to predict the permeability of compounds
into the BBB (Zhang et al., 2017).

Molecular Dynamics Simulations
Molecular dynamics (MD) simulations are physics-based
computational methods that implement iterative algorithms to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
calculate velocities, atomic positions, and acceleration of a set of
molecules over time, thus providing a detailed atomistic analysis
of their structure, trajectories, interactions, and conformational
changes (Karplus and McCammon, 2002; Câmara and Horjales,
2018; Reid et al., 2019). Two approaches have been widely
applied in MD simulations to describe the dynamic behavior
of molecules: molecular mechanics (MM) and quantum
mechanics (QM). MD simulations that apply the classical MM
approach describes the atomic movement using Newtonian
equations, thus allowing us to investigate the trajectory of
biomolecules using reasonable computational efforts when
compared with the quantum approaches. However, these
simulations are inadequate to analyze chemical reactions,
electron transfer, and transition states (Field, 2007). In
contrast, MD methods that apply QM solely or a hybrid
approach (QM/MM) have been useful to describe these
molecular mechanisms (Ahmadi et al., 2018).

Despite cheminformatic filters, QSPR models, and ML
algorithms have been widely applied in the high-throughput
screening of new biomembrane-penetrating molecules, they do
not offer a detailed analysis of the molecular mechanism of
penetration and the molecular interactions that occur between
peptide and lipid bilayers (Lee et al., 2016; Reid et al., 2019).
Explicit-solvent MD simulations are useful to predict the
biomembrane-penetrating peptides, to describe their molecular
mechanism of passive penetration, and to assess accurately the
energetic and structural preferences of the peptide structures in
the aqueous solutions (Dunkin et al., 2011; Horn et al., 2013;
He et al., 2015; Mukherjee et al., 2017). Some MD packages,
such as Chemistry at HARvard Macromolecular Mechanics
(CHARMM) (Brooks et al., 2009), AMBER (Salomon-Ferrer
et al., 2013), and GROningen MAchine for Chemical
Simulations (GROMACS) (Van Der Spoel et al., 2005)
contains useful molecular force fields to describe peptides-
bilayer lipid systems, such as CHARMM (Huang et al., 2017),
AMBERFF (Maier et al., 2015), and GROMOS (Reif et al., 2012),
respectively. In addition, some coarse-grained force fields, such
as MARTINI (Marrink et al., 2007) and SIRAH (Darré et al.,
2015) have been developed to characterize these systems
increasing the accessible simulation time. The choice of the
most adequate force field to describe the peptide penetration
depends on the analyzed system and the calculated properties,
thus different results could be reached for independent
simulations using the same protocol (Piggot et al., 2017).

With regards to the CPPs, these peptides possess a wide range
of molecular mechanisms of cell membrane penetration that
include passive (energy-independent) and active (energy-
dependent) translocation (Figure 6). The energy-dependent
mechanisms include passive penetration, endocytosis, and pore
formation. MD simulations had been applied to elucidate some
passive mechanisms of penetration in the cell using lipid bilayer
models of cell membrane (Horn et al., 2013; Di Pisa et al., 2015;
Mukherjee et al., 2017), and membrane-mimetic environments
(Timmons and Hewage, 2021).

It is important to note that due to the high demand of
computing resource required by the MD simulations to
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observe some molecular events, sometimes, it is not possible to
assess, in the time scale applied in the simulation the complete
translocation of peptides through the membrane. Therefore,
some aspects involved with peptide penetration, such as the
formation of intermolecular interactions, peptide aggregation,
peptide orientation, and the influence of solved accessible surface
could be useful to conjecture the possible molecular mechanism of
penetration (Dunkin et al., 2011; Horn et al., 2013). In addition, the
prediction of permeability of large molecules may be particularly
prone to inaccuracy due to insufficient conformational sampling
during the simulations (Sugita et al., 2021).

The passive penetration of small molecules into the cell
membranes has been studied using solubility-diffusivity
models, and the potential of mean force (PMF) is a critical
component applied in the study of membrane permeability using
MD simulations (Bennion et al., 2017; Venable et al., 2019;
Wadhwa et al., 2021). To obtain a satisfactory sampling of the
transition states of the investigated molecules, several techniques
have been developed which include adaptive biasing force
(Rodriguez-Gomez et al., 2004), replica-exchange umbrella
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
sampling (Torrie and Valleau, 1977), metadynamics (Laio and
Parrinello, 2002), and the Wang−Landau algorithm (Wang and
Landau, 2001). These sampling techniques are useful to obtain
the PMF of the molecule passing across membranes.

The PMF represented byW(z), as well as the permeability (P),
the local diffusivity coefficient, D(z) and the resistivity (R) are
mathematically related according to Equation 3:

R =
1
P

Z z2

z1

exp 1
kBT W zð Þ� �
D zð Þ dz (3)

Where z is a collective variable (CV) that describes the relative
position of the molecule along the transmembrane axis, and z1
and z2 represent points along this axis on opposing sides of the
biomembrane (Lee et al., 2016; Venable et al., 2019). The 1/kBT
corresponds to the inverse of the Boltzmann constant times
the temperature.

The choice of CV is a crucial step for effectively obtaining the
free-energy profile of the analyzed molecules. Recently, (Kabelka
et al., 2021) developed a CV that includes a description of peptide
FIGURE 6 | Mechanisms of passive penetration of CPPs into the cell membrane (energy-independent mechanisms). (A) Passive diffusion (spontaneous translocation),
(B) Peptide aggregation with pore formation, (C) endocytosis. The panels (D) and (E) represent some subsequent molecular events in the cell: (D) endosomal membrane
lysis and (E) translocation through the cell membrane.
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insertion, local membrane deformation, and peptide internal
degrees of freedom related to its charged groups which can be
effective to calculate the free energy of peptide translocation and
could be useful in the design of spontaneously translocating peptides.
BIOMEMBRANE-PENETRATING
PEPTIDES DATABASES

Databases with experimentally validated information of
biomembrane-penetrating peptides are a useful source to obtain
structure- and sequence-based data for the development of
computational models applied in the prediction of permeability
of these structures. However, despite their valuable information
regarding the penetration of the peptide in the biomembranes, the
absence of data related to the penetration mechanism of some
peptides, chameleonic properties, and shared pharmacokinetic
properties of penetration in both membranes impairs, in some
aspects, the development ofmore predictive computationalmodels.
In the present section, we exhibit the main public and online
databases of CPPs and B3PPs.

CPPsite 2.0: This database is an updated version of CPPsite
(Gautam et al., 2012) and contains experimentally validated CPP
structures with high uptake efficiency into the cell membrane.
CPPsite2 contains information on the primary, secondary, and
tertiary structure of peptides, besides offers a similarity search
engine that allows the users to search for peptides using the
structure, sequence, and amino acid composition. There is also
group-wise data browsing that allows users to retrieve data in
different categories that include cyclic peptides, nucleic-acid
delivering, synthetic and natural peptides, etc (Kardani and
Bolhassani, 2021). CPPsite 2.0 is freely available at https://
webs.iiitd.edu.in/raghava/cppsite.

BrainPeps:Thedatabase contains comprehensivedataobtained
from literature information about B3PPs, which include primary
structure, sequence, physicochemical properties, and information
related to the experimental method applied in the validation of the
penetration (VanDorpe et al., 2012). BrainPeps is freely available at
https://brainpeps.ugent.be/.

B3Pdb: The database contains information of the primary
structure of experimentally validated B3PPs. The information
available in the database include the physicochemical properties,
chemical modifications, and related references. The database also
contains a similarity search engine and group-wise data browsing
to assess the information using different peptide categories
(Kumar et al., 2021b). The B3Pdb is freely available at https://
webs.iiitd.edu.in/raghava/b3pdb/.
BIOTECHNOLOGICAL AND
PHARMACEUTICAL APPLICATIONS
OF BIOMEMBRANE-PENETRATING
PEPTIDES

Since human insulin was produced by recombinant DNA
technology and approved by the US Food and Drug
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Administration (US FDA), several advances in the
biotechnological and pharmaceutical applications of natural
and synthetic peptides have encouraged investments by the
pharmaceutical industry (Baig et al., 2018b). The present
section shows some pharmaceutical and biotechnological
applications of biomembrane-penetrating peptides in the drug
design and discovery, such as brain cargo delivery systems,
antimicrobial, and anti-neurodegenerative disorders agents.

Applications as Neuroprotective Agents
Neurodegenerative diseases are characterized by gradual and
progressive degeneration of brain function and loss of neurons
(Heemels, 2016; Ahmadian-Moghadam et al., 2020). Alzheimer’s
disease (AD), Parkinson’s disease (PD), amyotrophic lateral
sclerosis (ALS), Huntington’s disease (HD), and vascular
dementia are examples of neurodegenerative disorders that
affect millions of people worldwide, whose treatments have
been insufficient due to the low number of approved drugs in
clinical trials (Slanzi et al., 2020).

The BBB is the main obstacle to the effectiveness of
treatments of neurodegenerative diseases due to its selective
control of the penetration against some therapeutic agents that
impairs them to achieve the CNS (Zhou et al., 2021). The B3PPs
have becomeuseful tools for the treatment ofneurological disorders
due to their ability to penetrate the membranes carrying
neurotropic small molecules or to act as neuroprotective agents
(Oller-Salvia et al., 2016).

In the last years, several natural and synthetic bioactive peptides
have been tested in clinical trials to treat neurodegenerative diseases
(Brinker and Spader, 2014; Baig et al., 2018a; Zhang et al., 2021).
Some peptides affect directly biochemical processes in CNS which
are involved in some neurological disorders, for instance, the
Ziconotide has shown activity in blocking the increase of
extracellular glutamate and intracellular overload of Ca2+, which
are the main cause of neuronal injury during cerebral ischemia
(Zieminska et al., 2006). Exenatide is a GLP-1R agonist extracted
from venomous lizardHeloderma suspectum and it is approved for
the treatment of diabetes type II. Some studies displayed that the
administration of this peptide peripherally can cross the BBB in
humans (Hunter andHölscher, 2012; Athauda et al., 2017), besides
exhibiting neuroprotective effects on several neurodegenerative
models, mainly in PD (Athauda and Foltynie, 2016).

PhTx3-3 andPhTx3-4, peptides derived fromspiderPhoneutria
nigriventer venom, have also shown activity as a blocker of Ca2+

channel, exocytosis in nerve endings, and glutamate release (Yang
et al., 2019). Previous studies also showed that these peptides
rescued the neurotransmission alterations observed in
hippocampus CA1 and prevented neuronal cell death (Pinheiro
et al., 2009).

Dysfunctions in mitochondrial metabolism have been reported
as one factor related to the development of neurodegenerative
diseases, such as AD and PD. Filichia et al. (2016) showed that the
peptide P110 inhibited the DRP1, a protein essential to
mitochondrial fission and dopaminergic neuronal death,
preventing dopaminergic neurons in PD (Filichia et al., 2016).
Ba-V peptides are obtained from Bothrops atrox snake venom and
these structures have shown neuroprotective activity, acting
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against the mitochondrial permeability transition, a biochemical
process that can trigger an intrinsic apoptotic pathway of neuronal
cells that is related to PD and AD (Martins et al., 2010).

The B3PPs have also received attention from pharmaceutical
industries due to their capacity to conjugate with drugs and other
small molecules, implying the development of new and more
effective therapeutic agents against neurodegenerative disorders.
Among these peptides, we can cite transportan 10, angiopep-2,
and SynB.

Transportan 10 is a peptide with a high penetration rate into
the BBB. TP10-dopamine conjugate has been demonstrated to
access brain parenchyma and possesses a high binding affinity
to both dopamine D1 and D2 receptors, besides it has shown
activity against PD in animal models (Rusiecka et al., 2019).
TP10 conjugated with vancomycin also has shown the capacity
to improve the bioavailability of this drug in the brain, 200-fold
greater than free one (Ruczyński et al., 2019).

Angiopep-2 is a B3PP derived from Kunitz domains of
human proteins (Zhou et al., 2021). Studies have reported the
high transcytosis ability of angiopep-2, reaching levels of 3-fold
higher of transcytosis than aprotinin and 50-fold higher than
that of transferrin and lactoferrin when tested in vitro using BBB
bovine capillary assay (Demeule et al., 2008). There are some
applications of this peptide as BBB shuttle with conjugates, such
as neurotensin and coumaric acid (Demeule et al., 2014;
Suksrichavalit et al., 2014).

SynB is a cationic peptide derived from the naturally
occurring antimicrobial peptide protegrin (Lalatsa et al., 2014).
SynB1 and SynB3 peptides have been shown to have the ability to
transport some drugs through the BBB by adsorptive-mediated
endocytosis pathway (Drin et al., 2003). These peptides were
conjugated with doxorubicin and showed a significant increase
of drugs uptake into the brain, about 30-fold more than the
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molecule used solely (Rousselle et al., 2001). Similarly,
benzylpenicillin and M6G also were tested as conjugated using
SynB1 and they showed an increase of concentration in the brain
(Liu et al., 2014). SynB1 was also conjugated with dalargin and
presented an improvement in the delivery of this drug across the
BBB and the analgesic activity of dalargin (Rousselle et al., 2003).

A summary of B3PPs applied in the development of new
bioactive molecules against neurodegenerative disorders is
shown in Table 2.
Applications as Antimicrobial Agents
Antimicrobial peptides (AMPs) are a class of molecules that
composes the innate defense of several species against pathogen
infection and these structures have been considered as a useful
strategy to combat antimicrobial resistance (Annunziato and
Costantino, 2020). Multiple antibiotic resistance mechanisms
have been described for bacterial cells and the resurgence of
new mechanisms has been driven by the evolutionary processes
that include gene mutations and natural selection (Browne
et al., 2020).

AMPs have gained attention as a new class of antimicrobial
compounds with the clinical potential to produce new antibiotics
to combat resistant microorganisms. These peptides have been
identified in a variety of species, where they act against pathogenic
microorganisms (Diamond et al., 2009; Zhang and Gallo, 2016).

The AMPs have a high diversity of molecular mechanisms of
action, where the most prevalent is the direct activity against the
cell membrane (Pushpanathan et al., 2013). The ability to
interact with these membranes is due to the amphipathic
nature of these peptides, which are often positively charged,
facilitating the electrostatic interaction between these cationic
peptides with anionic cell membranes. These interactions induce
TABLE 2 | List of names, primary structure, biological activities, and references for the cited peptides with therapeutic effect against neurodegenerative diseases, as
well as BBB shuttle property.

Peptide
names

Amino acid sequences Biological activities References

Ziconotide CKGKGAKCSRLMYDCCTGSCRSGKC Blocker of Ca2+ channel, preventing
neuronal damage

(Zieminska et al., 2006)

Exenatide HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS Inhibitor of GLP-1R (Hunter and Hölscher, 2012; Athauda
and Foltynie, 2016; Athauda et al., 2017)

PhTx3-3 GKCADAWESCDNYPCCVVNGYSRTCMCSANRCNCDDTKTLREHFG Blocker of Ca2+ channel, exocytosis,
and glutamate release

(Pinheiro et al., 2009; Yang et al., 2019)

PhTx3-4 SCINVGDFCDGKKDCCQCDRDNAFCSCSVIFGYKTNCRCE Blocker of Ca2+ channel, exocytosis,
and glutamate release

(Pinheiro et al., 2009; Yang et al., 2019)

P110 YGRKKRRQRRRGGDLLPRGS Inhibitor of DRP1 (Filichia et al., 2016)
Ba-V* - Inhibitor of mitochondrial permeability

transition, preventing PD and AD
(Martins et al., 2010)

Transportan
10

AGYLLGKINLKALAALAKKIL BBB shuttle of small molecules (e.g.
dopamine and vancomycin)

(Rusiecka et al., 2019; Ruczyński et al.,
2019)

Angiopep-2 TFFYGGSRGKRNNFKTEEY BBB shuttle of small molecules (e.g.
neurotensin and coumaric acid)

(Demeule et al., 2008; Suksrichavalit
et al., 2014)

SynB1 RGGRLSYSRRRFSTSTGR BBB shuttle of small molecules (e.g.
doxorubicin, Benzylpenicillin, and M6G)

(Rousselle et al., 2003; Liu et al., 2014)

SynB3 RRLSYSRRRF BBB shuttle of small molecules (e.g.
doxorubicin,

(Drin et al., 2003)
M

*Ba-V is not only one peptide, but a family of peptides.
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the disruption of the cell membrane and insertion of AMPs,
leading the cell death (Zhang and Gallo, 2016). Other classes of
AMPs act against nucleic acid production and cell wall synthesis
(Annunziato and Costantino, 2020).

Over the years, some studies have demonstrated
antimicrobial activities of some peptides. For example,
granulysin (GNLY) is produced by human cytolytic T
lymphocytes, which have a broad spectrum of inhibitory
activity against several Gram-positive and Gram-negative
bacteria (Krensky, 2000). Mersacidin is another AMP that
contains beta-methyllanthionine, which demonstrated
inhibitory properties against the growth of several Gram-
positive bacteria, including methicillin-resistant Staphylococcus
aureus (MRSA). Its action against the MRSA is related to the
binding to the cell wall precursor lipid II and blockage of cell wall
biosynthesis (Chartterjee et al., 1992; Herzner et al., 2011).

The antimicrobial activity also has been reported in peptides
extracted from snake venom. Recently, it has been demonstrated
that the peptide OH-CATH is efficient against cephalosporin-
resistant Escherichia coli (Bai-Yu et al., 2013). DEFB114 is
another AMP found in the epididymis and gingival cells, that
showed antimicrobial activity against several pathogenic
microorganisms, such as Staphylococcus aureus, Escherichia
coli, and Candida albicans (Yu et al., 2013).

Buforin II is under clinical trials and it has been explored due to
its activity against different microorganisms. This peptide act
through the accumulation into the cytoplasmatic medium and
high-biding interactions with the nucleic acids, which leads to cell
death. This peptide has shown a broad spectrum of antimicrobial
activity against Gram-positive and Gram-negative bacteria, as well
as fungi, such as Candida albicans, Saccharomyces cerevisiae, and
Cryptococcus neoformans (Park et al., 1998; Cirioni et al., 2009).
Recently, some peptides, such as omiganan (MX-226), novexatin
(NP213), hLF(1-11), demegel (D2A21), and ETD151 also have
demonstrated antifungal activities against drug-resistant strains of
Candida sp. (Browne et al., 2020; Fernández de Ullivarri
et al., 2020).

A summary of the cited peptides and other peptide-based
antibiotics investigated regarding their antimicrobial activities is
shown in Table 3.

Applications as Delivery Systems of
Nucleic Acids and Drugs
CPPs structures have been investigated as vectors for nucleic acid
molecules (Wolfe et al., 2018). Oligonucleotides conjugated with
CPPs system carriers include short single- or double-strandedRNA
and DNAmolecules or its analog sequences, such as mRNAs, pre-
mRNAs, and micro-RNAs which can target specific genes and
modify the gene expression (Klabenkova et al., 2021).

Recently, there are several classes of therapeutic
oligonucleotide mediated by peptides, such as antisense
oligonucleotides (ASOs), small interfering RNAs (siRNAs),
deoxyribozymes (DNAzymes), CRISPR/Cas9, antagomirs, and
ribozymes (Taylor and Zahid, 2020; Klabenkova et al., 2021).

The siRNAs are double-stranded synthetic or natural
oligoribonucleotides with a length of, 20–25 nt per strand,
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which can be used in a process of specific gene silencing
named RNA interference (Taylor and Zahid, 2020). Although
siRNAs have been used as a promising therapeutic agent with
some approved drugs, such as givosiran (Givlaari (Scott, 2020)
and lumasiran (Oxlumo®) (Scott and Keam, 2021), some hurdles
regarding the internal metabolism of cells impacts the delivery of
these molecules into the cytoplasm.

The CPPs have been also used as a mechanism of siRNA
delivery to some tissues (Ruan et al., 2018) and organs (Li et al.,
2014). However, cancer therapy became the main aim of studies
that analyze the siRNA carried by peptides. Recently, amphipathic
helical 12-mer peptides containing a,a-disubstituted a-amino
acids (dAAs) were developed to deliver siRNA into living
human hepatoma cells, and results showed that the conjugated
peptide significantly increased of RNA interference (RNAi) into
the cell (Furukawa et al., 2020). Recently, Lo et al. (2018) evaluated
how tandem peptides combining CPP and iRGD can encapsulate
siRNA to form a complex able to cross the desmoplastic stromal
barrier, delivering this nucleic acid to pancreatic ductal
adenocarcinoma cells (Lo et al., 2018). Another study explored
the mechanism of the epidermal growth factor receptor (EGFR)-
targeting peptide to deliver siRNA into EGFR-overexpressing oral
cancer cells, aiming the silencing of the target oncogene
(Alexander-Bryant et al., 2017). Similarly, Yang et al. (2016a)
investigated how c-myc gene expression of breast cancer cells
(MCF-7 cells) could be suppressed by a siRNA carrier system,
which combines three components to perform the cell delivery:
acid-sensitive polymer micelles, folic acid, and bio-reducible
disulfide bond linked siRNA-CPPs conjugate (Yang et al., 2016a).

CPPs have also been investigated as system carriers of
nanoparticles aiming for applications related to gene therapy.
For example, nanoparticles composed of low-molecular-weight
polyethylenimine and b-cyclodextrin were linked with folic acid
and octa-arginine (R8) to deliver plasmid DNA to folate-receptor
positive tumor cells, resulting in a high transfection level of this
conjugate into cells (Jiang et al., 2011). Huang et al. (2013)
investigated the use of tumor activatable CPP (termed dtACPP)
to label nanoparticles and deliver siRNA targeting vascular
endothelial growth factors. The experiments showed effective
shutdown of blood vessels and cell apoptosis within the tumor
(Huang et al., 2013).

Polymernanoparticlesmodifiedwithphoto-andpH-responsive
polypeptides (PPP) were developed to respond to near-infrared
(NIR) light illumination at the tumor site and a lowered tumor
extracellular pH (pHe). The results showed that the complex PPP-
nanoparticles selectively accumulated at the tumor site and
internalized into the tumor cells mediated by NIR light and the
lowered pHe at the tumor region, demonstrating the potential of
this complex as a carrier system in tumor gene therapy (Yang et al.,
2016b). Mesken et al. (2017) developed a non-viral gene delivery
systemusing plasmid-loaded human albumin nanoparticles, which
were modified using CPPs, such as Tat, EB1, and nona-arginine
(R9), then tested regarding their penetration into HEK 293T cells.
The results showed a significant increase in the transfection level of
these proposed vectors when compared with free DNA or
polyplexes (Mesken et al., 2017).
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COMPUTATIONAL CHALLENGES AND
FUTURE DEVELOPMENTS

Different computational techniques have been developed to shed
light on peptides’ pharmacokinetic properties, supporting studies
that aim to investigate the molecular mechanism of translocation
through the biomembranes and elucidate the physicochemical
and structural properties associated with their molecular
functions. The computational prediction offers an efficient and
low-cost strategy to classify large compound libraries, but their
analyses can show limitations regarding the applications and
purposes of the study.

The MD simulations are examples of high computing
enhanced sampling techniques that have been applied to
demonstrate the conformational changes of peptides and their
main biophysical interactions with biomembrane components,
aiming to understand their mechanism of penetration into these
membranes. However, this computational technique has been
inappropriate to assess large compound libraries due to its high
demand for time and computational processing. Thus, it is
warranted new systematic studies to develop force fields with
improved computational efficiency and accuracy that could
better describe the molecular mechanism of penetration in
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these biomembranes, accessing in an appropriate time scale the
peptide crossing. The development of membranes with
alternative lipidic compositions has been also pointed out as
relevant to reach a more realistic simulation, as well as to mimic
biomembranes from different species (Marrink et al., 2019).
More precise predictions of membrane crossing could be
achieved by the use of multiple sampling techniques, with
high-temperature conditions to speed up the kinetics involved
with peptide folding on the membrane surface, thus assessing the
penetration into the bilayer (Sugita et al., 2021).

With regards to machine learning algorithms, cheminformatic
filters, and QSPR models, these techniques are useful and widely
applied computational tools to screen large compound libraries and
tounderstand thekey structure- and sequence-based characteristics
associated with the pharmacokinetics of these peptides. However,
their predictive efficiency are also prone to biases and could lead to
false identification of correct class of bioactive molecules.

The ML-based algorithms have been pointed out as a more
efficient computational approach to predict hit compounds from
large compound libraries than the traditional QSPR models
(Tsou et al., 2020). However, further developments of ML-
based algorithms could be related to the prediction of
molecular mechanisms of penetration in the biomembranes,
TABLE 3 | List of names, primary structure, biological activities, and references for the cited peptides with antimicrobial activity.

Peptide
names

Amino acid sequences Biological
activities

References

GNLY GRDYRTCLTIVQKLKKMVDKPTQRSVSNAATRVCRTGRSRWRDVCRNFMRRYQSRVIQG …

LVAGETAQQICEDLR
Antibacterial (Krensky, 2000)

Mersacidin MSQEAIIRSWKDPFSRENSTQNPAGNPFSELKEAQMDKLVGAGDMEAACTFTLPGGGGVCTLTSECIC Antibacterial activity (Chartterjee et al.,
1992; Herzner et al.,
2011)

OH-CATH MEGFFWKTLLVVGALAIGGTSSLPHKPLTYEEAVDLAVSIYNSKSGEDSLYRLLEAVPPPE …

WDPLSESNQELNFTIKETVCLVAEERSLEECDFQEDGAIMGCTGYYFFGESPPVLVLTCK …

PVGEEEEQKQEEGNEEEKEVEKEEKEEDEKDQPRRVKRFKKFFKKLKNSVKKRAKKFFK…KPRVIGVSIPF

Antibacterial activity (Bai-Yu et al.,
2013)

DEFB114 MRIFYYLHFLCYVTFILPATCTLVNADRCTKRYGRCKRDCLESEKQIDICSLPRKICCTEKLY…EEDDMF Broad-spectrum
antibacterial,

antifungal activities

(Yu et al., 2013)

Buforin II TRSSRAGLQWPVGRVHRLLRK Broad spectrum
antibacterial and
antifungal activities

(Park et al., 1998;
Fernández de
Ullivarri et al., 2020)

Omiganan H-xlle-LRWPWWPWRRK-NH2 Broad-spectrum
antifungal,
antibacterial

NCT02576847**

Novexatin cyclo[RRRRRRR] Antifungal activity NCT02933879**
hLFroad-
spectrum(1-
11)

GRRRRSVQWCA Broad-spectrum
antibacterial and
antifungal activities

NCT00509847**

Demegel FAKKFAKKFKKFAKKFAKFAFAF Antibacterial,
antifungal

(Chalekson et al.,
2002)

ETD151 DKLIGSCVWGAVNYTSNCRAECKRRGYKGGHCGSFANVNCWCET Antifungal activity (Browne et al.,
2020)

Bacitracin* Unk-L-dEIK(1)-dOrn-I-dFH-dDN-(1) Antibacterial activity (Browne et al.,
2020)

Colistin* Unk-Dab-T-Dab-Dab(1)-Dab-dLL-Dab-Dab-T(1) Antibacterial activity (Browne et al.,
2020)

Polymyxin B* Unk-Dab-T-Dab-Dab(1)-dDab-dFL-Dab-Dab-T(1) Antibacterial activity (Browne et al.,
2020)
March 2022 | Volume
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which currently can be accessed only by high computing analyses
using MD simulations.

The limited information of peptides permeability in the online
databases also impact negatively in the development of precise
supervised ML-based algorithms that requires a comprehensive
dataset composed of negative and positive ones to be trained.
Furthermore, unfeasible ML-based models could be obtained
using a training dataset composed of active molecules that are
easily differentiated from inactive ones by coarse properties, such as
HBA, HBD, logP, and MW (Ripphausen et al., 2011). Similarly, it
has been demonstrated that ML-based models that use an
optimized combination of structure- and sequence-based
descriptors of peptides could show an improved performance
than those that use only structure- or sequence-based descriptors
separately (de Oliveira et al., 2021).

Highly correlated training and testing datasets of molecules,
could also limit the applicability of some ML-models to classify
correctly the active molecules, thus reaching to a false high
training accuracy (Wallach and Heifets, 2018). Therefore, low
training errors are insufficient to justify the choice of the most
appropriate ML-based framework since the satisfactory
predictive performance could be due to redundancy between
the training and testing datasets rather than accuracy (Wallach
and Heifets, 2018).

Currently, there are also limitation related to the prediction or
assessment of the different conformational states acquired by the
peptides. Chameleonic peptides can change their conformation to
better cross the biological membranes (Matsson and Kihlberg,
2017). In addition, these peptides can also adopt multiple
bioactive conformations in solution that are not satisfactory
predicted only by the high throughput computational screening
methods, such as QSPR models and ML algorithms (Miao et al.,
2021). Currently, the chameleonic properties of peptides are only
accessed using high computing sampling methods (Miao et al.,
2021). Thus, due to the limited ability to predict complete structural
ensembles of some peptides, which include, for example, the
majority of macrocyclic peptides, we are also impaired to develop
better strategies for the rational peptide design (Miao et al., 2021).

The development of new QSPR models and ML algorithms to
predict the molecular mechanism of penetration of peptides in
the biological membranes face some limitations due to the
missing data of these molecular mechanisms in some databases
(Gautam et al., 2012; Agrawal et al., 2016). Thus, the availability
of experimental results in online databases related to the
mechanism of penetration into biomembranes could provide
more informative data to develop new robust computational
tools applied in the prediction of pharmacokinetic properties of
peptides, facilitating the discovery and development of new
therapeutic agents based on these molecules.
FINAL CONSIDERATIONS

Herein, we glimpsed the computational methods and some
potential applications of CPPs and B3PPs, two classes of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
biomembrane-penetrating peptides which have been widely
used for the development of new therapeutic molecules with
neuroprotective, anticancer, and antimicrobial activities, as well
as system carriers of molecules, such as nucleic acids and drugs.
The myriad of their biotechnological and pharmaceutical
applications has significantly increased over the years, as long
as, new structural and conformational properties of these
peptides are elucidated. The computational approaches applied
to investigate their permeability into biomembranes are
considered useful and cost-effective strategies that aim for
scientific and technological purposes.

Concerning the ML-based algorithms, QSPR models, and
cheminformatic filters, the development of more precise
predictive models using these methods is highly dependent on
the available data of these peptides in the online databases, thus
increases of the experimental information regarding the
physicochemical, structural properties, as well as their
mechanism of penetration or existence of chameleonic
properties will be useful for further developments.

Regarding the MD simulations, these methods offer a
mechanist explanation of peptide crossing through the
biomembranes which also could assist the development of
molecules with improved pharmacokinetic properties or the
development of more potent molecules delivery systems.
However, continued attention has been given to the
development of protocols that allies low time-consuming
computational efforts and more precise predictive results. The
development of these protocols has heavily relied on the
existence of more realistic biophysical models of membranes
that attend the particularities of their composition. Novel
molecular forcefields and sampling methods conjugated with
high-temperature simulations could also permit access to
inappropriate time scale the molecular events related with
peptides crossing through the biomembranes.
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Piggot, T. J., Piñeiro, Á., and Khalid, S. (2017). Molecular Dynamics Simulations of
Phosphatidylcholine Membranes: A Comparative Force Field Study. J. Chem.
Theory Comput. 13, 1862–1865. doi: 10.1021/acs.jctc.7b00244

Pinheiro, A. C. do N., da Silva, A. J., Prado, M. A. M., Cordeiro Mdo, N., Richardson,
M., Batista, M. C., et al. (2009). Phoneutria Spider Toxins Block Ischemia-
Induced Glutamate Release, Neuronal Death, and Loss of Neurotransmission in
Hippocampus. Hippocampus 19, 1123–1129. doi: 10.1002/hipo.20580

Pushpanathan, M., Gunasekaran, P., and Rajendhran, J. (2013). Antimicrobial
Peptides: Versatile Biological Properties. Int. J. Peptides. doi: 10.1155/2013/
675391

Qiang, X., Zhou, C., Ye, X., Du, P. F., Su, R., and Wei, L. (2018). CPPred-FL: A
Sequence-Based Predictor for Large-Scale Identification of Cell-Penetrating
Peptides by Feature Representation Learning. Briefings Bioinf. 21, 11–23.
doi: 10.1093/bib/bby091

Radan, M., Djikic, T., Obradovic, D., and Nikolic, K. (2022). Application of In
Vitro PAMPA Technique and in Silico Computational Methods for Blood-
Brain Barrier Permeability Prediction of Novel CNS Drug Candidates. Eur. J.
Pharm. Sci. 168, 106056. doi: 10.1016/j.ejps.2021.106056

Rajathei, D. M., Parthasarathy, S., and Selvaraj, S. (2020). Combined QSAR Model
and Chemical Similarity Search for Novel HMG-CoA Reductase Inhibitors for
March 2022 | Volume 12 | Article 838259

https://doi.org/10.1016/j.ijpharm.2014.04.050
https://doi.org/10.1016/j.ijpharm.2014.04.050
https://doi.org/10.1158/1535-7163.MCT-17-1090
https://doi.org/10.1021/jm960163r
https://doi.org/10.1039/c2md20347b
https://doi.org/10.1021/jm901241e
https://doi.org/10.2174/138920112803341851
https://doi.org/10.1021/acs.jctc.5b00255
https://doi.org/10.1021/jm901654x
https://doi.org/10.1021/acs.jproteome.8b00148
https://doi.org/10.1021/acs.chemrev.8b00460
https://doi.org/10.1021/jp071097f
https://doi.org/10.1016/S1359-6446(03)02961-1
https://doi.org/10.1016/j.toxicon.2010.03.014
https://doi.org/10.1016/j.addr.2016.03.013
https://doi.org/10.1021/acs.jmedchem.7b00237
https://doi.org/10.1021/acs.jcim.6b00055
https://doi.org/10.1007/s10571-013-9999-3
https://doi.org/10.1016/j.ijpharm.2017.03.006
https://doi.org/10.1016/j.ijpharm.2017.03.006
https://doi.org/10.1039/D1SC05562C
https://doi.org/10.1016/j.drudis.2012.03.002
https://doi.org/10.1517/17460441.2016.1117070
https://doi.org/10.1039/C7CP01941F
https://doi.org/10.1021/acs.jmedchem.8b01259
https://doi.org/10.3389/fphar.2018.01275
https://doi.org/10.3389/fphar.2018.01275
https://doi.org/10.18433/J3JK5P
https://doi.org/10.1021/acs.jcim.9b00034
https://doi.org/10.1039/C6CS00076B
https://doi.org/10.1038/s41598-021-90690-w
https://doi.org/10.1016/j.ejps.2010.07.012
https://doi.org/10.1021/acs.jproteome.8b00322
https://doi.org/10.1021/acs.jproteome.8b00322
https://doi.org/10.1006/bbrc.1998.8159
https://doi.org/10.1021/acs.molpharmaceut.9b00633
https://doi.org/10.1016/j.omtn.2017.02.003
https://doi.org/10.1016/j.omtn.2017.02.003
https://doi.org/10.1038/s41598-019-42456-8
https://doi.org/10.1021/acs.jctc.7b00244
https://doi.org/10.1002/hipo.20580
https://doi.org/10.1155/2013/675391
https://doi.org/10.1155/2013/675391
https://doi.org/10.1093/bib/bby091
https://doi.org/10.1016/j.ejps.2021.106056
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


de Oliveira et al. Computational Prediction of Biomembrane-Penetrating Peptides
Coronary Heart Disease. Curr. Computer-Aided Drug Des. 16, 473–485.
doi: 10.2174/1573409915666190904114247

Ramsey, J. D., and Flynn, N. H. (2015). Cell-Penetrating Peptides Transport
Therapeutics Into Cells. Pharmacol. Ther. 154, 78–86. doi: 10.1016/
j.pharmthera.2015.07.003

Rankovic, Z. (2017). CNS Physicochemical Property Space Shaped by a Diverse
Set of Molecules With Experimentally Determined Exposure in the Mouse
Brain. J. Med. Chem. 60, 5943–5954. doi: 10.1021/acs.jmedchem.6b01469

Reid, L. M., Verma, C. S., and Essex, J. W. (2019). The Role of Molecular
Simulations in Understanding the Mechanisms of Cell-Penetrating Peptides.
Drug Discovery Today 24, 1821–1835. doi: 10.1016/j.drudis.2019.06.013

Reif, M. M., Hünenberger, P. H., and Oostenbrink, C. (2012). New Interaction
Parameters for Charged Amino Acid Side Chains in the GROMOS Force Field.
J. Chem. Theory Comput. 8, 3705–3723. doi: 10.1021/ct300156h

Rezai, T., Bock, J. E., Zhou, M. V., Kalyanaraman, C., Lokey, R. S., and Jacobson, M. P.
(2006).ConformationalFlexibility, InternalHydrogenBonding,andPassiveMembrane
Permeability: Successful in Silico Prediction of the Relative Permeabilities of Cyclic
Peptides. J. Am. Chem. Soc. 128, 14073–14080. doi: 10.1021/ja063076p

Ripphausen, P., Wassermann, A. M., and Bajorath, J. (2011). REPROVIS-DB: A
Benchmark System for Ligand-Based Virtual Screening Derived From
Reproducible Prospective Applications. J. Chem. Inf. Model. 51, 2467–2473.
doi: 10.1021/ci200309j

Ritchie, T. J., and Macdonald, S. J. F. (2009). The Impact of Aromatic Ring Count on
Compound Developability – are Too Many Aromatic Rings a Liability in Drug
Design? Drug Discovery Today 14, 1011–1020. doi: 10.1016/j.drudis.2009.07.014

Rodriguez-Gomez, D., Darve, E., and Pohorille, A. (2004). Assessing the Efficiency
of Free Energy Calculation Methods. J. Chem. Phys. 120, 3563–3578.
doi: 10.1063/1.1642607

Roohi, A., Faust, K., Djuric, U., and Diamandis, P. (2020). Unsupervised Machine
Learning in Pathology. Surg. Pathol. 13, 349–358. doi: 10.1016/j.path.2020.01.002

Rossi Sebastiano, M., Doak, B. C., Backlund, M., Poongavanam, V., Over, B.,
Ermondi, G., et al. (2018). Impact of Dynamically Exposed Polarity on
Permeability and Solubility of Chameleonic Drugs Beyond the Rule of 5.
J. Med. Chem. 61, 4189–4202. doi: 10.1021/acs.jmedchem.8b00347

Rousselle, C., Clair, P., Smirnova, M., Kolesnikov, Y., Pasternak, G. W., Gac-
Breton, S., et al. (2003). Improved Brain Uptake and Pharmacological Activity
of Dalargin Using a Peptide-Vector-Mediated Strategy. J. Pharmacol. Exp.
Ther. 306, 371–376. doi: 10.1124/jpet.102.048520

Rousselle, C., Smirnova, M., Clair, P., Lefauconnier, J.-M., Chavanieu, A., Calas, B.,
et al. (2001). Enhanced Delivery of Doxorubicin Into the Brain via a Peptide-
Vector-Mediated Strategy: Saturation Kinetics and Specificity. J. Pharmacol.
Exp. Ther. 296, 124–131.

Roy Chowdhury, S., Mondal, S., Muthuraj, B., Balaji, S. N., Trivedi, V., and Krishnan
Iyer, P. (2018). Remarkably Efficient Blood–Brain Barrier Crossing Polyfluorene–
Chitosan Nanoparticle Selectively Tweaks Amyloid Oligomer in Cerebrospinal
Fluid and Ab1–40. ACS Omega 3, 8059–8066. doi: 10.1021/acsomega.8b00764

Roy, D., Hinge, V. K., and Kovalenko, A. (2019a). Predicting Blood–Brain
Partitioning of Small Molecules Using a Novel Minimalistic Descriptor-
Based Approach via the 3D-RISM-KH Molecular Solvation Theory. ACS
Omega 4, 3055–3060. doi: 10.1021/acsomega.8b03328

Roy, D., Hinge, V. K., and Kovalenko, A. (2019b). To Pass or Not To Pass: Predicting
theBlood–BrainBarrierPermeabilityWith the3D-RISM-KHMolecularSolvation
Theory. ACS Omega 4, 16774–16780. doi: 10.1021/acsomega.9b01512

Ruan, W., Zhai, Y., Yu, K., Wu, C., and Xu, Y. (2018). Coated Microneedles
Mediated Intradermal Delivery of Octaarginine/BRAF siRNA Nanocomplexes
for Anti-Melanoma Treatment. Int. J. Pharm. 553, 298–309. doi: 10.1016/
j.ijpharm.2018.10.043
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